
A Magnetic Resonance Image Description Language for Neuroradiology

George du Boulay, Briony A. Teather, Derek Teather, Nathan Jeffery

CSRP 544

February 2002

ISSN 1350-3162

Cognitive Science

Research Papers

A Magnetic Resonance Image Description Language for Neuroradiology

George du Boulay^{1,2}, Briony A. Teather^{2,3}, Derek Teather², Nathan Jeffery²

¹Institute of Neurology, London ²Medical Systems Research Group, De Monfort University, Leicester ³School of Cognitive and Computing Sciences, University of Sussex

1. Introduction

The MEDIATE project is a collaborative venture the initial aim of which (the MR Tutor) is to provide a computer-based training system to help neuroradiology trainees develop the skills required to become experts in the field. In particular, the tutor is designed to:

- <u>1.</u> Teach trainees a structured Magnetic Resonance (MR) Image Description Language (IDL).
- 2. Ensure that trainees are exposed to a wide range of cases representing the major brain diseases and gain an indication of the variation in visual features both between and within a disease category [Sharples00, Teather00, and duBoulay01].
- <u>3.</u> Expose trainees to cases drawn from a variety of small worlds, where each small world consists of cases from diseases that produce similar images, and so help them to discriminate between potentially competing hypotheses [Hinkley01].

The basic domain representation underpinning the system is an archive of cases with confirmed diagnoses, all described by the same expert (G. du Boulay) include using the IDL. These separate descriptions for each image sequence/echo including detailed descriptions (e.g. region, major the exact location, structure, shape, conformity position, margin, area, to interior pattern (if any), anatomical feature, and intensities) of the lesion (or the largest of each type of lesion visible, where there are multiple lesions). Lesions that appear to consist of two or three distinct parts, either by their internal pattern or because different parts occupy different anatomical structures, may be specifically so described. The description also includes correspondence between described parts of lesions seen under different sequences and descriptions of atrophy, other signs (e.g. space occupation) and other abnormal signals for the case as a whole [duBoulay94].

This paper describes the full Image Description Language (as of 9/01/2002). Note that for the purposes of the prototype description training system (the MR Tutor) a simplified version of the description language has been used. It provides an initial set of terms to support discussion and sharing of knowledge amongst trainee neuroradiologists and their supervisors. It also serves as a structured representation of knowledge for the MR Tutor, enabling it to generate remedial responses to student errors.

2. Lesion Type

MRI is very sensitive in revealing abnormalities in brain tissues. The number of lesions revealed in a single brain may sometimes be very large. To provide detailed individual descriptions for every lesion may be a very lengthy task and unnecessary for diagnosis or management of treatment. Most of the lesions encountered can, however, be allocated by their IDL descriptions into one of 8-10 defined types. Recording the numbers, size range and dispersion of each type, together with a full description of the largest representative of each type probably provides almost as much information as would be available from all of the individual lesion descriptions.

Type is key to describing cases exhibiting multiple lesions. In the description process, the largest lesion of each type visible is described in detail. It is not necessary to indicate in detail, at the start of the description process, the particular type of lesion being described but simply to use the idea of type to group together lesions of similar appearance and/or structure as indicated below.

The decision as to whether or not some or all of the lesions are of the same type is made by examining the structure of the lesions on <u>ALL</u> available images.

In general terms, lesions fall into different types:

- Nodular or irregularly shaped, not more than 15mm in (true) diameter and without a focal structure.
- Diffuse, irregularly shaped, without a focal structure and more than 15mm in maximum diameter on at least one slice.
- Spherical with a homogeneous centre or highly suggestive of a cyst, with or without concentric rings of different intensities but not associated with a nodular mass or irregular surround.
- Containing a focal structure within a surround that is not exclusively concentric rings.
- Lesions with a focal structure may be further subdivided by their intensities
 - for lesions containing a focal structure to be of the same type, the pattern of the structure as it is described within this system should be the same and the intensity of the analogous parts of the lesion should

not differ in polarity on the same sequence (otherwise they are of different types).

• Lesions containing two or more distinct parts should be considered as being of the same type.

3. MR Image Description Language - Overview

3.1 Description without Contrast Medium

FOR EACH CASE

RECORD scanner id, patient id, scan date, user, no of sequences, sequence/echo details, discrete lesions, no of types of lesion

FOR EACH TYPE (If Multiple Lesions)

RECORD no of lesions, size ratio, (dispersion)

SELECT LARGEST LESION (If only one discrete lesion describe this lesion)

FOR EACH SEQUENCE/ECHO

RECORD lesion visibility, (position), (appearance)

FOR EACH LESION DESCRIBED

RECORD (correspondence)

FOR EACH CASE

RECORD (atrophy), (other signs), (other abnormal signals)

Note : () is used to indicate that a list of items is recorded

3.2 Post-Contrast Description

FOR EACH CASE FOR WHICH THERE IS A PRE-CONTRAST SCAN

RECORD scanner id, patient id, scan date, user, no of post-contrast sequences, post-contrast sequence details, no of types of lesion on pre-contrast)

FOR EACH TYPE VISIBLE PRE-CONTRAST

CONSIDER LARGEST LESION DESCRIBED PRE-CONTRAST

FOR EACH POST-CONTRAST SEQUENCE/ECHO

RECORD lesion visibility post-contrast, (position post-contrast), (appearance post-contrast)

(additional lesions of similar post-contrast appearance)

FOR EACH POST-CONTRAST SEQUENCE/ECHO

RECORD other additional lesions visible post-contrast, (appearance post-contrast)

FOR EACH CASE

RECORD (post-contrast other signs)

4. MR Image Description Language – Full Specification

4.1 Description without Contrast Medium

FOR EACH CASE

Scanner ID

Alphanumeric

Patient ID

Alphanumeric

Scan date

Date

User ID

Alphanumeric

Number of sequences

Number

Sequence /Echo Details

List may be specific to imaging centre

Discrete Lesions

No discrete area of abnormal signals Single discrete area of abnormal signals Multiple discrete areas of abnormal signals

IfMultiplethenspecify Number of types of lesion

Number of Types of Lesion

Numeric

FOR EACH TYPE

Number of Lesions

Number

Size Ratio

> 8 : 1 Approx. 4 : 1 Approx. 2 : 1 Approx. 1 : 1

Dispersion (indicate all that apply for the particular type being described)

Cortical grey matter Cerebral white matter Juxta ventricular Central grey nuclei Intraventricular Brain stem / Cerebellum Pituitary fossa Basal cisterns Cortical subarachnoid space Extracerebral Skull or Neck Orbits Corpus callosum

SELECT LARGEST LESION

FOR EACH SEQUENCE/ECHO

Lesion Visibility (on sequence/echo)

Lesion visible Lesion invisible Lesion unavailable

Iflesion visiblethendescribe position, appearanceelsego to next sequence/echo

Position = region, major positions, exact locations

Region (select one only)

Left side Right side Bilateral Bilateral & symmetric Midline Midline and left Midline and right

Major Positions and Exact Locations (specify <u>all</u> that apply)

Major Position: Exact locations:	Cortical grey matter : frontal : parietal : temporal : occipital
Major Position: Exact Locations:	: Cerebral white matter : central frontal : central parietal : central temporal : central occipital : peripheral frontal : peripheral temporal : peripheral central : peripheral temporal : peripheral occipital : peripheral occipital : peripheral capsule

Major Position: Exact Locations:	: Juxta ventricular : frontal : body : trigone : temporal : occipital
Major Position: Exact Locations:	: Central grey nuclei : caudate nucleus : thalamus : lentiform nucleus : globus pallidus : putamen
Major Position: Exact Locations:	: Intraventricular : lateral ventricles: frontal : body : trigone : temporal : occipital : third ventricle : fourth ventricle
Major Position: Exact Locations:	: Brain stem / Cerebellum : midbrain : pons : medulla : cerebellar hemisphere : above fastigium : at fastigium : below fastigium : cerebellar vermis : above fastigium : at fastigium : below fastigium : below fastigium
Major Position: Exact Locations:	: Pituitary fossa : intrasellar : suprasellar : parasellar
Major Position: Exact Locations:	: Basal cisterns : chiasmatic : interpenduncular : pontine : medullary : ambient : quadrigeminal

Major Position: Exact Locations:	: cerebral sulci space alone : cerebral cortical subarachnoid space over
	gyri : insula : pericerebellar space
Major Position: Exact Locations:	: Extracerebral : frontal : parietal : temporal : occipital : scalp
Major Position: Exact Locations:	: Skull or Neck : skull vault : outer table : middle table : inner table : frontal : parietal : temporal : occipital : skull base : foramina : neck
Major Position: Exact Locations:	: Orbits : globe : retro-orbital fat : extrinsic eye muscle : optic nerve
Major Position: Exact Locations:	: Corpus callosum : genu : body : splenium

Appearance = margin, internal pattern, lesion OR parts description

Margin

Mainly sharp Graded

Outward facing profile naked (Yes/No)

Internal Pattern (overall)

Homogeneous Lesion comprises single part with focal structure Lesion composed of two distinct parts Lesion composed of three distinct parts Unstructured heterogeneous

If	homogeneous,					
	single part with focal structure or					
	heterogeneous					
then	describe lesion					
If	two distinct parts					
	three distinct parts					
then	describe each part	including	internal pattern of part			

Lesion Description = Shape, Area, No of slices, Abnormal blood vessels, Interior pattern of focal structure^{**}, Intensities

Part Description = Shape, Area, No of slices, Abnormal blood vessels, Part structure, Interior pattern of focal structure*^{*}, Intensities

** if appropriate

Shape (select single most appropriate)

Rounded Oval Linear Irregular rounded Irregular Conforms to an anatomical feature

- If Shape is Rounded Oval Linear Irregular rounded Irregular then specify Area and No of Slices
- If Shape is Conforms to an anatomical feature then specify Anatomical Feature and Proportion Occupied (Area and No of slices not appropriate)

Area

sq.cms

No of Slices

slice(s)

Conforms to Anatomical Feature : Feature List

Periventricular margin Optic tract Pyramidal tract Quadrigeminal plate Optic chiasm Optic nerve 5th nerve 9th nerve 12th nerve Extradural space Subdural space Basi-sphenoid Basi-occiput Petrous bone

Proportion Occupied

Whole Approx. half Less than a quarter

Abnormal blood vessels

No abnormal blood vessels present Abnormal blood vessels present

Part Structure :

Homogeneous Containing distinct focal structure Unstructured heterogeneous

IfLesion or Part contains Focal Structurethendescribe Focal Structureand specify Intensitie(s) of both Focal Structure and Remainder

Interior Pattern of Focal Structure :

Homogeneous focal structure Unstructured heterogeneous focal structure Multiple repetitive focal structure Concentric layers: single focal structure Concentric layers: single elements of mult.repetitive focal structure Concentric layers: mult.repetitive centre

Intensity

Reference :

cerebral white matter cerebellar white matter

If homogeneous lesion/part/focal structure then specify single intensity

If heterogeneous lesion/part/focal structure then specify all relevant intensities

Intensities

Specify on the scale :

+++ ++ Isointense ---

FOR EACH TYPE

Correspondence

(Recorded when part of a lesion is also seen image obtained from a different sequence/echo or orientation)

No correspondence Correspondence in appearance Correspondence not relevant

IfCorrespondence in appearancethenspecify sequences and relevant correspondence

Sequences

User input

Correspondence in Appearance :

Lesion with Lesion Lesion with Part Lesion with Focal Structure Part with Lesion Part with Part Part with Focal Structure Focal Structure with Lesion Focal Structure with Part Focal Structure with Focal Structure

FOR EACH CASE

Atrophy

Expansion of the cortical sulci :

Zero quadrants One quadrant Two quadrants Three quadrants Four quadrants Unrecordable

Dilatation of the lateral ventricles :

None Moderate Marked Unrecordable

Dilatation of pontine and CP cisterns :

None Moderate Marked Unrecordable

Expansion of Sylvian fissure :

None Moderate Marked Unrecordable

Overall Atrophy Score : Calculated from above

Other Signs (each Present, Absent or Unrecordable)

Mass effect Expansion of fourth ventricle Expansion of basal cisterns Dilatation of third and both lateral ventricles Localised loss of brain substance Dilatation of Virchoff-Robin spaces

Other Abnormal Signals (not already described as a lesion)

Diffuse areas Discrete areas No further abnormal signals

If Diffuse areas or Discrete areas then specify Location of areas

Location of Areas of Abnormal Signal (specify all)

Cortical grey matter

- : frontal
- : parietal
- : temporal
- : occipital

Cerebral white matter

- : central frontal
- : central parietal
- : central temporal
- : central occipital
- : peripheral frontal
- : peripheral parietal
- : peripheral temporal
- : peripheral occipital
- : internal capsule

Brain stem / Cerebellum

- : midbrain
- : pons
- : medulla
- : cerebellar hemisphere. : above fastigium
- : at fastigium
- : below fastigium
- : cerebellar vermis : above fastigium
- : at fastigium
- : below fastigium

4.2 Post Contrast Image Description

FOR EACH CASE

Scanner ID

Alphanumeric

Patient ID

Alphanumeric

Post-Contrast Scan date

Date

User ID

Alphanumeric

Number of post-contrast sequences

Number

Post-contrast Sequence /Echo Details

List may be specific to imaging centre

FOR EACH TYPE VISIBLE PRE-CONTRAST

CONSIDER LARGEST LESION VISIBLE PRE-CONTRAST

FOR EACH POST-CONTRAST SEQUENCE/ECHO

Lesion Visibility Post-Contrast

Lesion visible Lesion not visible

Position Post-Contrast

As described Pre-Contrast ? (Yes, No)

If No

then specify Position using Major Positions and Exact Locations

Appearance Post-Contrast

Ifpre-contrast structure NOT comprising partsthendescribe effect of enhancement on lesion

If pre-contrast structure comprises two or more distinct parts then describe effect of enhancement on each part

Effect of Enhancement on Appearance of Lesion/Part

Throughout lesion/part Focal structure only Focal structure appeared All except focal structure Ring enhancement Extends beyond lesion/part edge Of pathological blood vessels Did not enhance Other than patterns described above

Enhancement reflects pre-gadolinium morphology ? (Yes/No)

CONSIDER OTHER LESIONS OF SAME TYPE PRE-CONTRAST

Other Lesions of same type - Enhancement

All enhanced Some enhanced None enhanced

IfAll or Some Enhancedthenspecify Effect of Enhancement on Appearance

Effect of Enhancement on Appearance of (Majority of) Lesions of Same Type

Throughout lesion Focal structure only Focal structure appeared All except focal structure Ring enhancement Extends beyond lesion edge Of pathological blood vessels Other than patterns described above

Additional lesions of similar post-contrast appearance

Additional lesions appeared of similar post-contrast appearance ? (Yes/No)

FOR EACH POST-CONTRAST SEQUENCE/ECHO

Other additional lesions visible post-contrast

Other lesions appeared not resembling post-contrast appearance of any type above ? (Yes/No)

If Yes then specify Appearance Post-Contrast

Appearance Post-Contrast

Throughout lesion Focal structure only Focal structure appeared All except focal structure Ring enhancement Extends beyond lesion edge Of pathological blood vessels Other than patterns described above

Post-contrast other signs

Meningeal enhancement

Widespread enhancement

References

Hinkley, L., du Boulay, G., Good, C., and du Boulay, B., Teather, B., Teather, D., Sharples, M. and Jeffery N. Computer Based Neuroradiology Training Using a "Small Worlds" Approach to Differential Diagnosis, Cognitive Sciences Research Paper 540, University of Sussex, 1-16, 2001.

Sharples, M., Jeffery, N., du Boulay, B., Teather, B., Teather, D., and du Boulay, G.H. Structured computer-based training and decision support in the interpretation of neurological images. International Journal of Medical Informatics, 60(3):263-280, 2000.

Teather, D., Teather, B.A., Jeffery, N.P., du Boulay, G.H., du Boulay, B. and Sharples, M. Statistical support for uncertainty in radiological diagnosis. Methods of Information in Medicine, 39:1-6, 2000.