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Abstract

A preference is not located anywhere in the agent’s cognitive ar-
chitecture, but it is rather a constraining of behaviour which is in
turn shaped by behaviour. Based on this idea, a minimal model of
behavioural preference is proposed. A simulated mobile agent is mod-
elled with a plastic neurocontroller, which holds two separate high
dimensional homeostatic boxes in the space of neural dynamics. An
evolutionary algorithm is used for creating a link between the boxes
and the performance of two different phototactic behaviours. After
evolution, the agent’s performance exhibits some important aspects of
behavioural preferences such as durability and transitions. This pa-
per demonstrates 1) the logical consistency of the multi-causal view by
producing a case study of its viability and providing insights into its
dynamical basis and 2) how durability and transitions arise through
the mutual constraining of internal and external dynamics in the flow
of alternating high and low susceptibility to environmental variations.
Implications for modelling autonomy are discussed.

keywords : behavioural preference, homeostatic adaptation,
dynamical systems approach to cognition, evolutionary robotics
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1 Introduction

How does an embodied agent develop a stable behavioural preference such
as a habit of movement, a certain posture, or a predilection for spicy food?
Is this development largely driven by a history of environmental contin-
gencies or is it endogenously generated? Kurt Goldstein (1934) described
preferred behaviour as the realization of a reduced subset of all the possible
performances available to an organism (in motility, perception, posture, etc.)
which are characterized by a feeling of comfort and correctness as a contrast
to non-preferred behaviour which is often difficult and clumsy. Merleau-
Ponty, following insights from Gestalt psychology, postulated that bodily
habits are formed by resolving tensions along an intentional arc where the
external situation solicits bodily responses and the meaning of theses solici-
tations depend on the body’s history and dynamics. The overall tendency is
thus towards an optimum or maximal grip on the situation (e.g., like finding
just the right distance to appreciate a painting), (Merleau-Ponty, 1962, p.
153). In these views, the fact that a preferred behaviour is observed more
often would be derivative and not central to its definition (preferred be-
haviour is often efficient but not necessarily optimal in any objective sense).
Following this idea, we define a preference as the strength or commitment
with which a behavioural choice is enacted, which is measurable in terms
of its robustness to different kinds of perturbations (internal or external).
Such a preference is typically sustained through time without necessarily
being fully invariant, i.e., in time it may develop or it may be transformed
into a different preference. In order to understand such durable states from
a dynamical systems perspective, it is therefore convenient to study under
what conditions these preferences may change since this will reveal more
clearly what are the factors that contribute to their generation.

The word preference has many higher-level cognitive connotations that
may not be captured by this minimal definition. On the one hand, we recog-
nize that the dynamical systems picture portrayed in this paper does not do
full justice to the richness of the concept (e.g., human preferences involve a
complex interaction between habits, needs, cultural context and sometimes
conflicting values). On the other hand, our purpose is precisely to explore
the minimal dynamical properties that might be shared by many instances
of preferred behaviours. We follow the directions of synthetic minimalism
which has been defended as a useful route towards clarifying complex ideas
in cognitive science (Beer, 1999; Harvey, Di Paolo, Wood, Quinn, & Tuci,
2005). Our objective is to achieve such a clarification of the term preference
and related terms such as disposition, tendency, commitment, conation, etc.
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using the language of dynamical systems.
Dynamical systems approaches to cognition have typically examined pro-

cesses at the behavioural timescale such as discrimination, coordination, and
learning, (e.g., Beer, 2003; Kelso, 1995) and they have also been deployed
to describe changes at developmental timescales (Thelen & Smith, 1994).
But of course, the strength of the approach lies in its potential to unify phe-
nomena at a large range of timescales. In particular, behavioural preferences
and their changes lie between the two scales just mentioned (the behavioural
and developmental) and share properties with both of them. Goldstein has
argued that we cannot really find the originating factors of a preferred be-
haviour purely in central or purely in peripheral processes, but that both
the organism’s internal dynamics and its whole situation participate in de-
termining preferences (Goldstein, 1934). In this view, it becomes clear that
a preference is never going to be captured if it is modelled as an internal
variable (typically a module called “Motivation”) as in traditional and many
modern approaches, but that a dynamical model needs to encapsulate the
mutual constraining between higher levels of function, such as performance,
and lower processes, such as neural dynamics (Varela & Thompson, 2003).
A preference is not “located” anywhere in the agent’s cognitive architec-
ture, but it is rather a constraining of behaviour which is in turn shaped
by behaviour. A goal of this work is to explore and possibly operationalize
how this might be achieved in concrete terms suitable for further hypothesis
generation.

Preferences as described here are not typically addressed in minimally
cognitive or robotic models. Most artificial agents are designed so as to have
no preferences, or rather a single preference: that of adequate performance.
Straying from the assigned task into a different behaviour chosen by the
agent itself may be a sign of increased autonomy but not a frequent or
explicit goal in current robotics. In this paper we present an exploratory
model of behavioural preference with the objective of exploring the assertion
of multi-causality. We consider that the minimal requirements to capture
the phenomenon of preference is a situation with two mutually exclusive
options of behavioural choice. An agent should be able to perform either of
these options but the choice should not be random, but stable, and durable.
The choice should not be invariant either but it should eventually switch (in
order to study the factors that contribute to switching). There should be
a correspondence between internal dynamical modes and stable behaviours.
For this we use the methods of homeostatic adaptation to design not only the
agent’s performance but to put additional requirements on the corresponding
internal dynamics. We then examine the dynamical factors that play a role
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in sustaining and changing preferences.

2 A Spinozist approach

In contrast to functional/computational approaches, a dynamical systems
perspective on cognition makes it harder to conceptualize intentional terms
(such as motivations, tendencies, goals, emotions, etc.) as functional states
in the cognitive architecture of an agent (often implemented in computa-
tional modules; a practice some people refer to as “boxology”). However,
there isn’t as yet a clear and generally accepted alternative way to deal
with intentional concepts from the dynamical camp. Attempts are not lack-
ing. For instance, Kelso (1995) has suggested that it is possible to describe
intentional behavioural changes in terms of transitions between dynamical
attractors which correspond to different behaviours. The proposed process
would be achieved through the successive stabilisation and destabilisation
of attractors. In this view, intentions emerge as the order parameters of
self-organised bodily and neural dynamics leading to behaviour when cou-
pled with the environment. A similar idea has been proposed by Thelen and
Smith (1994) who use the changes of attractor stability to explain the devel-
opment of behaviours both at the developmental and behavioural timescales.
In their view, the landscape of the stability changes depending on ontoge-
netic processes. Juarrero (1999) offers a related view where prior intentions
are understood as the setting up of a dynamical landscape of attractors (e.g.,
through recursive self-organizing activity on the system’s constraints) and
proximate intentions imply the local selection of such dynamical alterna-
tives. All these views share some problems, such as the problem of how the
subject or agent to whom intentions might be attributed is itself dynamically
constituted, i.e., who is the agent that re-shapes a dynamical landscape so
that we may speak of intentions as belonging to it. Nevertheless, the central
intuition of dynamical re-shaping is appealing and worthy of expansion and
clarification.

An important point shared by both intentional behaviour for Kelso and
Juarrero and developmental processes for Thelen and Smith is that they
cannot be separated from the ongoing behavioural dynamics, i.e., the sys-
tems engagement with the environment. Given that these are processes that
themselves may alter the dynamics of interaction with the environment, the
emerging picture is one of mutual modulation, or circular causality (Clark,
1997; Thompson & Varela, 2001) where intentional and developmental pro-
cesses re-parameterize behaviour and, in turn, interaction with the environ-
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ment constrains and modulates intentions and development.
Dynamical views similar to those of Kelso and Juarrero have been ex-

plored in robotics. For instance, in the work of Ito et al. a humanoid robot
shows transitions between two different ball handling behaviours using a
special kind of neurocontroller in which specific nodes are trained to have
an association with each behaviour (Ito, Noda, Hoshino, & Tani, 2006).
Transitions are demonstrated to occur when the robot is interrupted by a
person changing the position of the ball. Although the functioning of the
system may be conceived in terms of a re-organization of the attractor land-
scape, transitions are demonstrated through human guidance, i.e., triggered
externally. This, unfortunately, does not allow the evaluation of more spon-
taneous forms of switching in terms of the dynamical account of mutual
constraining between interactive and neural levels that we want to explore
in this paper.

Following this idea, in this paper we suggest that a way of approaching a
study of preference is by embedding the circular causality between internal
organization and interaction in an embodied agent through the application
of homeostatically-driven neural plasticity (further justified below). Even
though this idea is not disconnected from those of Kelso, Juarrero and The-
len and Smith, the view in our proposed approach is different from the
attractor model in the following important sense.

Suppose that a dynamical system has two attractors, each of which cor-
responds to a different behaviour. If a transition between them occurs, it
could only be caused when noise or perturbations to the dynamics are strong
enough to detach the trajectory from the current attractor. As Kelso dis-
cusses, this would not constitute a proper intentional change because the
behavioural transition depends only on a random event and would not re-
sult in durable behaviour as in the case of a preference. Conversely, the
system cannot change attractors without noise, which means that in such a
case it would produce a same behaviour permanently.

Therefore, there are problems in explaining preferences in behaviour as
the switching between attractors in the proper dynamical systems sense.
It should be noted that we are not denying noise and random events may
play a role in triggering the transitions but insisting on the significance
of transitions caused by internal factors, which can be seen as higher-level
dynamics as in Kelso’s and Thelen and Smith’s explanations. A proper
intention, motivation, or alteration to a preference should also be dependent
on endogenous conditions, such as changes to the dynamical landscape itself
as a result of a history of behavioural interactions with the environment
in non-arbitrary ways. By explicitly implementing the circular causality
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between inner stability and external behaviour into our model through the
use of homeostatic mechanisms (as only one possibility for achieving this),
important aspects of preferences such as durability and transitions between
behaviours can be captured.

However, the choice of homeostatic adaptation to model the dynamics
of preference still requires a stronger justification.

A view on preferences, dispositions and tendencies that is amenable to
a dynamical interpretation is Spinoza’s doctrine of conatus or striving de-
veloped in his Ethics (IIIp4-7). This view serves as an inspiration for how
these issues are addressed in our model. We read in part III proposition
6: “Each thing, as far as it can by its own power, strives to persevere in
its being”. There are several issues concerning this doctrine discussed by
Spinoza scholars, especially the unargued proposition IIIp4 that states that
“No thing can be destroyed except through an external cause” (Matson,
1977); one might think of a bomb as a counter-example. However, in the
context of cognition a dynamical systems approach is highly compatible with
views that seek to establish a continuity between life and mind, (Jonas, 1966;
Maturana & Varela, 1980; Stewart, 1992; Wheeler, 1997; Bourgine & Stew-
art, 2004; Weber & Varela, 2002; Di Paolo, 2005). The essence or being
of a living system is its self-producing organization (autopoiesis) and it so
happens that IIIp4 is indeed true of living systems at least at a minimal
level of organization, (Di Paolo, 2005)– even though this is not such an ob-
vious statement for more complex systems beyond bare autopoiesis; think
of autoimmune diseases. Hence, we may assume that the striving doctrine
is applicable to minimal cognitive systems as well and so we can use this
idea as a regulative principle informing our approach (complex cases such
as culturally-embedded human cognition may present special kinds of prob-
lem such as the origin of conflicting values; we are not considering these
possibilities here).

So the question of preference becomes the question of understanding
an agent’s changing conatus. For Spinoza, this would directly relate to
the agent’s current being. A hungry animal strives for food and a thirsty
one for water. Conatus resolves in the interactional domain (actions and
perceptions) a tension that originates in the internal constitutive domain
(an internal need). To cash out such ideas in dynamical terms we must
define in the dynamical organization of the agent a condition of tension
and satisfaction where the first is defined as being in a state that leads to
alterations in the system’s organization (its essence or being in Spinozist
terms) and the second as being in a state where the system’s organization
remains invariant. This closely follows Ashby’s idea of an ultrastable system
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(Ashby, 1960). Conatus is therefore, on a first approximation, the interactive
and internal striving of an ultra-stable system to remain in those states that
satisfy the condition of invariant organization. This need not be interpreted
teleologically yet even though the terms tension and satisfaction have not
been chosen innocently, (for a discussion regarding the conatus doctrine and
teleology see (Bennett, 1984, 1992; Curley, 1990)). This view will be refined
after understanding the results from our model.

Finally, in order to sharpen the contrast of the view we are proposing
to previous ones, a relation to action selection should be mentioned. The
action selection literature is concerned with how animals, robots or simu-
lated agents can solve the ongoing problem of choosing what to do next in
order to achieve their objectives (Humphrys, 1997; Bryson, 2003). Agents
are given several options of action units in advance and they must decide
which one should be taken next and how they should be ordered and com-
bined. In other words, in action selection models the sensorimotor coupling
at the lower level is fixed and discretised in order to set the action units
and the aim is to decide how they should be chosen for the planning of the
higher-level goals. Roughly, this means that planning as a higher-level de-
scription is separable from the ongoing actions as a lower-level description
although this may depend on how the action units are defined. It might be
rather precise to say that this kind of work tries to illuminate our planning
intelligence in an ecological multi-objective context at the cost of simplifying
(even removing) the effects of the sensorimotor dynamics on the system’s
changing organization. This can be seen even in work on embodied robotics
which models intentional terms such as preferences, motivations and goals
as certain variables or “compartmentalized” functions named emotions or
motivations (Breazeal(Ferrell), 1998; Velásquez, 1997). Our view is differ-
ent from the idea expressed in most action selection models in that planning
is not separable from actions. Producing actions based on sensorimotor
coupling organizes and preserves plans, and in turn plans regulate the sen-
sorimotor flows. It should be clear that our motivations are also different
although we would expect that future developments of our work may interact
more closely with problems in action selection.

3 Homeostatic adaptation in neural controllers

A salient feature of the homeostatic adaptation model proposed in (Di Paolo,
2000) is that local plastic adaptive mechanisms work only when neural acti-
vations move out of a prescribed region; an idea inspired in Ashby’s home-
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ostat (Ashby, 1960). Such a mechanism has been implemented in a neuro-
controlled simulated vehicle evolved with a fitness function rewarding pho-
totaxis and the maintenance of neural activations within the homeostatic
region. The use of intermittent plasticity in combination with this selec-
tive pressure allows for the evolution of a novel kind of coupling between
internal and environmental dynamics. Once the neurocontroller gives rise
to behavioural coordination within a given environmental situation that re-
sults in internal stability, synaptic weight changes no longer happen. If the
situation changes, such as in an inversion of the visual field or some other
perturbation, this causes a breakdown of coordination, which means that
the neural activations cannot in general be maintained within the homeo-
static region. As this happens, the local adaptive mechanism is activated
until it finds a new structure (synaptic weight values) which can sustain the
activations within the homeostatic region and (very likely, though not nec-
essarily) re-form the behavioural coordination. As a result, the agent can
adapt to perturbations it has never experienced before.

This approach aims at creating a high dimensional bounded set, or box,
in phase space that corresponds to neural homeostasis often linked to suit-
able performance. The dynamics within the box is stable in that if trajecto-
ries go out of the bounds, the network’s own configuration, by design, will
change plastically until they come back again into the box. If trajectories
remain within the box, the system’s configuration no longer changes. This
plasticity-dynamics relation makes it possible for a coordination to occur
(under suitable circumstances) between a higher function, phototactic be-
haviour in this case, and the process that regulates the sensorimotor flows.
If the behaviour cannot be achieved, homeostatic adaptation attempts to
find new sensorimotor flows. This is therefore a concrete example of the
circular constraining between levels mentioned above1.

In the current context, we extend this property to create a model of

1The description of the homeostatic bounded sets as boxes could cause some confusion
with the traditional perspective that we have criticised above describing it as “boxology”.
We would like to clarify that we use this term to refer to the practice of putting a cognitive
function that belongs to the level of the whole agent into a computational module inside
the agent’s architecture. This is different from creating areas (boxes) in the space of the
agent’s internal dynamics that are both 1) generally stable and 2) linked to a particular
behaviour. Nothing is specified about the nature of this link in functional terms. In
fact, the behavioural function and the internal organization are linked bi-directionally,
since behaviour will impact on the internal dynamics, provoking plastic changes, and the
internal landscape will constraint the domain of possible behaviours. So, the functional
nature of the dynamics within a box is not fixed which is a general feature of the boxology
approach.
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behavioural preference. Our idea is that if the system holds two separate
high dimensional boxes in the space of neural dynamics which are associ-
ated with performing different behaviours, for simplicity’s sake phototaxis
towards different light sources A and B, a preference could be formed by
the dynamical transitions that select which box the dynamics go into and
stay in. This provides one of our requirements for talking about prefer-
ence, that of durability (bottom-up construction of the stability). Once a
behaviour is formed, due to the stability in a box, the system keeps doing
the behaviour while ignoring other behavioural possibilities. This plays the
role of a spontaneous top-down constraint that regulates the sensorimotor
flows. However, some disturbances might eventually cause a breakdown
of the stability and then another behaviour can be reconstructed through
the homeostatic adaptive mechanisms. Since by design, the system has an-
other region of high stability, the system will be likely to switch into it and
then start enacting its other behavioural option. In this way, behaviour can
switch due to the corresponding transitions between two boxes. We expect
to see both spontaneous and externally-induced transitions from the view-
point of the top-down and bottom-up construction or destruction of durable
but impermanent dynamical modes. Here we find our second requirement,
that of the possibility of transformation, or change in preference. Except for
considerations of symmetry, the placement of these high-dimensional boxes
is arbitrary in the present model (see discussion).

4 Model

Our proposed minimal model of behavioural preference extends the home-
ostatic adaptation model. The idea is implemented in a simulated mo-
bile agent with a plastic neural controller containing two separated, high-
dimensional homeostatic regions. The simulated robot is faced with two
different kinds of light as mutually exclusive options of behavioural choice.
It must visit one of them and this “choice” must correspond to the internal
dynamics being contained in the corresponding homeostatic box. An evolu-
tionary algorithm is used to design the neurocontroller. Agents are evaluated
on each type of light separately, and on both types simultaneously, in which
case one of them is presented as blinking. The agent must approach the
non-blinking light, (see below). After evolution, this cue is removed and the
agent’s preference is investigated by presenting two constant, non-blinking
lights of each type simultaneously.
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Agent. An agent is modelled as a simulated wheeled robot with a
circular body of radius 4 and two diametrically opposed motors. The motors
can drive the agent backwards and forwards in a 2-D unlimited plane. Agents
have a very small mass, so that the motor output directly determines the
tangential velocity at the point of the body where the motor is located. The
translational movement of the robot is calculated using the velocity of its
center of mass, which is simply the sum of the two tangential velocities and
the rotational movement is calculated by dividing the difference of the two
motor outputs by the diameter (leading to a maximum translation speed
of 2.0 units and rotational speed of 0.25 radians at each Euler time step).
The agent has two pairs of sensors for two different light sources, A and B,
mounted at angles of π/3 radians to the forward direction. The two lights do
not interfere with each other and the model includes the shadows produced
by the agent’s body.

Plastic controller. A fully connected continuous-time recurrent neural
network (CTRNN) (Beer, 1990) is used as the agent’s controller. The time
evolution of the states of neurons is expressed by:

τiẏi = −yi +
N∑

j=1

wjizj(yj) + Ii, zi(x) = 1/(1 + e−x−bi), (1)

where yi represents the cell potential of neuron i, zi is the firing rate, τi

(range [0.4, 4]) is its time constant, bi (range [−3, 3]) is a bias term, and wji

(range [−8, 8]) is the strength of the connection from the neuron, j, to i. Ii

represents the sensory input, which is given to only sensory neurons. The
number of neurons, N , is set to 10 in this paper, 4 of which are assigned
to sensory neurons, i.e., 2 neurons for each light sensor. The sensory input
is calculated by multiplying the local light intensity by a gain parameter
(range [0.01, 10]). The decay of the light intensity follows a sigmoid function
in order to avoid the situation in which it becomes too strong when the agent
is very close to the light. There is one effector neuron for controlling the
activity of each motor. Similarly, the motor output is calculated from the
firing rate of the effector neuron, which is mapped into a range [−1, 1] and is
then multiplied by a gain parameter (range [0.01, 10]). All free parameters
are determined genetically.

A plastic mechanism allows for the lifetime modification of the connec-
tion weights between neurons. The homeostatic regions are described by a
plasticity function of the firing rate of the post-synaptic neuron; this func-
tion determines the strength of change of all incoming weights. The plastic
function is 0 in the homeostatic regions, which means no plasticity. To as-
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sign the different phototactic behaviours to different boxes in our extended
model, two separated regions are arbitrarily set corresponding to firing rates
of [0.15, 0.4] and [0.6, 0.85] as shown in Fig. 1 and for each neuron each region
is arbitrarily assigned for phototaxis A or B at the start of the evolutionary
run. To reduce bias, the upper (bottom) region of half of the internal neu-
rons is assigned for phototaxis A (B), and the other region is for phototaxis
B (A). These assignments remain the same for the evaluations during the
evolutionary run. However, the scheme with two separate regions is not
applied for input and output neurons because this would introduce biases in
the input sensitivity as well as prescribe particular styles of movement. For
input and output neurons, a function which has a single homeostatic region
is applied (Fig. 1 (right)).

Weight change follows a Hebbian rule which also depends linearly on
the firing rate of the pre-synaptic neuron and a learning rate parameter.
Weights from neuron i to j are updated according to :

∆wji = ηjizip(zj) (2)

where zi and zj are the firing rates of pre- and post-synaptic neurons, re-
spectively, ∆wji is the change per unit of time to wji, p(x) is the plastic
function (see Fig. 1), and ηji is a rate of change (range [0, 0.9]), which is
genetically set for each connection. For simplicity, we restrict this parameter
to a positive range, so that the product of this value and the plastic func-
tion always works in the direction of returning the flow into the homeostatic
region. For example, if the firing rate of neuron j, zj , is between [0, 0.15] or
[0.5, 0.6], the plastic function returns a positive value and the weight change
is calculated by multiplying the firing rate of pre-synaptic neuron i and ηji,
which are positive. This means that the weight change works to increase the
firing rate zj . If the firing rate is between [0.4, 0.5] or [0.85, 1.0], the plastic
function returns a negative value. In this case, the weight change works in
the opposite direction to decrease the firing rate.

This implementation for the plasticity rule is not the only possible way
to realize neural homeostasis. Other studies show different forms of neural
plasticity (Di Paolo, 2000; Williams, 2004). However, we use the simplest
implementation for out current purposes in that plasticity always works in
the direction of stability within the boxes. The validity of stipulating the
homeostatic regions in this way will be addressed later in the discussion.

The time evolution of agent’s navigation and plastic neural network are
computed using an Euler method with a time step of 0.1.
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Figure 1: Plastic facilitation as a function of firing rate for internal neurons
(left), and for input/output neurons (right).

4.1 Evolutionary setup

A population of 60 agents is evolved using a rank-based genetic algorithm
with elitism. All network parameters, wji, τi, bi,, ηji and the gains are
represented by a real-valued vector ([0,1]) which is decoded linearly to the
range corresponding to the parameters (with the exception of gain values
which are exponentially scaled). Crossover and vector mutation operators,
which adds a small random vector to the real-valued genotype (Beer, 1996),
are used. The best 6 (10%) agents of the population are kept without change.
Half of the remaining slots are filled in by randomly mating agents from the
previous generation according to rank, and the other half by mutated copies
of agents from the previous generation also selected according to rank.

The agents are evaluated under 4 different situations: a single light A,
a single light B, two-lights-A, two-lights-B. The task of a single light A
(B) consists of the serial presentation of 8 distant light sources of type A
(B) which the agent must approach in turn and remain close to. Only one
source is presented at a time for a period, called a trial, of random duration
drawn from the interval [700, 1000] update steps. In contrast, under the task
of two-lights-A and two-lights-B, two different light sources, A and B, are
presented simultaneously, one is blinking, and the other is constant. The
agent gains fitness by approaching the latter. Our aim in putting a blinking
light as a dummy is to encourage the agent to get to the target while in
the presence of distracting stimuli that it must ignore. Otherwise, the agent
would not get a chance to experience the simultaneous presence of both
sources of stimuli and face the problem of picking one as the target.
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The blinking light flickers with a 15% probability at every timestep.
As well as the single light task, the two-lights task consists of the serial
presentation of 8 pairs of distant light sources, which are π/2 apart from
each other from the agent’s point of view. The length of the trial is chosen in
the same way as in the single light task. After a trial, lights are extinguished
and new ones appear at a random distance, [100, 150].

Each individual agent is tested for 12 independent runs in total, i.e., 3
independent runs for each task. At the beginning of each run, the synaptic
weights are reset to the initial values. Each run consists of 8 trials and only
the last 3 of those are evaluated in order not to penalize slow plastic changes.

Fitness is calculated based on three terms. FD corresponds to the pro-
portion of reduction between the final (Df ) and initial (Di) distance to
a target, 1 − Df/Di. Fp indicates the proportion of time that the agent
spends within a distance less than 15 to a target during a trial. FH rep-
resents the average score of neural homeostasis. For each timestep that a
neuron fires homeostatically within the region corresponding to the target
light, a counter is incremented by 1. If it is within the homeostatic re-
gion assigned for the non-target light, the counter is not incremented and
for all other regions the counter is incremented by 0.5. These counters are
then averaged for all neurons and over the whole trial. Selecting for high
FH will tend to create an association between each homeostatic region and
the corresponding phototactic behaviours. For each trial, the total fitness
(FD + Fp)FH is calculated and then averaged over all 12 runs.

5 Results

The two phototactic behaviours can be easily evolved, however, it is more
difficult to obtain agents that are able to associate the behaviours with the
two homeostatic regions and to maintain the internal dynamics within the
regions. The evolved agents can be highly sensitive and dependent on the
history of the interactions. Since our purpose in this paper is to explore
how the high level concept of preference can be described in terms of neural
and sensorimotor dynamics and to demonstrate the logical consistency of a
multi-causal view, we restrict our analysis to the in-depth study of a single
successful agent. This will allow us to generate a more concrete hypothesis
that further modelling (including statistical analysis across many runs) and
specific empirical studies can investigate.
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5.1 Basic phototactic behaviours

First, in order to check for long-term stability of the two phototactic be-
haviours and maintenance of the internal dynamics, the agent is tested for
longer successions of lights (only 8 were evaluated during evolution). In
the case of interacting with a single light A, or two-lights-A (constant light
A and blinking light B), the agent shows a long-term stability (more than
100 lights) for phototaxis A and the maintenance of the internal dynamics.
On the other hand, in the case of interacting with a single light B, or two-
lights-B (blinking light A and constant light B), the stability is less than in
the former case. One or two of internal neurons sometimes stay within the
homeostatic region for light A even when approaching light B. Even so, this
is not a major problem for our purposes because there is still a difference in
stable states of the other neurons between two types of phototaxis. In terms
of behavioural patterns, the agent typically goes straight to the target light.

Due to the weaker stability of phototaxis B, the following experiments
are run for less than 100 successive lights, which was long enough to show
the preference.

5.2 Transitions

When lights are presented simultaneously during evolution, a cue telling
the agent which light to visit is given by the difference between the lights
(constant or blinking). A choice under this condition can be regarded as
being environmentally pre-determined before the agent starts interacting.
The agent is now tested under a situation (unseen during evolution) where
no cue is given, i.e., by making both lights constant.

Figure 2 shows, for 100 consecutive trials, the final distances to both
light sources at the end of each trial (very short distance means the agent
has approached the light at the end) and how long the internal dynamics
stay within each homeostatic region on average over the whole trial. As can
be seen, the agent always “chooses” one of the two lights, it never stays in
between the two. This is not trivial because the two-light situation has not
been experienced by the agent and it might have produced oscillations or
deadlocks as a result of competition between sensory inputs. It is likely that
the conditions for such behaviours are rare, however. It is also shown that
the selection is neither random nor permanent but durable or quasi-stable
(only 4 changes are counted in this run of 100 presentations).

Examples of behavioural patterns are shown in Fig. 3 when interacting
with the first, the 10th, and the 30th pair of lights. At the first pair, the



16

agent takes a side trip while ignoring both lights. This is normal and cor-
responds to an initial period where plastic rules are settling the initially
random weight values. The 10th and 30th presentation are typical examples
of approaching patterns to light A or B while ignoring the other. These are
similar patterns to those observed in the task situations during the evolution
(single lights, and 2 lights, 1 blinking).
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Figure 2: Left: Final distance to each light at the end of trials on serial pre-
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Stopping plasticity. In order to confirm whether the plastic mecha-
nism plays a role in the transition from one type of phototaxis to the other,
plasticity is turned off at different points during the same 100 sequence of
light presentations. The experiment is started with the same initial configu-
ration of Fig. 2 and plasticity is turned off (weights remain at their current
value) at the 20th or 50th presentation before the transitions take place.
Figure 4 shows the distance to both light sources and the proportion of
homeostasis.
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As can be seen in both cases, the agent’s behaviour does not switch in
the period tested; it keeps approaching the light it preferred before stopping
plasticity. While the behaviours are sustained, the internal dynamics is also
maintained within the each region as much as before plasticity was stopped.

It should be noted that it is possible for a CTRNN to switch the internal
dynamics into another region without changing the network weights (e.g.,
Phattanasri, Chiel & Beer, submitted). If so, it means that the agent’s
behaviour transition might be happening without explicit synaptic plasticity.
However, it is clear that, at least in the examples explored, non-plastic
transitions are not common. After stopping the plastic mechanism, neither
the behaviours nor the internal dynamics seem to change. This shows that
the homeostatic adaptation works as required and the homeostatic regions
are associated with the phototactic behaviours as we expected even in novel
situation with both sources constantly emitting light.
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5.3 What makes a preference change?

It was shown that plasticity drastically affects the possibility of behavioural
transitions but this does not mean that the transitions are caused solely by
factors internal to the agent. Generally, it is difficult to discuss causation
in the context of complex embodied dynamical systems. However, in this
section, we try to make a distinction between endogenous dynamics and
externally-driven interactions in terms of the susceptibility to the environ-
ment in order to study the effect of different factors affecting the switch of
preference.

5.3.1 Persistence of preference

We investigate the persistence of the preference for a light type. In this
experiment, the positions of the two lights are swapped at some point dur-
ing the approaching behaviour. If the agent has a consistent preference,
the agent should seek the light it prefers and re-approach the target in its
new position. This procedure resembles the one applied by Beer to study
the agent’s commitment to a behavioural outcome in his work on minimal
categorical discrimination, (Beer, 2003).

The experiment is performed by using the same agent as before, which
has interacted with the same environment of Fig. 2 until the 50th presen-
tation at a point where it exhibits a preference for light A. In this trial, it
takes approximately 750 timesteps for the agent to reach the target.

Starting from the same conditions, we investigate in detail the effect
of a single position swap occurring at a timestep t during this trial. The
approached light is recorded for all tested values of t. Figure 5 shows the
final distance to the lights as a function of the timing where positions are
swapped. It also shows the agent’s trajectory when the light sources were
swapped at t = 150 as an example.

This trial is taken from a period where the agent has a preference of
light A, which means if nothing happens, the agent will approach light A.
The result shows that swapping at the earlier timesteps allows the agent to
persist in its preference and approach the target light. It can be consid-
ered that there is no big difference between the stimulus strength of both
lights at earlier timesteps and the agent can still “pick” which light to go,
following its preference. For position swaps occurring later, the change in
environmental factors become stronger and the agent will approach A or
B depending on its current orientation. If positions are swapped after 350
timesteps, the agent is close enough to receive a very strong stimulus from
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light B after swapping which seems to produce a transition and so the agent’s
behaviour is now to stay around light B. This single instance is enough to
show that strong enough variations in environmental factors (e.g., orienta-
tion, strength of stimuli) can produce a change of preference in the agent’s
behaviour. Interestingly, there is an indeterminate period around t = 340
where phototaxis A and B are mixed. We have not investigated this period
deeply yet but it could be expected that ambiguous environmental factors
and/or internal dynamics produce a conflict.
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Figure 5: Right: Distance to the lights (squares for light A and crosses for
B) as a function of the time when light positions are swapped. The agent
has interacted until the 50th presentation shown in Fig. 2. The distances are
recorded after 800 timesteps. Left: Trajectory when the light is swapped
at 150 timesteps. The upper plot shows the original trajectory (lack of
smootheness indicates sharp angular turns).

The swapping experiments show both the persistence of the preference
and the influence of the environment. To study the persistence more clearly,
another experiment is performed. The swapping experiments are reproduced
as before but in addition one of the two lights vanishes. The following three
cases are tested: (B→A, A→x), (A→B, B→x), and (A→x, B→B). The
distances to the only remaining light after 800 timesteps are shown in Fig.
6.
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The notation (B→A, A→x) indicates that, at time t, the position of
light B is changed to that of light A and the original light A disappears.
Therefore, the agent suddenly sees light B on the way to light A (and no
other lights). As with the swapping experiments, if the agent is close enough
to get strong stimulus from light B, the agent changes the preference to
light B and remains close to it, which can be seen in the corresponding
plot. However, at earlier values of the swapping time t, the agent does
not approach light B even if the agent is on the way to the position where
A was. Notice that the behaviour of approaching a single light has been
explicitly selected during evolution. This is a situation where the agent
should approach whatever single light is available. In spite of this, the agent
does not approach the solitary light B. This is very strong evidence in
support for an endogenous sustaining of the A preference.

In the case of (A→B, B→x), the agent keeps approaching light A while
following the preference even if the light is placed in a different place. This
is expected. In contrast, in the case of (A→x, B→B), light A disappears and
light B remains in the same position. Both in the previous case and in this
one only one light remains at the original B position. The only difference is
that this light is A in the previous case and B in this one. Any other neural
states, body direction, etc. are same. Therefore the agent receives the same
intensity of light B in the latter case as of A in the former, where the agent
could eventually locate light A. This implies that the agent must now be
able to sense light B. However, the agent does not approach it for most
values of t. As in the first case, this result shows a strong persistence of the
preference even when the external situation should be expected to change
it.
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5.3.2 Effects of reducing external variability

Although the importance of endogenous factors in the formation and per-
sistence of preference has been established, the internal dynamics are not
independent of the history of environmental coupling. The agent creates
the preferences through interactions. Random elements such as the position
of the lights with respect to the orientation of the agent that can have an
effect on the probability of switching to a different behaviour. To further
show that the environmental factors do affect the preference, the agent is
tested in an environment with fewer fluctuations where each new pair of
lights always appears in a same position relative to the body, which is at
distance of 130 on a bearing of π/4 to the right (left) of the agent’s current
heading for light A (light B). Under this condition, we counted how many
transitions between preferences take place during 100 trials (presentation
of a pair of light). Successive visits of more than 3 to the same light type
was defined as evidence of a sustained preference. On an average over 100
independent runs, 0.25 transitions took place during 100 trials in this con-
dition in contrast to 1.16 transitions in the normal condition. A reduction
in environmental fluctuations produces the stabilization of the sensorimo-
tor flow and then the preference is also stabilized. We should also notice
that the number of transitions is reduced but not to zero, thus indicating
that changes do occur due to the interaction between internal dynamics and
environment even when external uncertainty (in light position) is removed.

A different test was carried out in an environment where the lights
sources remain fixed on the same place. We test the agent in this con-
figuration for a time corresponding to the 100 consecutive presentations of
lights as in the above experiments. On average over 1000 independent runs,
transitions take place 0.039 times during this period. Again we obtain a
drastic reduction of transitions by removing external variability. In this
particular case, the reduction is achieved by the agent remaining close to a
very strong source of stimulation, which in some sense seems like the most
difficult condition to switch away from. However, we notice that as before
the number of transitions is not fully reduced to zero even in these extreme
conditions.

5.3.3 Transitions between high and low susceptibility to pertur-

bations

The emerging picture is one where both endogenous dynamics and environ-
mental factors play a role in the sustaining and the changing of a prefer-
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ence. Does it still make sense to ask the question of whether the choice that
an agent actually makes corresponds to a spontaneous or externally-driven
“decision”? Put in these traditional terms, the answer is no. However, it
is possible to capture in more detail the dynamical relation between the
different factors in order to formulate a clearer distinction. This distinction
is made operational by observing the agent’s potential behaviours in differ-
ent situations departing from a same initial state. If the agent “decides”
to go to one of the lights by a preference that is endogenously sustained,
its behaviour must be robust to variations in environmental factors. On
the contrary, “decisions” that are highly-affected by environmental varia-
tion can be attributed to the role played by external factors. We label the
two possibilities respectively as strong and weak commitment to a choice.

Based on this idea, we select the agent’s states (neural and bodily) cor-
responding to different times in Fig. 2. For each selection of initial states,
we record which light is approached by the agent as a function of different
initial angular positions of the two lights (both placed at the same distance).
This is the closest we can get in the present setting to a quantitative measure
of preference. The results are shown by different shades of gray for the final
destination in Fig. 7. In the case of (a), in which the agent originally has the
preference of light B, the “decision” is stable against the various initial posi-
tions of the lights. The agent robustly approaches light B for practically all
the angular positions tested. Therefore, the “decision” to approach B does
not depend on environmental variation in this case. (As demonstrated in
the swapping experiments, in some of these cases, the agent actively avoids
the light that is presented directly in front of it and searches for the alter-
native light even if its position is such that no stimulus from that light is
directly impinging on the sensors). The same is also true in the case of (c).
Except for the small region where it selects light B, the agent approaches
light A wherever else the lights are placed. By contrast, in cases (b) and (d)
the agent is rather “uncommitted” because the approached target changes
depending on the lights’ position.

In order to see how this dependency of the “decision” on environmental
variability changes during the history of interactions, the proportions of
dark grey (light A) and light grey (light B) circles in the plots of Fig. 7 is
calculated (Fig. 8) for different times corresponding to times in Fig. 2 (which
shows the actual choices taken). It is shown that when the agent has the
preference for light B since the proportion of B-circles at the beginning of
this period is high, which means that the agent effectively ignores light A
and keeps approaching light B. It could be said that the agent’s behaviour
is committed in the sense that it does not depend on the environmental
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factors as mentioned above. When the preference changes from light B to
A and a while after that, the proportions stay around 0.5, which means
that the agent does not have a strong commitment to which light should be
selected as target. There is ample scope for environmental factors to alter
the agent’s behaviour. Then, the choice of light A changes towards a more
stable (or committed) dynamics.

We are not implying with these results that during periods of weak envi-
ronmental dependence, the endogenous dynamics are solely responsible for
the agent’s performance. In all cases, behaviour is the outcome of a tightly
coupled sensorimotor loop. It is clear that the mode of environmental depen-
dence, whether weak or strong, changes over time and that this is a property
of the agent’s own internal dynamics as well as the history of interaction.
During the periods of high susceptibility to external variations, the agent is
highly responsive to environmental variability resulting in less commitment
towards a given target. By contrast, during periods of weak susceptibility,
the consistent selection of a target is a consequence of low responsiveness to
environmental variability.

The important point is that the autonomy of the agent’s behaviour can
be seen as the flow of alternating high and low susceptibility, which is an
emergent property of the homeostatic mechanism in this case (but might
be the result of other mechanisms in general). There is nothing apart from
the flow of neural and sensorimotor dynamics that stands for a mode of
commitment to a preference or other. No internal functional modules, no
external instructions. Nevertheless, the existence of the different modes can
be determined and measured. It should be made clear that this picture is
quite in contrast with the idea that autonomy may be simply measured as
how much of behaviour is determined internally vs. how much is externally-
driven. Strong autonomy (in this context the capability of defining one’s
own goals) is orthogonal to this issue since simply all of behaviour is condi-
tioned by both internal and external factors at all times. It is the mode of
responsiveness to variations in such factors that can be described as com-
mitted or open, and it would be a property of strong autonomous systems
that they can transit between these modes (maybe in less contingent ways
as this agent, e.g., in terms of needs, longer-term goals, etc.).

6 Discussion

Though minimal, the dynamical model discussed in this paper exhibits some
important aspects of behavioural preferences such as durability and transi-
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Figure 7: Light preference of the agent corresponding to the states of (a)20,
(b)25, (c)50 or (d)95 in Fig. 2, against different light positions. Horizontal
and vertical axes indicate the initial angles of lights A and B relative to the
agent’s orientation respectively. The positions of lights whose difference is
less than π

2
are removed in order to better determine which light the agent

is approaching. The dark grey circles show that the agent approaches light
A. The light grey circles correspond to light B and black shows the agent
does not approach either of lights.

tions through mutual constraining of internal and external dynamics. We
hasten to say that the understanding of preferred behaviours is not ex-
hausted by the dynamical properties explored in this paper. In particular,
preference in natural cognitive systems implies a capability to appreciate
the value of a choice. The current model does not capture this extra level of
complexity, though a dynamical approach to value-generation may indeed
be possible (Di Paolo, 2005) and it may be close to the constraining of dy-
namical modes shown in the present model. Much less justice is done to
the problem by traditional approaches where preferences (or motivations,
moods, etc.) are reified as internal variables and with which the view pre-
sented here should be contrasted.

The model shows the effectiveness of the dynamical approach in allow-
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corresponds to the number of the lights the agent has interacted with in Fig.
2.

ing the posing of the right questions and suggesting solutions. It is possi-
ble to clearly formulate some constitutive properties of preference and the
specification immediately suggests a road towards a minimal design. In
particular, it seems that what is necessary is a process that can link more
than one mode of internal stable dynamical flows with the corresponding
interactional dynamics. This link can successfully produce the property of
persistence without permanence in our model. It also makes concrete the
description of the mutual constraining between two levels (neural dynamics,
agent/environment interactions). Consequently, the model lends support to
Goldstein’s and Merleau-Ponty’s multi-causal view of preferred behaviour
by producing a case study of its viability and providing insights into its
dynamical basis. We have shown the logical consistency of the view that
persistence of preference and their transitions cannot be attributed either
to internal or external factors on their own. And yet, there is a sense in
which we can say that internal and interactive dynamics are implicated in
generating stronger or weaker degrees of commitment.

The model allows us to make some observations.
It is important to notice that in several cases the agent keeps searching
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for a target light even when it is no longer detectable and avoids approaching
the alternative target that is present. Here it is possible to draw a parallel
between the persistence of preference and the similar phenomenon of object
permanence observed in infant experiments by Piaget (1954). According to
Piaget, the concept of an object as something that has an ongoing existence
independent of the observer is not immediately given. The lack of such con-
cept is his explanation of the famous A-not-B error in which 7-12 month
old infants search for a toy, not in the location they have just seen it being
hidden, but in the location where they searched for it in the past. However,
there are alternative more parsimonious explanations. The perseverance ob-
served in such cases may respond to simpler dynamical mechanisms (often
described as motor memories) (Thelen, Schoener, Scheier, & Smith, 2001).
A recent study by Wood and Di Paolo (Wood & Di Paolo, 2007) actually
demonstrates that the same homeostatic mechanisms used in the current
study (two homeostatic regions corresponding to two behavioural options)
is sufficient to reproduce the pattern of errors observed in infants and their
disappearance with age, lending support to the idea that motor memories are
at the basis of perseverance and providing a plausible sensorimotor expla-
nation for the origins of the higher cognitive capacity of object permanence.

The method shows another use for homeostatic adaptation in combina-
tion with evolutionary techniques in shaping both behavioural and internal
requirements for the neural/body/interaction system. However, we may
ask whether this is the simplest model of behavioural preference. It seems
a priori a good idea to attempt the same experiments using non-plastic
CTRNNs with homeostasis, or even without it. We predict that the latter
case would be brittle, i.e., largely driven by the environmental configura-
tions, and so show little or no persistence of preference. The other case,
non-plastic CTRNNs with homeostasis is less easy to predict. Systematic
comparisons along these lines are planned in order to establish the role
played by structural plasticity.

On analyzing the role of environmental factors (position of lights) on the
choice of target we find the agent presents different degrees of openness to
environmental variability, or put differently, commitment to a target goal.
These assertions can be made operational in terms of the stability of the
dynamics. The results allow us to formulate the following dynamical hy-
pothesis: A switch in preference will take place not necessarily as specific
internal variables acquire specific values, but rather as a result of changes
in the stability landscape of the neural and sensorimotor dynamical flows
between committed and open modes. In some modes, the landscape will be
highly stable to environmental variability. Alternative choices and oppor-
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tunities for behavioural change will not affect the behavioural and neural
flow. The agent may even be “blind” to stimulations corresponding to these
alternative behaviours. Such are the committed modes. In other cases, even
if the actual behaviour shows a stable trajectory towards a target, the sen-
sitivity to environmental variability may be higher. These are the open or
un-committed modes which may result, in the appropriate circumstances in
a change of preference. Between the two modes lies a spectrum of interme-
diate possibilities.

The results justify the choice of the Spinozist inspiration for the design of
our model. This view allows us to pose the problem of preferred behaviour
in dynamical terms, and of the change of preference in terms of change of
conatus. In turn, the operationalization of commitment proposed in this pa-
per feeds back into the task of understanding conatus dynamically. In this
way, a dynamical systems approach to preferences (and associated cognitive
phenomena such as decision making) looks for global dynamical properties
at the internal and interactive levels to determine whether a behaviour is
preferred or not, chosen with strong or weak commitment. Of course, in
many cases the specific determination of preference carried out in this pa-
per (resetting the agent to a given state and altering its environment) may
be hard or impossible to achieve. In such cases, alternative or derivative
operationalizations will be required.

As a final note on autonomy, it is clear that in our model the achieve-
ment of committed or open modes of sensorimotor flows is done through the
history of interaction by the agent itself. However, the fact remains that its
autonomy is severely limited by the arbitrary imposition of the two inter-
nal homeostatic regions. We believe that in reality the condition of using a
strict region corresponding to zero plasticity may be relaxed and that the
dynamics may consist of moving gradients of plasticity and the spontaneous
formation of highly stable regions where plastic change is small and in gen-
eral pointing back into the same stable region. Designing an agent where
such homeostatic regions are themselves the consequence of the agent’s own
activity will be a further step towards strongly autonomous behaviour. In
a sense, such an agent will not only be switching spontaneously between
a choice of externally-provided goals, it will be creating its own goals as a
consequence of its history of interactions.
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