

Conférence finale de la Phase 3 du Projet INTERREG IIIA Plages A Risques (PAR) Dunkerque 27 juin 2008

Final Conference of Phase 3 INTERREG IIIA Project Beaches At Risks (BAR) Dunkirk 27 June 2008

Principaux résultats scientifiques du Projet "Plages A Risque" Main scientific results of the "Beaches At Risk" Project

ZEITSCHRIFT FÜR GEOMORPHOLOGIE Supplement Volume

Edited by Arnaud Héquette (Université du Littoral Côte d'Opale) & Cherith A. Moses (University of Sussex)

Zeitschrift für Geomorphologie Annals of Geomorphology Annales de Géomorphologie

A journal recognized by the International Association of Geomorphologists (IAG)

Neue Folge Supplement Volume

INTERREG III A Project

Beaches At Risk

edited by A. Héquette and C. A. Moses

Gebrüder Borntraeger · Berlin · Stuttgart

Volume rassemblant 14 articles qui constituent une synthèse des principaux résultats scientifiques obtenus dans le projet

Table of contents "Beaches At Risk" Supplement Volume

1. Shoreline evolution and beach morphodynamics on the eastern Channel coasts

2. Influence of management practices on beach and coastal dune evolution

3. Storm surge, sea level rise and marine flooding hazards

1. Shoreline evolution and beach morphodynamics on the eastern Channel coasts

• Chaverot, S., Héquette, A. & Cohen, O. "*Changes in storminess and shoreline evolution along the northern coast of France during the second half of the 20th century*"

• Laignel, B., Costa, S., Lequien, A., Massei, N., Durand, A., Dupont, J.P. & Le Bot, S. "*Current inputs of continental sediment to the English Channel and its beaches: A case study of the cliffs and littoral rivers of the Western Paris Basin*"

• Costa, S., Levoy, F., Monfort, O., Curoy, J., De Saint Léger, E. & Delahaye, D. "Impact of sand content and cross-shore transport on the morphodynamics of macrotidal gravel beaches (Haute-Normandie, English Channel)"

• Watt, T. Robinson, D.A., Moses, C.A. & Dornbusch, U. "*Patterns of surface sediment grain size distribution under the influence of varying wave conditions on a mixed sediment beach at Pevensey Bay, southeast England*"

• Reichmüth, B. & Anthony, E.J. "Seasonal-scale morphological and dynamic characteristics of multiple intertidal bars"

• Sedrati, M. & Anthony, E.J. "Sediment dynamics and morphological change on the upper beach of a multi-barred macrotidal foreshore, and implications for mesoscale shoreline retreat: Wissant Bay, northern France" 2. Influence of management practices on beach and coastal dune evolution

• Moses, C.A. & Williams, R.B.G. "Artificial beach recharge: the South East England experience"

• Dornbusch, U., Robinson, D.A., Moses C.A. & Williams R.B.G. "Variation in beach behaviour in relation to groyne spacing and groyne type for mixed sand and gravel beaches, Saltdean, UK"

• Aubry, A. & Ruz, M.H. "Influences des épis sur la morphodynamique d'une plage à barres et à bâches, nord de la France"

• Oblinger, A. & Anthony, E.J. "Wave attenuation and intertidal morphology of a multi-barred macrotidal beach behind a breakwater"

• Ruz, M.H & Anthony, E.J. "Sand trapping by brushwood fences on a beach-foredune contact: the primacy of the local sediment budget"

3. Storm surge, sea level rise and marine flooding hazards

• Rufin-Soler, C., Héquette, A. & Gardel, A. "Assessing the vulnerability of coastal lowlands to marine flooding using LiDAR data, Sangatte coastal dunes, northern France"

• Swift, R.H. "Secular trends in tidal parameters along the eastern Channel and southern North Sea Basin coastlines"

• Pirazzoli, P.A. & Tomasin, A. "*Tentative estimation of extreme sea levels in the English Channel by the year 2050*"

Changes in storminess and shoreline evolution along the northern coast of France during the second half of the 20th century

Chaverot, S., Héquette, A. & Cohen, O.

Chaverot, S., Héquette, A. & Cohen, O. "*Changes in storminess and shoreline evolution along the northern coast of France during the second half of the 20th century*"

Cartographie de l'évolution du trait de côte :

- Rectification géométrique de photographies aériennes (1949-2000)
- Digitalisation du trait de côte (logiciel ARCView 3.1)
- Superposition des différents traits de côte et mesure des évolutions

Chaverot, S., Héquette, A. & Cohen, O. "Changes in storminess and shoreline evolution along the northern coast of France during the second half of the 20th century

Une telle variabilité dans le temps, peut-elle être expliquée par des variations dans la fréquence ou l'intensité des tempêtes?

Evolution des vents > 16 m.s⁻¹ et des événements de tempête à Dunkerque (1956-2001)

Chaverot, S., Héquette, A. & Cohen, O. "Changes in storminess and shoreline evolution along the northern coast of France during the second half of the 20th century

Une variabilité dans l'évolution du trait de côte fortement déterminée par le bilan sédimentaire local Current inputs of continental sediment to the English Channel and its beaches: A case study of the cliffs and littoral rivers of the Western Paris Basin

Laignel, B., Costa, S., Lequien, A., Massei, N., Durand, A., Dupont, J.P. & Le Bot, S. Laignel, B., Costa, S., Lequien, A., Massei, N., Durand, A., Dupont, J.P. & Le Bot, S. "*Current inputs of continental sediment to the English Channel and its beaches: A case study of the cliffs and littoral rivers of the Western Paris Basin*"

 Caractérisation et quantification des transferts sédimentaires du Nord-Ouest du Bassin de Paris vers la Manche en prenant en compte le recul des falaises marines et l'érosion des bassins versants littoraux

Laignel, B., Costa, S., Lequien, A., Massei, N., Durand, A., Dupont, J.P. & Le Bot, S. "*Current inputs of continental sediment to the English Channel and its beaches: A case study of the cliffs and littoral rivers of the Western Paris Basin*"

 10^{2}

Specific discharge: R (mm.yr⁻¹)

 10^{3}

 10^{1}

• Méthodologie qui repose sur l'analyse photogrammétrique du recul des falaises et la mesure haute fréquence du débit et de la charge solide en suspension dans l'eau...

... complétée par une caractérisation granulométrique des sources

Laignel, B., Costa, S., Lequien, A., Massei, N., Durand, A., Dupont, J.P. & Le Bot, S. "*Current inputs of continental sediment to the English Channel and its beaches: A case study of the cliffs and littoral rivers of the Western Paris Basin*"

• Les résultats ont montré que l'apport annuel des rivières littorales est nettement plus faible que celui des falaises:

- 43 000 t/an pour les rivières
- 2 millions t/an (1 million de m³/an) pour les falaises

• A l'échelle d'un événement, l'apport par les rivières est également plus faible que celui des falaises:

- 4 à 6 t/jour pour une crue fluviale

 - 100 à 1000 m³, soit 200 à 2 000 t, pour les éboulements les plus fréquents au niveau des falaises Impact of sand content and cross-shore transport on the morphodynamics of macrotidal gravel beaches (Haute-Normandie, English Channel)

Costa, S., Levoy, F., Monfort, O., Curoy, J., De Saint Léger, E. & Delahaye, D.

• Etude menée sur les plages de sédiments grossiers de Quiberville et de Pourville (Haute-Normandie)

Caractérisées par une accumulation de sédiments grossiers de haut estran à forte pente, un estran sableux à pente douce, un environnement macrotidal, et perrés qui bloquent tout mouvement vers l'intérieur des terres

Structure interne constituée en grande partie par une fraction sableuse interstitielle. Contrairement aux sables de bas estran, ceux de la structure interne des cordons sont mal classés, hétérogènes, et surtout, contiennent 20 % d'éclats siliceux provenant de l'attrition des galets

A l'issue de périodes de forte agitation, des éclats de silex sont retrouvés sur le bas estran. Ces transferts de sédiments transversaux depuis le cordon vers la basse plage ont également été confirmés par des mesures hydrodynamiques et un suivi de traceurs fluorescents.

Lors de conditions de houles modérées, ces mesures ont montré des déplacements dans le sens contraire, soit de la basse plage vers le cordon de galets.

• Ces transferts sableux font partie du système d'adaptation des plages de galets aux conditions hydrodynamiques: déterminent le potentiel d'infiltration du cordon, voire l'aspect réflectif et dissipatif de l'ensemble de la plage.

• Ces résultats suggèrent que la compréhension du fonctionnement morphosédimentaire des accumulations de galets composites nécessite d'intégrer les flux de sédiments sableux de la basse plage, voire de la zone infratidale. Patterns of surface sediment grain size distribution under the influence of varying wave conditions on a mixed sediment beach at Pevensey Bay, southeast England

Watt, T. Robinson, D.A., Moses, C.A. & Dornbusch, U.

Pevensey Bay mixed sediment beach:

remaining groynes and location of the three sites studied under different management regimes.

a. unmanagedb. renourishedc. Recycled & reprofiled.

Coarse surface sediment overlying sand rich core (scale bar 10 cm & 1 cm intervals)

sand sand medium coarse cobbles & rave OT gravel

Standard grain size classes of beach surface sediments used in the mapping surveys (grid spacing 5 cm)

Beach surface slope map

Beach surface sediment map

Storm conditions: pattern of surface sediment response most clear on least managed stretches of the beach and least discernable in the renourished section.

Higher energy waves produced a beach surface with a relatively homogenous grain size distribution.

Lower energy waves produce surfaces with a more mixed size distribution.

Seasonal-scale morphological and dynamic characteristics of multiple intertidal bars

Reichmüth, B. & Anthony, E.J.

Reichmüth, B. & Anthony, E.J. "Seasonal-scale morphological and dynamic characteristics of multiple intertidal bars"

Reichmüth, B. & Anthony, E.J. "Seasonal-scale morphological and dynamic characteristics of multiple intertidal bars"

• Analyse des types de temps et des vagues à la côte a montré que ces barres sableuses ont tendance à se développer lors de conditions d'énergie modérée.

• Les variations morphologiques des profils sont dues en grande partie à des différences dans les conditions locales de vagues qui elles mêmes dépendent de la présence de bancs sableux à l'avant-côte ou de brise-lames.

• Les barres sont relativement stables dans l'ensemble, ce qui s'explique par un temps de réaction important de ces formes dans un environnement macrotidal et à énergie des vagues modérée.

Sediment dynamics and morphological change on the upper beach of a multi-barred macrotidal foreshore, and implications for mesoscale shoreline retreat: Wissant Bay, northern France

Sedrati, M. & Anthony, E.J.

Sedrati, M. & Anthony, E.J. "Sediment dynamics and morphological change on the upper beach of a multi-barred macrotidal foreshore, and implications for mesoscale shoreline retreat: Wissant Bay, northern France"

Sedrati, M. & Anthony, E.J. "Sediment dynamics and morphological change on the upper beach of a multi-barred macrotidal foreshore, and implications for mesoscale shoreline retreat: Wissant Bay, northern France"

Levés topographiques mensuels pendant 1 an: Janvier 2004 à janvier 2005

Campagne courantométrique de 2 semaines en janvier 2005 avec suivi quotidien de profils
Sedrati, M. & Anthony, E.J. "Sediment dynamics and morphological change on the upper beach of a multi-barred macrotidal foreshore, and implications for mesoscale shoreline retreat: Wissant Bay, northern France"

Sedrati, M. & Anthony, E.J. "Sediment dynamics and morphological change on the upper beach of a multi-barred macrotidal foreshore, and implications for mesoscale shoreline retreat: Wissant Bay, northern France"

Tempête de janvier 2005

Augmentation des vitesses de courants, particulièrement courants longitudinaux = fort transport sédimentaire vers le nord-est Sedrati, M. & Anthony, E.J. "Sediment dynamics and morphological change on the upper beach of a multi-barred macrotidal foreshore, and implications for mesoscale shoreline retreat: Wissant Bay, northern France"

• Recul de plusieurs mètres du front dunaire en une seule tempête avec abaissement du haut de plage et perte de volume au niveau du profil AVD

• Faibles variations de volume du haut de plage sur autres profils, malgré un recul sensible du front dunaire

 S'explique par la migration longitudinale de mégarides sur le haut de plage sous l'effet des courants longshore

 Stockage temporaire sur le haut de plage de sables venant de l'érosion de la dune, ensuite évacués par courants longitudinaux Artificial beach recharge: the South East England experience

Moses, C.A. & Williams, R.B.G.

Moses, C.A. & Williams, R.B.G. "Artificial beach recharge: the South East England experience"

Distribution of beach volume maintenance schemes in Sussex and east Kent

Summary of beach volume maintenance schemes in Sussex and east Kent.

Time Period	Nourishment volume (million cubic metres)				Nourishment cost (million £)				Volume recycled (million cubic metres)			
	West Sussex	East Sussex	Kent	Total	West Sussex	East Sussex	Kent	Total	West Sussex	East Sussex	Kent	Total
Pre-1950	0	0	N/A	N/A	0	0	N/A	N/A	0	0.07	0.01	0.08
1950-54	0	0	N/A	N/A	0	0	N/A	N/A	0	0.17	0	0.17
1955-59	0	0	N/A	N/A	0	0	N/A	N/A	0	0.17	0.09	0.26
1960-64	0	0	N/A	N/A	0	0	N/A	N/A	0	0.17	0.19	0.36
1965-69	0	0	N/A	N/A	0	0	N/A	N/A	0	0.17	0.29	0.46
1970-74	0	0	0.01	0.01	0	0	N/A	N/A	N/A	0.17	0.33	0.50
1975-79	0.19	0	0.02	0.21	N/A	N/A	0.01	0.01	N/A	0.37	0.32	0.69
1980-84	0.05	0.01	0.02	0.08	N/A	N/A	0.01	0.01	N/A	0.69	0.32	1.01
1985-89	0.03	1.70	0.19	1.8	N/A	9.00	4.50	13.50	N/A	0.67	0.32	0.99
1990-94	0.26	0.05	0.08	0.39	6.00	N/A	5.02	11.02	0.15	0.67	0.32	1.14
1995-99	0.46	0.94	1.41	2.81	6.64	11.98	16.20	34.82	0.39	0.13	0.43	0.95
2000- 04	0.44	0.26	0.45	1.15	12.30	N/A	15.20	27.50	0.24	N/A	0.49	0.73
2005	0.11	0.04	0	0.15	N/A	N/A	N/A	N/A	0.09	N/A	0.18	0.27
TOTAL	1.54	3.00	2.18	<mark>6.72</mark>	24.94	20.98	40.94	<mark>86.86</mark>	0.87	3.45	3.29	<mark>7.61</mark>

Total investment in beach nourishment has a present day replacement value of about £134 million.

Recycling that has been undertaken can be valued at a further £10-11 million at present prices.

Potential future costs to raise the beach crest to keep pace with estimated sea level rise along the 130 km of beaches that protect low-lying land:

To raise the beach crest over this length of coastline would cost about £75.6 million in recharge alone.

To create a crest with a 20 m wide berm to provide a buffer against storm erosion would require adding a further 12,000 m³ per kilometre at a cost of £31.2 million.

Additional costs:

reconstructing existing sea-walls and other coastal defence structures
raising and widening embankments along tidal stretches of rivers
escalating cost of maintaining existing beach volumes though beach nourishment

Variation in beach behaviour in relation to groyne spacing and groyne type for mixed sand and gravel beaches, Saltdean, UK

Dornbusch, U., Robinson, D.A., Moses C.A. & Williams R.B.G.

Distribution of beach volumes

Beach geometry near groynes and beach planform rotation

The maximum rotation of the mean high water line: 9°.

Predicted maximum planform rotation:
up to 74°
average of 25° for wave conditions similar to those experienced during the survey period

Key findings:

- (i) there is no natural cross shore exchange between the mixed beach and the subtidal zone
- (ii) the pattern of sediment movement within the groyne bays is very similar, independent of groyne spacing and type
- (iii) the magnitude of change is dependent on groyne spacing
- (iv) longshore transport occurs through boulder groynes at an average rate of between 0.5m³ and 1.1m³ per day (includes coarse and fine material)
- (v) at this particular site, almost 50% of the recharge material is in excess of that needed to provide satisfactory protection when the beach planform rotation during the study period is compared to that predicted by numerical modelling in the design study for the scheme.

Influences des épis sur la morphodynamique d'une plage à barres et à bâches, nord de la France

Aubry, A. & Ruz, M.H.

Aubry, A. & Ruz, M.H. "Influences des épis sur la morphodynamique d'une plage à barres et à bâches, nord de la France"

- Elosion dans la partie centrale (plusieurs dizaines de mètres entre 1949 et 2000)
- Installation de 3 épis en 1988
- 1 épi supplémentaire en 2000

Aubry, A. & Ruz, M.H. "Influences des épis sur la morphodynamique d'une plage à barres et à bâches, nord de la France"

Plusieurs perturbations des vagues et des courants par l'épi

Evolution des volumes pendant la période d'expérimentation

Aubry, A. & Ruz, M.H. "Influences des épis sur la morphodynamique d'une plage à barres et à bâches, nord de la France"

Variabilité de la morphologie des profils de plages le long de la côte: barres intertidales nettement moins développées à proximité des épis

Analyse de l'évolution du trait de côte après l'implantation des épis montre une efficacité limitée des ouvrages

Epis pourraient être à l'origine d'une déstabilisation du système barres-bâches qui contribuent à dissiper l'énergie des vagues (rôle de l'espacement entre épis ?)

Wave attenuation and intertidal morphology of a multi-barred macrotidal beach behind a breakwater

Oblinger, A. & Anthony, E.J.

 Difficulté d'apprécier l'effet du brise-lame sur les hauteurs de vagues, car les houles sont atténuées par les bancs au large

 Accumulation sédimentaire à l'arrière du brise-lames mais avec barres intertidales moins développées que sur plages avoisinantes

Sand trapping by brushwood fences on a beach-foredune contact: the primacy of the local sediment budget

Ruz, M.H & Anthony, E.J.

Ruz, M.H & Anthony, E.J. "Sand trapping by brushwood fences on a beach-foredune contact: the primacy of the local sediment budget"

Ruz, M.H & Anthony, E.J. "Sand trapping by brushwood fences on a beach-foredune contact: the primacy of the local sediment budget"

Site de Wissant, Pas-de-Calais

Fascines mises en place en haut de plage (et non pas dans les dunes)

Site de Leffrinckoucke, mer du Nord

Ruz, M.H & Anthony, E.J. "Sand trapping by brushwood fences on a beach-foredune contact: the primacy of the local sediment budget"

Accumulation en haut de plage entre février 2004 et avril 2005

- Accumulation toujours notable entre avril 2005 et avril 2007, non seulement au niveau des fascines mais plus haut sur la dune bordière qui s'exhausse
- Les fascines ont cependant favorisé l'accumulation éolienne sur la dune bordière et donc contribué à sa stabilisation

Ruz, M.H & Anthony, E.J. "Sand trapping by brushwood fences on a beach-foredune contact: the primacy of the local sediment budget"

Baie de Wissant

Par contre dans un contexte de déficit sédimentaire, comme en baie de Wissant, fascines en haut de plage sont peu efficaces car s'il y a accumulation pendant l'été, il y a érosion des fascines et de la dune bordière pendant l'hiver Assessing the vulnerability of coastal lowlands to marine flooding using LiDAR data, Sangatte coastal dunes, northern France

Rufin-Soler, C., Héquette, A. & Gardel, A.

Rufin-Soler, C., Héquette, A. & Gardel, A. "Assessing the vulnerability of coastal lowlands to marine flooding using LiDAR data, Sangatte coastal dunes, northern France"

Rufin-Soler, C., Héquette, A. & Gardel, A. "Assessing the vulnerability of coastal lowlands to marine flooding using LiDAR data, Sangatte coastal dunes, northern France"

Estimation de hauts niveaux d'eau avec différentes périodes de retour en 2050 (avec une hausse du niveau marin de + 17 cm, IPCC, 2001)

- 775 cm = niveau actuel des plus hautes mers astronomiques

- 854 cm = niveau de surcote avec période de retour de 10 ans en 2050
- 892 cm = niveau de surcote avec période de retour de 100 ans en 2050

Rufin-Soler, C., Héquette, A. & Gardel, A. "Assessing the vulnerability of coastal lowlands to marine flooding using LiDAR data, Sangatte coastal dunes, northern France"

Secular trends in tidal parameters along the eastern Channel and southern North Sea Basin coastlines

Swift, R.H.

Swift, R.H. "Secular trends in tidal parameters along the eastern Channel and southern North Sea Basin coastlines"

France: Le Havre to Dunkerque

England: Brighton to the Isle of Grain in the Thames Estuary

Tide gauge data from 16 long-term data sets analysed for:
extreme return period behaviour of water levels
secular changes in mean sea levels, High Waters, tidal ranges, peak surges and surge values at High Water.

Swift, R.H. "Secular trends in tidal parameters along the eastern Channel and southern North Sea Basin coastlines"

Extreme return period behaviour

 locations in the area tidally defined by the southern North Sea basin are likely to be exposed to a greater level of risk

•east coast extreme events leak through the Strait of Dover, but dissipate as they expand moving southwards into the Channel, with the result that they do not register as major occurrences further to the west.
Swift, R.H. "Secular trends in tidal parameters along the eastern Channel and southern North Sea Basin coastlines"

Polar plots of directional correlation between wind speed and predicted surge

Surge in the outer Thames area behaves in a regional manner in relation to directional wind speeds and is only moderately affected by local orientation of the coastline.

Dover presents not only a detectable correlation component arising from the southern North Sea, but also input from westerlies moving up the Channel from the Atlantic.

Newhaven shows strong correlation all around the sectors from the south to the north west.

Swift, R.H. "Secular trends in tidal parameters along the eastern Channel and southern North Sea Basin coastlines"

Key findings:

Secular trends in High Waters:
in the southern North Sea coastline they are greater than those arising from mean sea level alone
in the Channel they are less than or equal to those arising from mean sea level increases.

Tidal ranges are increasing along the southern North Sea coastline, with High Water levels increasing more rapidly than Low Waters. Tentative estimation of extreme sea levels in the English Channel by the year 2050

Pirazzoli, P.A. & Tomasin, A.

Pirazzoli, P.A. and Tomasin, A. "Tentative estimation of extreme sea levels in the English Channel by the year 2050"

1984

MSL — Regr. = +0.169 ± 0.012 (p>99%)

— Regr. = +0.78 ± 0.17 (p>99%)

1924

Pirazzoli, P.A. and Tomasin, A. "Tentative estimation of extreme sea levels in the English Channel by the year 2050"

Maximum annual surges

irazzoli, P.A. and Tomasin, A.	"Tentative estimation of extreme sea levels in the En	glish Channel by the year 2050"
--------------------------------	---	---------------------------------

Station	Lat. L	Long.	Record length (equivalent full years)	Maximum recorded height (cm)	Maximum recorded surge (cm above MSL)	Height estimations (cm) in the year 2000 for return times of:		
						10 yr	50 yr	100 yr
14. Roscoff	48.72	-3.96	20.2	994	98	988	1,002	1,009
15. StMalo/ StServan	48.63	-2.03	46.3	1,368 ^a	192	1,347	1,369	1,377
16. Cherbourg	49.65	-1.63	28.6	715	135	704	721	729
17. Le Havre	49.48	0.12	32.5	899 ^a	202	880	903	915
18. Dieppe	49.93	1.08	31.3	1,058 ^a	167	1,033	1,056	1,066
19. Boulogne	50.73	1.58	17.4	980	205	971	996	1,006
20. Calais	50.97	1.66	26.6	817	223	802	827	839
21. Dunkirk	51.05	2.37	33.9	735 ^a	218	707	736	749
22. St. Marys's	49.92	-6.32	10.3	644	74	645	658	662
23. Newlyn	50.06	-5.33	84.4	641 ^a	118	622	638	643
24. Devonport	50.37	-4.19	12.2	634	94	632	646	652
25. Jersey	49.18	-2.12	11.8	1,219	101	1,215	1,234	1,242
26. Weymouth	50.61	-2.44	10.5	289	90	288	303	310
27. Bournemouth	50.71	-1.87	6.5	280	100	283	299	305
28. Portsmouth	50.80	-1.16	10.9	549	116	547	563	571
29. Newhaven	50.78	0.05	14.7	769	132	764	781	788
30. Dover	51.12	1.35	39.9	805 ^a	175	783	809	820

Pirazzoli, P.A. and Tomasin, A. "Tentative estimation of extreme sea levels in the English Channel by the year 2050"

Station Over of the peak the he value	OvertakingLocalof the tidalrelatpeak aboveMSI	Local relative MSL	Global sea-level rise	Increase of maximum annual surges (from Fig. 3)(cm)	Maximum total height (cm) in the year 2050 for return times of :			Height of the present maximum
	the hourly value (cm)	the hourly rise value (cm) (from Fig. 2) (cm)	(IPCC, 2001) (cm)		10 years	50 years	100 years	astronomical tide (cm)
14. Roscoff	+10	+9.5±5.5	+17±1 2	±0?	1,025±13	1,039±13	1,046±13	973
15. StMalo / St Servan	+19	+6.4	$^{2}_{\pm 17\pm 1}$	±0?	1,389±12	1,411±12	1,419±12	1,347
16. Cherbourg	+14	+7.5±2	+17±1	±0?	742±12	760±12	768±12	703
17. Le Havre	+20	+9±2	$^{2}_{\pm 17\pm 1}$	±0?	926±12	949±12	961±12	843
18. Dieppe	+17	+26.5±3.	$^{2}_{\pm 17\pm 1}$	+24±18.5 ?	1,117±22?	1,141±22?	1,151±22?	1,000
19. Boulogne	+21	+22±3	$^{2}_{\pm 17\pm 1}$	+17±20?	1,048±24?	1,073±24?	1,083±24?	942
20. Calais	+22	±0 ?	2 +17±1	+13.5±16.5	854±20?	880±20?	892±20?	773
21. Dunkirk	+22	+10.5±2.	$^{2}_{\pm 17\pm 1}$	+16.5±14.5	773±19?	802±19?	815±19?	648
22. St. Mary's	+10	5 +20±7	$^{2}_{\pm 17\pm 1}$? +85±54?	777±-56?	790±56?	794±56?	624
23. Newlyn	+12	+8.5±0.6	$^{2}_{\pm 17\pm 1}$	±0?	659±12	675±12	680±12	605
24. Devonport	+10	+3±5	2 +17±1	±0?	662±13	676±13	672±13	606
25. Jersey	+10	+39±8.5?	2 +17±1	+78±37	1,359±40?	1,378±40?	1,386±40?	1,209
26. Weymouth	+10	+49±9.5	2 +17±1	+69±29.5	433±33	448±33	455±33	269
27. Bournemouth	+10	+46.5±6	2 +17±1	+90±75?	446±76?	462±76?	468±76?	244
28. Portsmouth	+12	+55.5±8	2 +17±1	+70±40	701±43	717±43	725±43	519
29. Newhaven	+13	+3±9	2 +17±1	±0?	797±15	814±15	821±15	739
30. Dover	+18	+8±2.5	+17±1	±0?	826±12	878±12	889±12	736

Remerciements

Les articles soumis pour publication dans ce volume de la revue *Zeitschrift für Geomorphologie* ont fait l'objet de relectures critiques de la part de:

B. Arens, Y. Battiau-Queney, S. Blott, A. Brampton, P. Ciavola, P. Clabaut, F. Dolique,
B. Douglas, M. Eade, O. Ferreira, D. Forbes, K. Hickey, D. Horn, D. Jackson, A.
Kroon, J.-P. Laborde, B. Latteux, J.-J. Macaire, G. Masselink, J. Ollerhead, J. Orford,
D. Pope, J. Potts, N. Psuty, H. Regnauld, M. Robin, F. Sabatier, P.-G. Salvador, S.
Suanez et K. Zhang.

Nous leur adressons tous nos remerciements pour leurs commentaires et suggestions qui ont contribué à améliorer la qualité de cette publication.

Nous tenons également à remercier les différents organismes qui ont soutenu ce projet: Services Maritimes des Ports de Boulogne et de Calais, Service Hydrographique et Océanographique de la Marine, le Conseil General de Seine Maritime, Conseil Régional de Basse-Normandie, ABPmer, Brighton and Hove City Council, Canterbury City Council, Dover City Council, Environment Agency, Halcrow, HR Wallingford, Pevensey Coastal Defence Ltd, Royal Haskoning Ltd, Shepway District Council, South Downs Coastal Group.