Video Metric SystemsTM from NorthWest Research Associates, Inc.

Applications of the Argus Technology for Coastal Zone Management and Engineering

NorthWest Research Associates, Inc. P.O. Box 3027 • 14508 NE 20th St. • Bellevue, WA 98009 888-644-NWRA • FAX 425-644-8422

www.videometricsystems.com

info@videometricsystems.com

Argus Remote Video Monitoring

Argus Beach Monitoring Stations (ABMS) provide continuous, *quantitative* information on shoreline migration, beach erosion, and nearshore processes.

- Shoreline location
- Beach width, area change
- Beach profiles, volume changes
- Pre-storm, post-storm characterization
- Offshore bar location, morphology
- Times series, trends analyses

Objectives

- Describe the Argus technology
- Demonstrate capabilities through examples
- Discuss roles and responsibilities
- Summarize what we've learned about user requirements

Outline

- Overview of the technology
- Data types
- System performance
- Case studies
- New developments
- Organizations and responsibilities
- Steps in an Argus project
- Results from user survey

The Basis for Video Monitoring

- We want to identify visual signatures of the features and processes we are interested in
- We need to determine where these signatures are located in the real world
- We need methods (algorithms) to identify and track these features in space and time
- We want these processes to be automated and easy to implement

Visual Signatures in the Nearshore

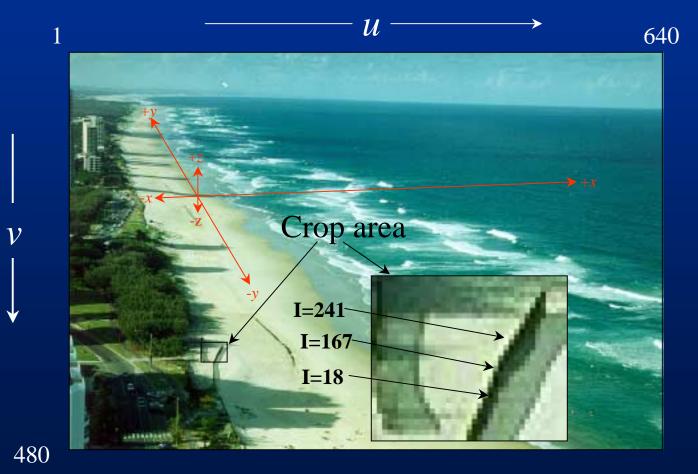
Shadow

Shoreline

/etted

Beach

Trough

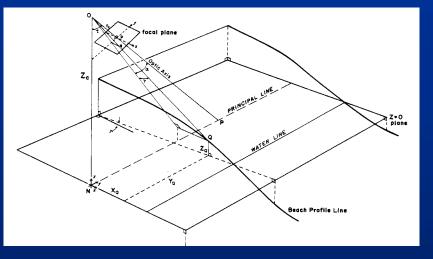

TTL

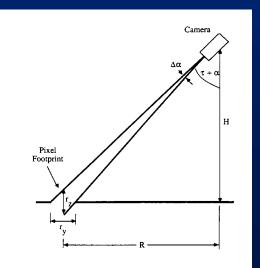
Sand Bar

Wavelength Wave Direction-Wave Celerity

Basics of Digital Imagery

An image consists of a 640 (*u*) x 480 (*v*) matrix of pixel intensity (I) values (0-255).*


* Grayscale values; color images are recorded as pixel intensity in red, green, and blue: $I_{RGB} = (0-255, 0-255, 0-255)$.


Photogrammetry

- We convert from image (*u*,*v*) coordinates to world (*x*,*y*,*z*) coordinate using photogrammetry
- Problem is going from 2 knowns (u,v) to 3 unknowns (x,y,z):
 - To solve for (x, y), constrain $z = z_{tide}$
 - To solve for (z), constrain x (or y), e.g., via calculated position of a shadow line on a beach
- To maintain accuracy of geometry solutions, we need a few ground control points (GCP)

Overview of the Technology

- High resolution video cameras look down on a beach at oblique angles
- SGI[™] imaging system produces snapshot, time exposure, and variance images with 640 x 480 pixel resolution
- Geometry solutions are solved to map pixel coordinates (*u*,*v*) into world (*x*,*y*,*z*) coordinates (photogrammetry)
- Pixel data are merged and rectified into Cartesian coordinate system (plan view)
- Analyses of pixel intensity over time identify and track key nearshore features, processes

Types of Video Data

- "Snap shot" images
- Digitally averaged time exposures ("timex"):
 - Mean intensity (nominally 10 minute average)
 - Intensity variance (σ_I^2)
- Merged panoramic images (multiple cameras)
- Rectified images
 - Plan view in Cartesian coordinates
- Intensity along transects ("time stacks")
- Individual pixel intensity

Time Exposure Images

Digitally averaging image intensity removes short term variability ("visual noise") and allows features in which we're interested to be revealed.

"Snap Shot" Image

Duck, NC

10 minute Time Exposure

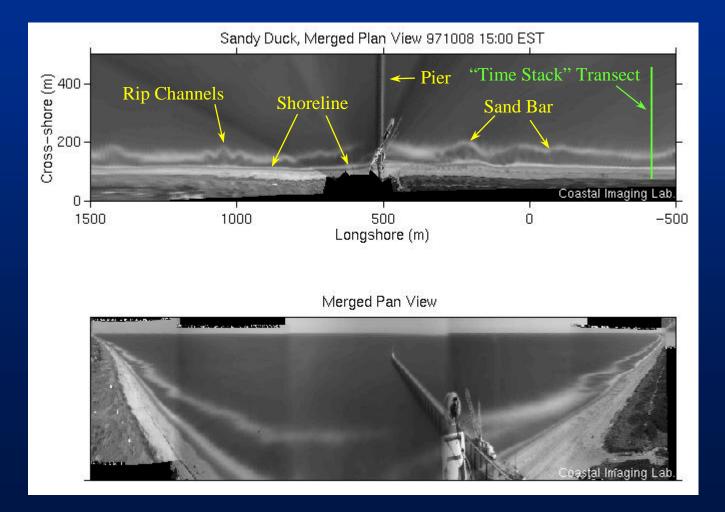
Mean and Variance Images

In variance (σ_I^2) images, dark areas indicate little change in pixel intensity during the averaging period, bright areas the opposite, revealing details of features and providing measurements of range (e.g., run-up) and uncertainty.

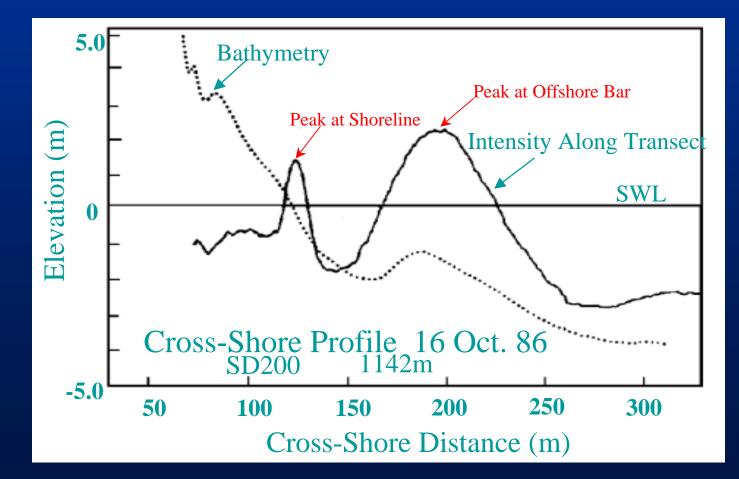
lusps

10-min Timex

40/152.0.1 inen mellegt tutte Hert Jaar 18 10:00.07.1999.011-10.01.020491207.

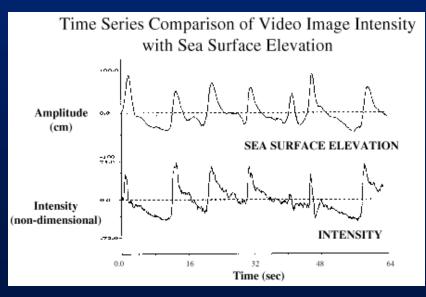


10-min Variance


Image Merging and Rectification

Data from five cameras are shown in these figures.

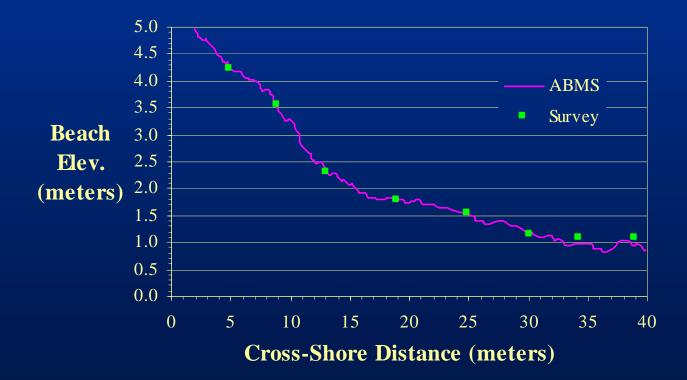
Ground Truth of Timex Images


Comparison of transect intensity data with measured bathymetry at Duck, NC (Lippmann and Holman, 1989)

Pixel Intensity Time Series

- Pixels provide "sensors" for visual signatures of nearshore features
- High frequency data collected at pixel sensor located above a submerged pressure sensor at Duck, NC 02/97
- Intensity data show good correlation with wave front passage
- One application of this technique is to measure wave phase speed and calculate offshore bathymetry (see New Developments)

Accuracy of Shoreline Location


Comparison of shoreline location measured by an Argus station and differential GPS (DGPS) at Duck, NC (Plant and Holman, 1997)

----- Argus Shoreline ------ DGPS Shoreline

Accuracy of Beach Profile

Comparison of profile of beach elevation^{*} measured by an Argus station and traditional survey at Duck, NC (Holman et al., 1991)

* Vertical elevation is measured by solving for the *z* coordinate of a cross-shore "line in the sand" whose *x* and/or *y* position is known or can be calculated (e.g., shadows).

ABMS Specifications

Parameter	Value
Range*	\pm 40 m to \pm 2.5 km
Resolution*	At 100 meters from station:
	x, z = 0.1 m
	y = 0.5 m
	At 1000 meters from station:
	x,z = 0.5 m
	y = 12.5 m
RMS Accuracy	0.35–2.4 m horizontal
	10-20 cm vertical
Averaging Interval	10 min. nominal

* Function of camera height, lens focal length

Erosion of a Nourished Beach

- High rates of erosion along Long Key near St. Petersburg, FL necessitate nourishment every 2-3 years
- Each nourishment costs ~\$1.5M
- Latest nourishment completed 6/96
- Argus station operated 10/96 04/98 to study morphology of this beach

Upham Beach Nourishment

View from roof of condominium where Argus station was installed.

After

Before

North

South

North

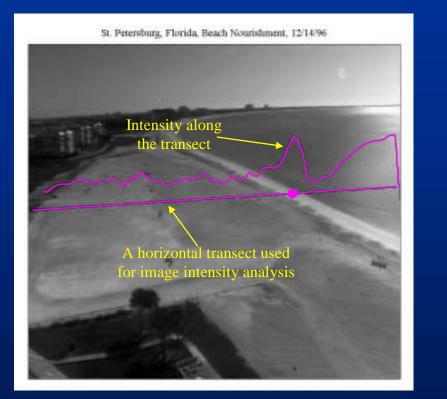
South

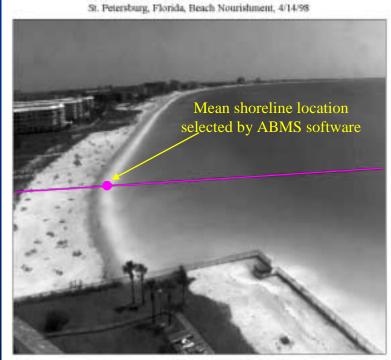
Beach Nourishment Change Sequence

Tue Mar 25 11:01:37 1997 F: 859316491.dip C: 1 S: 1800 G: 42 O: 0

Beach Nourishment Change Sequence

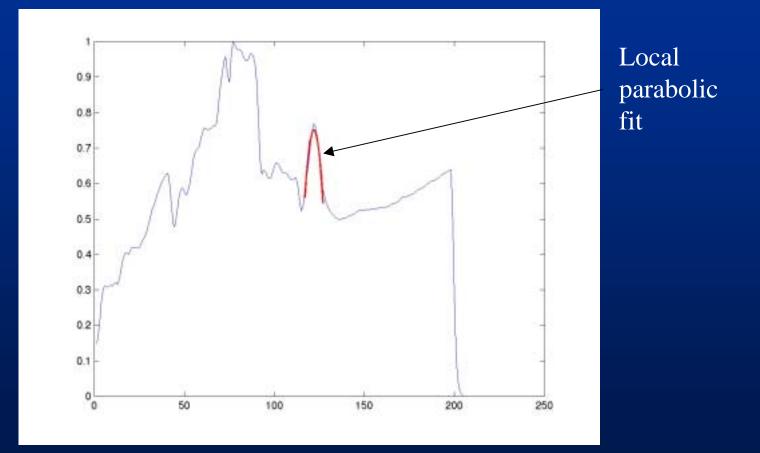
Sat Jan 24 11:01:13 1998 F: 885668467.dip C: 1 S: 1800 G: 42 O: 48




Upham Beach Movie

- Timex images collected at noon (EDT) each day 10/19/96 - 04/14/98
- Movie runs at 6 frames (days)/second
- Things to look for:
 - Erosion in the near field
 - Accretion in the far field
 - Higher rate of loss in winter of '97-'98 (El Nino?)
 - Episodic storm impacts (note especially 1/27-2/12 '98, but don't get fooled by missing data)

Run Upham Beach Movie


Analysis of Shoreline Retreat

- Specify transect location(s)
- Identify mean shoreline from peak in timex intensity at shore break (variance imagery shows range of run-up)
- Repeat for all hours/days of interest

Shoreline Position Estimation

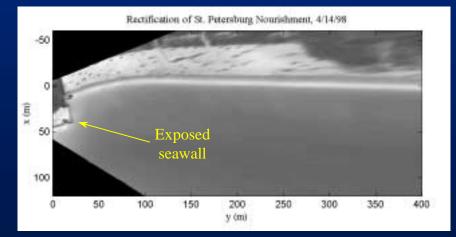
Example non-dimensional intensity transect

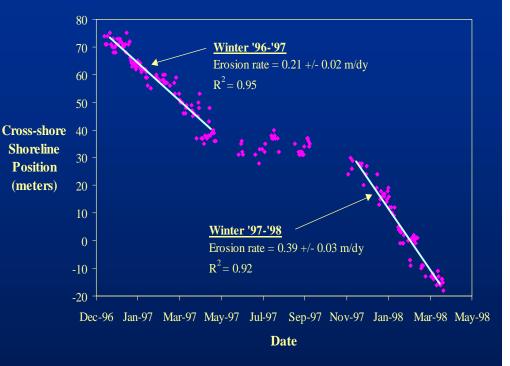
Time Stack Data

This time stack shows cross-shore image intensity along a transect as a function of time.

Shoreline picks

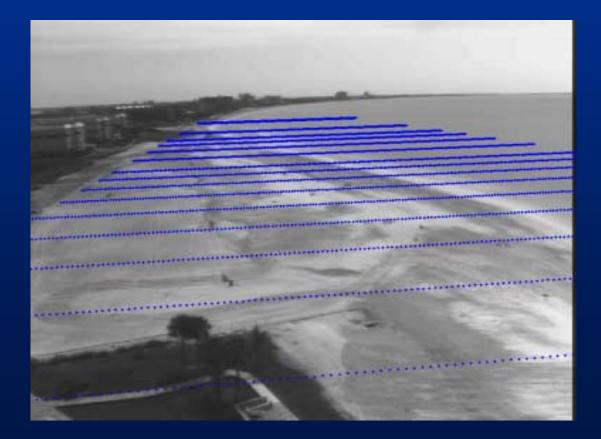
Cross-Shore (x) Distance Along Transect at y = 75 m


Shoreline Migration


Retreat of the shoreline of a nourished beach near St. Petersburg, FL measured by an Argus Beach Monitoring Station

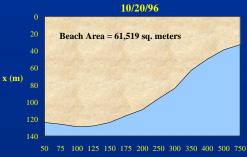
Trends Analysis

Rectification of St. Petersburg Nourishment, 12/14/96 -50 X (m) 50 Condo where 100 ABMS installed 50 100 150 200 250 300 350 400 Ô. y (m)



Traditional spot surveys might miss trends, catch the wrong phase of the seasonal erosional cycle, and/or fail to capture episodic changes.

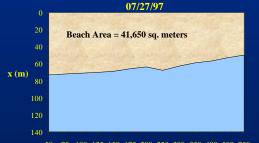
Image Sampling Scheme


Use multiple transects to map changes in longshore shoreline location, beach area. If vertical profiles are measured (they weren't in this case), volume can be calculated.

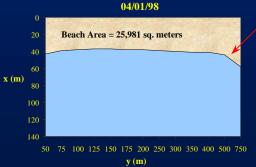
Shoreline and Area Change

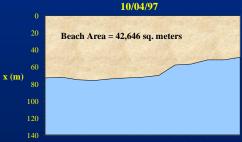
Oct. 1996

y (m)



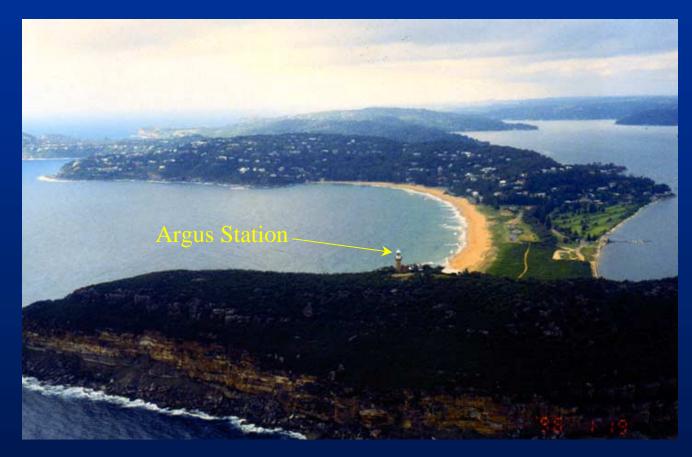
50 75 100 125 150 175 200 250 300 350 400 500 750 y(m)


50 75 100 125 150 175 200 250 300 350 400 500 75 **y(m)**



50 75 100 125 150 175 200 250 300 350 400 500 750 y(m)

(---)


50 75 100 125 150 175 200 250 300 350 400 500 750 **v**(**m**)

Accreted Area

Apr. 1998

Palm Beach, Australia

- Since 1995, 2 cameras
- Intermediate beach

1 m tide range
H ~ 1.5 m, T ~ 10 s

Palm Beach, Australia

This image is referred to as a "daytimex," where a full day of intensity data are averaged. Daytimex's reveal mean locations of nearshore features and are useful for creating movies showing evolution of features.

Rip Currents

ianma: 1.40 Files: 11 Lbox: 20 600 50 450 398246807.Fri.Jun.19_09:00:07.GMT.1998.palmetto.c1.timex.pn

Rip Currents

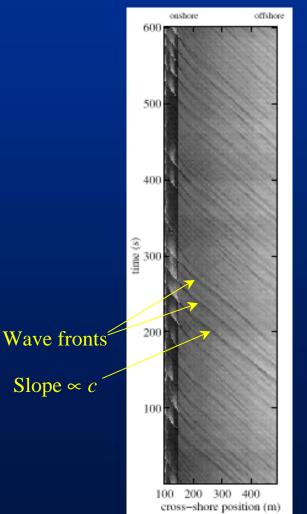
A single weekend in Australia

Mr. Rampher

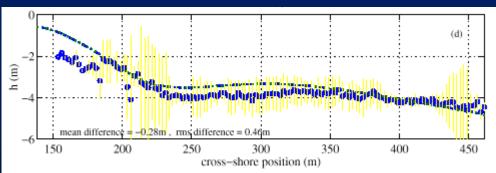
Series of the bound of the series of the ser

Palm Beach Movie

- Rectified daytimex images from Palm Beach, Australia 02/96 - 12/96
- Movie runs at 6 frames (days)/second
- Things to look for:
 - Rip channel development, translation
 - Bar development
 - Longshore displacement
 - Storm impacts



New Developments


- Wave phase speed, direction and their relationship to nearshore bathymetry
- Visibility (turbidity)
- Traffic counting, transportation impacts
- Beach usage
- Sea turtle nesting (with IR cameras)

Argus Bathymetry*

Time stack of cross-shore pixel intensity

- High frequency video sampling used to measure wave phase speed (*c*) and direction
- Offshore bathymetry calculated from relationship between *c* and depth (*h*) expressed in shallow water wave equation
- Argus data compared to measurements made by the "CRAB" at Duck, NC during SandyDuck experiment, Oct. 1997

Argus bathymetry vs. CRAB

* Data courtesy of Hillary Stockdon (USGS) and Rob Holman (OSU)

Roles and Responsibilities

• NorthWest Research Associates, Inc. (www.nwra.com)

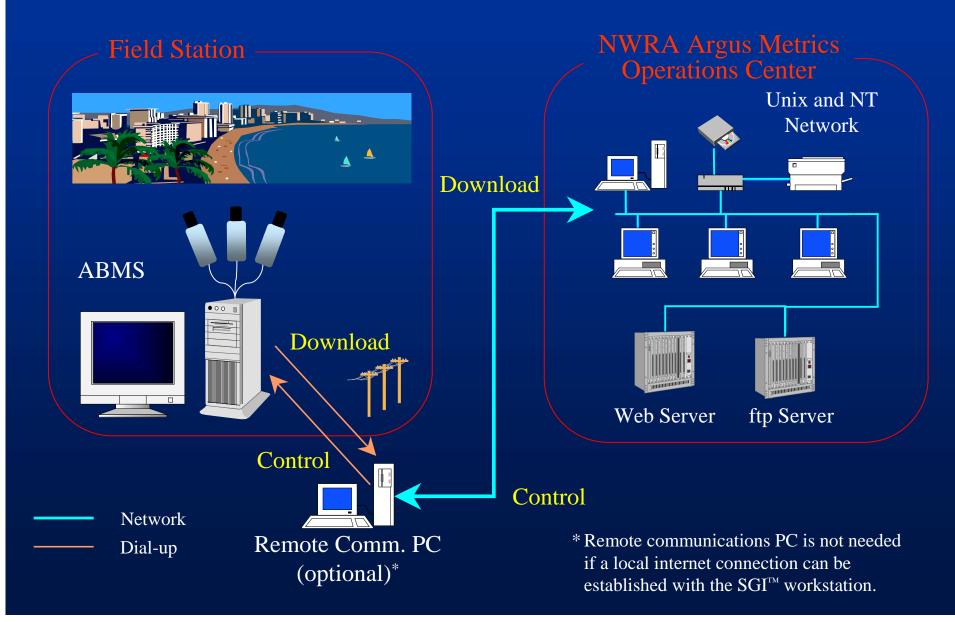
- ABMS commercial applications in North America*
- Ongoing ABMS product development and research
- Supporting research and services:
 - Coastal oceanography, meteorology, earth sciences
 - Measurements, data analysis, modeling
- Oregon State University (http://cil-www.oce.orst.edu:8080)
 - Argus created at the Coastal Imaging Laboratory
 - Ongoing techniques and data products development
 - Nearshore research

* NWRA sub-contracts to North American firms for international projects.

Roles and Responsibilities (con't)

- USACE (http://www.frf.usace.army.mil/video.html)
 - Coastal Hydraulics Lab, Field Research Facility
 - Applied research, ABMS ground truth comparisons
- USGS (http://coastal.er.usgs.gov/rvm)
 - Coastal and Marine Geology Program
 - Applied research, airborne lidar surveying
- Delft Hydraulics
 - Government-mandated monitoring of the Dutch coastline
 - ABMS commercial applications outside N.A.

Services Provided by Video Metric SystemsTM

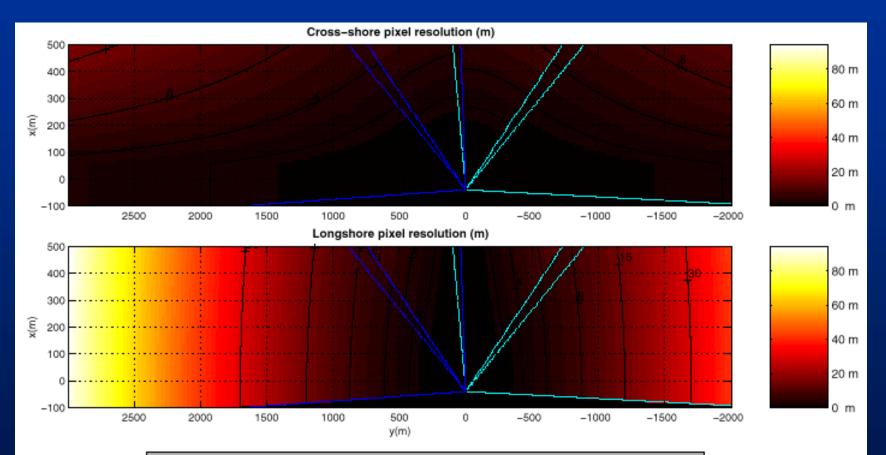

- Design monitoring programs
- Deploy, operate, and maintain the stations
- Process, quality control, and analyze the data
- Prepare basic and advanced data packages
- Develop information for public outreach (e.g., web page hosting, internet dissemination)
- Provide supporting nearshore oceanographic and meteorological measurements
- Provide supporting R&D

Steps in an Argus Project (1 of 2)

• Preparations:

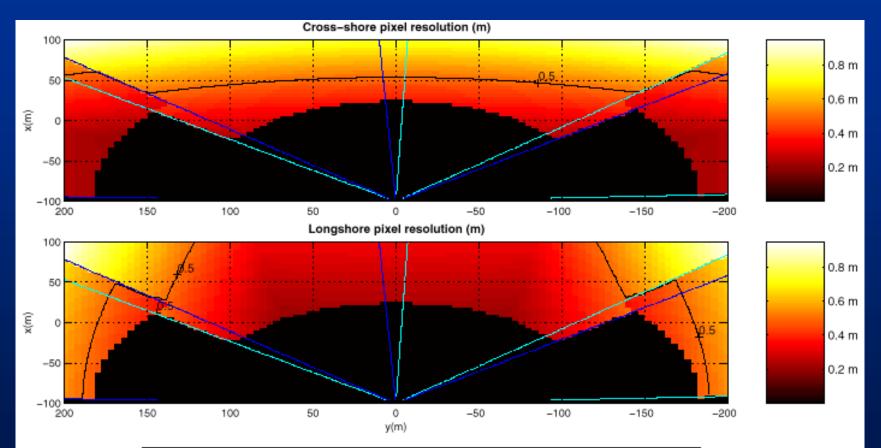
- Establish requirements for spatial resolution and range
 - Number of cameras needed, sampling geometry
 - Height is important (e.g., building, tower)
- Site and equipment preparation, deployment
 - Power, shelter, communications, security, permitting, ...
 - Lens calibration (correct for distortion)
 - Survey ground control points (GCP)
- Routine operations:
 - Continuous data collection, processing
 - Remote data telemetry, monitor station status
 - Routine and emergency maintenance

Data Flow



Field Station Design Issues

Camera location


- Field of view (e.g., 180°)
- Range
- Pixel resolution
- Cover features at specific locations, e.g. structures, horizon, vegetation line
- No. of cameras
- Design support tool
 - Number of cameras
 - Camera orientation
 - Lens focal length

Far Field

Camera layout "goldCoast4camV8"											
cam.	х	У	z	azim	Hfov	tilt	roll	overlap	Flength	azNorth	camName
1	-40	0	100	-72.5	38	77.23	0	0	9	162.5	c1
2	-40	0	100	-24.31	69.1	66.79	0	0.1	4.5	114.31	c2
3	-40	0	100	31.36	54.6	71.66	0	0.1	6	58.64	c3
4	-40	0	100	73.03	38	77.23	0	0.1	9	16.97	c4

Near Field

Camera layout "goldCoast4camV1"											
cam.	х	У	z	azim	Hfov	tilt	roll	overlap	Flength	azNorth	camName
1	-100	0	100	-67.5	40.1	76.53	0	0	8.5	157.5	c1
2	-100	0	100	-24.41	54.6	71.66	0	0.09	6	114.41	c2
3	-100	0	100	25.27	54.6	71.66	0	0.09	6	64.73	c3
4	-100	0	100	68.36	40.1	76.53	0	0.09	8.5	21.64	c4

Steps in an Argus Project (2 of 2)

- Data processing with ABMS MatLab software
 - Prepare basic data package:
 - Quality control images
 - Compute geometry solutions and apply calibrations
 - Produce image archives: merged timex, daytimex, rectified, variance, movies, ...
 - Create data bases of transect, pixel intensity ("time stacks")
 - Prepare advanced data package:
 - Shoreline features, area, profiles, volume, ...
 - Prepare time series analyses, trends analyses, ...
 - Perform final quality control

• Prepare and distribute data deliverables, reports

User Survey

- What are the key problems facing the coastal zone management and engineering communities that Argus stations can help solve?
- What are the high priority data products and services that users want?
- What are user perceptions of the major benefits offered by the technology?

Key Problems

- <u>Quantitative</u> information for tracking long-term (multi-year) shoreline location, migration
 - Support project design, evaluate project performance
 - Where's the beach? Where did the sand go?
- Pre-storm versus post-storm damage assessments
- Analyze long-term trends <u>and</u> identify episodic (short-term) changes, erosional hot-spots
- Sand budgets (area and volume changes)
- Public outreach (education), safety (rip currents)

Data Products and Services

- Shoreline location
- Recreational beach width, area change
- Beach profiles, volume change
- Time series and trends analyses
- Offshore sand bar location, morphology
- Confidence intervals, uncertainties
- Information for public outreach, safety
- Video imagery and movie archives
- Turn-key project design, execution

Benefits

- Obtain cost-effective monitoring for coastal resource planning, management, and evaluation
- Improve accuracy of project designs, monitor construction, evaluate performance more thoroughly
- Characterize pre-storm/post-storm damage more completely and consistently
- Detect important trends, identify "hot spots" and take corrective action sooner
- Receive continuous data with quality comparable to or exceeding traditional survey methods
- Powerful medium to reach the public

Video Metric SystemsTM from NorthWest Research Associates, Inc.

www.videometricsystems.com

NorthWest Research Associates, Inc. P.O. Box 3027 • 14508 NE 20th St. • Bellevue, WA 98009 888-644-NWRA • FAX 425-644-8422

joan@nwra.com