Climate change in the British uplands, a view from the Highlands: Can policy response live with science uncertainty?

True??

Tyndall°Centre

- UEA NORWICH
- The Tyndall Centre comprises nine UK research in stitutions. It is funded by three Research Councils NERC, EPSRC and ESRC and also receives some support from the DTI

- CO₂ levels increased from 280ppm > 370ppm in last 200 years
- Methane levels x 2 in last100 years
- Linked to human activities;
 energy generation, transport
 & agriculture
- Average global surface temperature (T°) has risen by 0.6°C in last 140 years

=> Scientific Consensus = Qualified ~Yes

Presentation outline....

Introduction

- Focus = temperature changes ($\Delta T^{\circ}C$); brief overview of precipitation changes
- · Trends; different time-scales and spatial resolutions
- · Global Climate Models (GCMs) & Regional Climate Models (RCMs)
- The Hadley Centre Regional Climate Model (HadRM3) & 'Highland' representation

Selected results (own work)

- 1. Evaluating HadRM3 utilising T° lapse-rate models
- 2. Refining T° lapse-rate models projecting future $\Delta T^{\circ}C$ uphill

Conclusions

- Implications for uplands
 - Uncertainty....

Variations in global temperature and uncertainties; 1861-2001 (land, air and sea surface T°)

=> Two main episodes of warming

Source: Dickson, 2003

A different perspective....

Air temperature plot with latitude and time, two clear conclusions: 1. World is warmer: Including 2002, all ten of the warmest years since records began in 1861 after 1990; (Jones and Moberg, 2003).

2. Last two decades - distribution of warming global. Figure source: Morison, 2003

What about Scottish T° & precipitation trends?

Data source: CRU Gridded 55° - 60° North

UK winter & spring precipitation trends 1961-1995

Winter

Spring

(Blue = increase; Red = decrease)

=> <u>Intensity</u> of rainfall events is changing; e.g. in east of Scotland the 50 year autumn & winter extreme event 1961-90 an 8 year event during the 1990s (Fowler and Kilsby, 2003)

Figure source: CRU 2001

Spatial resolution of climate models

1998: GLOBAL MODEL

2002: REGIONAL MODEL

Hadley Centre for Climate Prediction and Research

=> UKCIP98 = 300km grid Global Climate Model [GCM] whereas

UKCIPO2 = 50km grid nested Regional Climate Model [RCM]

Relief Representation: HadRM3 and the Highlands

- HadRM3 truncates 'land' west and east
- Western & northern isles not treated as land
- HadRM3 grid elevations range from 77.14m > 618.85m

- Complex juxtaposition of land and sea in the west poorly captured
- The real altitudinal range is <0m > ~1300m

What sort of changes to T° does HadRM3 project?

2020s Low Summer Tmax

N

5

-5.5⁻⁵.0⁻⁴.5⁻⁴.0⁻³.5³.0².5

2020s Low Winter Tmin

2080s High Winter Tmin

5805 58.0 57.5 57.0 56.5

Summers >>> Continental: Winters >>> Oceanic

What sort of changes to Precip does HadRM3 project?

2020s Low Summer 1%

2020s Low Winter Δ %

2080s High Summer $\Delta\%$

2080s High Winter Δ %

Summers >>> Continental: Winters >>> Oceanic

Summary so far....

- 1. Recent warming = unusual; 2003 hottest year on global & Scottish instrumental record
- 2. Outputs from GCMs/RCMs trends set to amplify => greater warming as the century progresses
- 3. Incidence of extreme events set to increase; e.g. summer heatwaves, seasonal rainfall events

But....

- > Do climate models work in the Highlands?
- What about our mountains can we project climate model outputs uphill?
- Future socio-economic trajectories and Greenhouse Gas Emissions (GHGs)? Can we anticipate them realistically & do we believe the scenarios?

So, some of my own work....

Referencing stations to HadRM3 grids - evaluating HadRM3 1961-1990 baseline simulation

Note; lack of spatial cover observed data >>> Sutherland & Caithness Highlands = data sparse!

- => Observed station network: Rum in the west > Aberdeenshire in the east. Temperature, n = 19 (+6), 5m 283m. Precipitation, n = 55, 15m 536m.
- => Matrix at 0.1° resolution (latitude and longitude) references stations to corresponding HadRM3 grid cell

Temperature variation - HadRM3 and observed (Obs)

Autumn T_{min}

Winter T_{max}

- => Clear west > east gradient in the mismatch of seasonal temperatures. On the face of it HadRM3 is apparently performing best in the Aberdeenshire/Morayshire lowlands.
- => The west > east gradient in $\Delta T^{\circ}C$ HadRM3 vs Obs especially marked for mean winter maxima

$\Delta T^{\circ}C$ - Obs values lapse-rate adjusted > HadRM3 grid cell elevation

Recall from earlier slide Obs station elevations not = HadRM3 grid cell elevations

Autumn T_{min}

Winter T_{max}

- => Dropping island Obs sites & lapse adjustment reduces west east differences considerably, particularly for winter maxima
- => The three outliers (coastal sites) for Winter T_{max} = further investigation

Maritime uplands & community/sector vulnerability..... site-scale assessment tools??

Concerns about e.g.:

- · arctic-alpine species at southern range limit
- snow-bed communities
- · and what about the ski industry?

Lapse-rate experiments demonstrated, e.g.

For 1961-1990 can adjust Obs > HadRM3 grid elevations & vice-versa:

- => Extend the approach;
- 1. By elevation => build a 'Ben Nevis' & 'Beinn Macdhui'
- 2. By scenario => model future isotherm shifts....

Linking station values & HadRM3 grid outputs

Observed station network

Onich = 15 metres

Balmoral = 283 metres

HadRM3 - 'Scotland'

(Source: UKCIPO2)

HadRM3 Grid 160 = 460.54 metres

HadRM3 Grid 145 = 320.72 metres

Method schematic....

Station observed data quality controlled - mean annual & seasonal maxima & minima (1961-1990 baseline)

UKCIPO2 HadRM3 grid simulation - mean annual & seasonal maxima & minima (1961-1990 baseline)

Temperature lapse rate models (50 metre increments) – annual & seasonal range of maxima & minima

Model evaluation - observed records

Perturbation - HadRM3 grid future △ T°C

Perturbation - HadRM3 grid future $\triangle T^{0}C$

Evaluating models > observed station records

(Note: HadRM3 grid projected values in red, station observed projected values in black)

Winter T_{max} - Balmoral (1961-90)

Cairngorm Chairlift, 663m (1981-1998)

Cairnwell, 933m (1995-1999) Spring T_{min} - Onich (1961-90)

Aonach Mor, 1033m (1992-1999)

Cairngorm Siesaws, 1245m (1992-1999)

Results 1: 2050s Medium-Low Scenario - mean spring minima

HadRM3 + Onich observed

HadRM3 only, 'Balmoral'

=> Lochaber shift = ~+300-400 metres

=> Grampian shift = ~+250-300 metres

Results 2: 2080s High Scenario - mean spring minima

Some conclusions....

- => Substantial technical problems remain with climate model outputs in mountainous regions
- => Methods developed here indicate local-scale workarounds can be found elsewhere in the British Uplands, at least for $\Delta T^{\circ}C$

=> Implications for uplands likely to be profound, both for conservation and future land-use

=> A rigorous & highly inter-disciplinary research programme is required; both to further understanding & formulate a credible policy response

Uncertainty....

