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Abstract 

To elucidate the early stages of heave, settlement and fracture of intact frost-susceptible rock by 

temperature cycling above and below 0°C, two physical modelling experiments were performed on 10 

rectangular blocks 450 mm high of fine-grained, soft limestone. One experiment simulated 21 cycles of 

bidirectional freezing (upward and downward) of an active layer above permafrost, and the other 

simulated 26 cycles of unidirectional freezing (downward) of a seasonally frozen bedrock in a non-

permafrost region. Heave and settlement of the top of the blocks were monitored in relation to rock 

temperature and unfrozen water content, which ranged from almost dry to almost saturated.  

In the bidirectional freezing experiment, heave of the wettest block initially occurred abruptly at the 

onset of freezing periods and gradually during thawing periods (summer heave). After the crossing of a 

threshold marked by the appearance of a macrocrack in the upper layer of permafrost, summer heave 

increased by an order of magnitude as segregated ice accumulated incrementally in macrocracks, 

interrupted episodically by abrupt settlement that coincided with unusually high air temperatures. In 

the unidirectional freezing experiment, the wet blocks heaved during freezing periods and settled during 

thawing periods, whereas the driest blocks showed the opposite behaviour. The two wettest blocks 

settled progressively during the first 15 freeze-thaw cycles, before starting to heave progressively as 

macrocracks developed.  

Four processes, operating singly or in combination in the blocks account for their heave and settlement: 

(1) thermal expansion and contraction caused heave and settlement when little or no water-ice phase 

change was involved; (2) volumetric expansion of water freezing in situ caused short bursts of heave of 

the outer millimetres of wet rock; (3) ice segregation deeper in the blocks caused sustained heave 

during thawing and freezing periods; and (4) freeze-thaw cycling caused consolidation and settlement of 

wet blocks prior to macrocracking in the unidirectional freezing experiment. Rock fracture developed by 

growth of segregated ice in microcracks and macrocracks at depths determined by the freezing regime. 

Overall, the heave, settlement and fracture behaviour of the limestone is similar to that of frost-

susceptible soil. 
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1. Introduction 

Near-surface bedrock, typically fractured, expands and contracts when subject to temperature cycles 

that cross the 0°C isotherm or take place at lower temperatures within permafrost. Vertical and/or 

horizontal movements of metamorphic and sedimentary bedrock have been measured in Arctic and 

Subarctic Canada (Dyke, 1984) and of igneous bedrock in southern Finland (Lehmuskoski et al., 2006; 

Hokkanen et al., 2007). Extension (during cooling) and contraction (during warming) of gneissic bedrock 

permafrost have been measured within rock walls in the Swiss Alps (Wegmann and Gudmundsson, 

1999), and widening and narrowing of joints in sandstone, schist and shale monitored in the Swiss and 

Japanese Alps (Matsuoka, 2001, 2008). Expansion and contraction of bedrock can also occur by natural 

freezing behind tunnel linings (Kitagawa and Kawakami, 1984) and in excavations near artificially frozen 

ground (Smith et al., 2007). Bedrock movement produces various heave and weathering structures in 

present-day permafrost and periglacial regions (Dionne, 1983; Burn, 1984; Dredge, 1992), and brittle or 

ductile deformation structures in the upper 0.5–60 m of sedimentary rocks are common in some regions 

that hosted past permafrost, for example Great Britain (Hutchinson, 1991; Murton and Ballantyne, 

2016). All of the observations cited above concern bedrock that contains joints or fractures. In present-

day Arctic permafrost regions many fractures in bedrock contain ground ice, particularly in the upper 

metres of lithologies such as shale, arkose, schist and marly limestone, and some ice-filled fractures 

occur to depths of tens of metres in mountain or high-latitude permafrost (Gruber and Haeberli, 2007). 

However, the processes and their controlling factors involved in heave and fracture of bedrock newly 

subject to temperature cycling above and below 0°C have seldom been investigated (Murton et al., 

2001, 2006) and remain to be examined in detail. Such investigation is important for studies of rock 

deformation and weathering, and for designing ground investigations and engineering structures 

because frost-susceptible bedrock is widespread in past and present periglacial regions. 

Our aim here is to elucidate the early stages of heave and fracture of an intact frost-susceptible rock by 

temperature cycling above and below 0°C. We report observations from physical modelling experiments 

that investigated the heave and settlement of a single rock type subject to a wide range of moisture 

conditions and to ground thermal regimes that simulated (1) an active layer above permafrost and (2) 

seasonal freezing in a non-permafrost region. We used specimens of intact rock (i.e. that lacks visible 

joints and fractures) in order to identify macrofractures formed during temperature cycling. Our 

observations identify a variety of processes, operating singly or in combination that deform and fracture 

rock. 

 

2. Experimental set-up 

Two experiments were performed on ten rectangular blocks of frost-susceptible limestone (a French 

chalk known as ‘tuffeau’) 450 mm high and 300 mm x 300 mm wide, a size sufficient to simulate bedrock 

freezing almost at field scale. One experiment simulated bidirectional (upward and downward) freezing 

of a bedrock active layer above permafrost, and the other simulated unidirectional (downward) freezing 

of seasonally frozen bedrock in non-permafrost areas. The bidirectional experiment monitored four 

blocks (B1–B4) installed in a metal tank and insulated with polystyrene around their four vertical sides to 

minimize lateral heat conduction (Fig. 1A). Each block, on exposure to chilled air, froze from the top 

downward, simulating permafrost aggradation. After the freezing front had reached the bottom of the 

blocks, a basal cooling plate, thermostatically controlled, was switched on to maintain subzero 

temperatures (permafrost) in the lower part of each block for the remainder of the experiment. The 

upper part of each block was then cycled above and below 0°C, simulating thawing (summer) and 

freezing (winter) periods in the active layer. Thawing periods are defined by air temperatures >0°C 



(allowing the upper part of the blocks to thaw from the surface downward), and freezing periods by air 

temperatures <0°C (allowing freezing downward from the surface and upward from the permafrost 

table). Twenty-one cycles of active-layer freezing and thawing were carried out. Freezing cycles 

averaged 5.47 days in duration (std dev. = 4.69 days), and thawing cycles averaged 12.87 ± 9.33 days. 

Values of active-layer thickness (ALT) were obtained by linear interpolation between temperature 

measurements to determine the maximum depth of penetration of the 0°C isotherm during thawing 

periods. The unidirectional freezing experiment monitored six blocks (U1–U6; Fig. 1B) during 26 freeze-

thaw cycles, with freezing cycles averaging 6.36 ± 1.01 days, and thawing cycles 9.49 ± 6.58 days; it 

lacked a basal cooling plate, but was otherwise similar to the bidirectional experiment.  

Different moisture conditions were maintained in the blocks in order to determine their effect on rock 

heave, fracture development and ice formation (Table 1 and Fig. 1). The blocks were initially dried in a 

desiccator at about 40°C prior to instrumenting and installing them in the metal tanks. Blocks B4 and U6 

remained in their dried condition throughout the experiments, serving as controls. The other eight 

blocks were variably wetted by capillary rise. After capillary rise had finished in blocks B1, U1 and U2, 

they were placed on a bed of gravel with the water table about 10 mm above their base, allowing water 

to enter into the rock during the initial downward freezing of block B1 and during the late stages of each 

thawing cycle in blocks U1 and U2, resulting in wet conditions during the experiments. The other five 

blocks (B2, B3, U3, U4 and U5) were incompletely wetted by capillary rise and then isolated from the 

basal water table, resulting in intermediate water contents within them. Block U4 was sealed in a 

polythene sheet to prevent water from entering or leaving it during the experiment. Water was 

sprinkled onto the surface of all except for blocks U4, U6 and B4 during each thaw cycle, simulating 

summer rainfall. 

Temperature in the air and rock, volumetric unfrozen water content in the rock, and heave of the block 

tops were measured during the experiments (Fig. 1). Rock temperature was measured by platinum 

resistance thermometers (100 at 0°C) inserted at 50 mm intervals from the top to the base of blocks 

B1 to B4 (n = 10 per block) and from the surface to 350 mm depth in blocks U1 to U5 (n = 8 per block). 

Temperature in block U6 was measured by sensors at 0 to 250 mm and at 400 mm depth. Volumetric 

unfrozen water contents were measured by capacitance sensors inserted at 50 mm intervals from 50 to 

400 mm depth in all 10 blocks (n = 8 per block). Heave of each block was measured by a linear variable 

differential transformer (LVDT) whose foot was glued to the centre of the top. Temperature and heave 

measurements were logged automatically at one-hour intervals, and water content was measured 

manually at intervals of some days. The measurements are described by Murton et al. (2006) and details 

of the instrumentation and rock type by Murton et al. (2000).  

During the experiments, the instrumented side of the blocks was checked at variable intervals of time to 

determine if macrocracks had developed. At the end of the experiments, the blocks were extracted in 

frozen condition from their tanks and cracks within the blocks were examined and photographed. 

 

3. Results 

3.1. Air temperature 

Air temperatures in the bidirectional freezing experiment had mean values of −5.8 to −4.3°C during 

freezing periods, and 14.3 to 22.5°C during thawing periods (Fig. 2A). Mean air temperatures for the 

unidirectional freezing experiment were −7.9 to −6.4°C during freezing periods and 14.8 and 24.4°C 

during thawing periods (Fig. 2B). Unusually warm air temperatures during thawing periods 18 and 19 in 

the former experiment and 22 in the latter peaked at 26.7 and 28°C, respectively, on 12 August 2003, 

during a heatwave in Europe (Schär et al., 2004). 



 

3.2. Rock temperature 

In the bidirectional freezing experiments the active layer cooled from the surface downward and from 

the permafrost table upward, and warmed from the surface downward. Cooling and warming in the 

wettest block (B1) were delayed relative to the driest (B4), as illustrated in Fig. 3A,C for two 

representative freezing and thawing periods. Temperature at and near the surface tended to be a few 

degrees °C higher during thawing periods in block B4 than in B1, and therefore temperature ranges 

between freezing and thawing periods were correspondingly greater in B4.  

In the unidirectional freezing experiment the blocks cooled mainly from the surface downward, and 

warmed from the surface downward and from the bottom upward. Again, cooling and warming were 

delayed in the wettest block (U1) compared to the driest (U6), and surface temperature ranges were 

higher in the latter (Fig. 3D,F). 

 

3.3. Water content 

The water content in both experiments varied substantially between the wettest and driest blocks, 

particularly during thawing periods (Table 1). Mean values of volumetric unfrozen water content at the 

end of thawing periods (θut) varied from 41 ± 6% in the active layer of block B1 to 8 ± 2% in that of B4, 

corresponding to % saturation of 86 ± 11 and 18 ± 4, respectively, while the underlying permafrost had 

low values of θut (17 ± 4% in B1; 12 ± 1% in B4). Blocks B2 and B3 had θut and % saturation values 

intermediate between those of B1 and B4. A similar range of values of θut was determined for blocks U1 

(45 ± 4%) to U6 (6 ± 1%). In contrast, mean volumetric unfrozen water content at the end of freezing 

periods (θuf) and % saturation dropped to values of between one third and two thirds of those for the 

thawing periods, apart for the dry block B4, whose values remained similar. The changes in water 

content for blocks B1 and U1 during two freeze-thaw cycles are illustrated in Fig. 3B,E. The unfrozen 

water content dropped as the active layer froze, with the minimum value occurring in the centre of the 

active layer (150 mm depth) at day 113 (Fig. 3B). 

 

3.4. Active-layer thickness (ALT) 

ALT values in blocks B1−B4 covaried with air temperature and showed variable relationships with water 

content during thawing periods (Table 2). The correlations between ALT and air temperature were 

higher with respect to maximum air temperature (r = 0.69–0.87) than to mean air temperature (r = 

0.46–0.72). In both cases the relationship between ALT and air temperature become stronger as the 

water content in the blocks decreased. The correlations between ALT and θut in the active layer 

switched signs from r = –0.51 in the wettest block (B1) to r = 0.44, 0.43 and 0.64 in the progressively 

drier blocks B2, B3 and B4, respectively. 

The thickest active layer developed typically in the driest block (B4), and the thinnest active layer in the 

wettest block (B1; Fig. 2A). Unusually thick active layers developed during thawing period 19, which 

coincided with unusually high air temperatures caused by the heatwave of August 2003. During this 

thawing period, the typical relationship between ALT and water content reversed, with the wettest 

block (B1) having the thickest active layer and the driest block (B4) the thinnest. The reason for this 

reversed behaviour is not clear, although it may involve convective heat flow in the wettest blocks and 

air insulation in the driest. 



The variation of ALT (ALTvar) increased with average water content of the blocks. ALTvar indicates the 

variation (range) between the thickest and thinnest active layers relative to the mean thickness: 
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where zmax is the maximum value of ALT, zmin the minimum value of ALT and zmean the mean of ALT. 

Values of ALTvar are 48, 38, 32 and 16% for blocks B1, B2, B3 and B4, respectively, indicating that ALT 

varied most in the wettest block, and least in the driest (Fig. 2A). 

 

3.5. Heave and settlement 

3.5.1. Total net heave and total vertical strain 

The overall change in elevation of the top of the unfrozen blocks measured during successive cycles of 

net heave (total net heave) was greatest (10.56 mm) for the wettest block (B1) in the bidirectional 

freezing experiment, intermediate in magnitude (2.39 mm) for block B2, and least for the two driest 

blocks (0.23 mm for B3; 0.30 mm for B4; Table S1). These values correspond to total vertical strains of 

2.35, 0.53, 0.05 and 0.07% for B1 to B4, respectively. The maximum value of total net heave in the 

unidirectional freezing experiment was 0.73 mm in the wet block U2, equating to a total vertical strain 

of 0.16%, and the total net heave was substantially less in the other five blocks (Table S2).  

 

 

3.5.2. Heave in freezing periods and thawing periods 

Heave and settlement during freezing periods and thawing periods varied according to freezing regime, 

water content and the number of freeze-thaw cycles (Fig. 4; Tables S1 and S2). In the bidirectional 

freezing experiment the wettest block (B1) displayed the greatest mean heave (0.43 ± 0.20 mm) during 

freezing periods but the greatest variability of heave and settlement (mean heave = 0.10 ± 2.68 mm) 

during thawing periods. Thawing periods 1 to 9 were characterised by settlement that did not exceed –

0.44 mm, but from thawing period 10 onward settlement increased by up to one order of magnitude 

(peaking at –8.54 mm in thawing period 18) and was replaced by heave of up to 6.19 mm in some 

thawing periods (Fig. 5A). Such variable behaviour is reflected in the high standard deviation (2.68 mm) 

in block B1 and the outliers in Fig. 4. Block B2 generally showed less variability, with heave not 

exceeding 0.21 mm during freezing periods and only small amounts of heave (up to 0.16 mm) or 

settlement (up to –0.21 mm) during thawing periods, until 2.13 mm of heave occurred in thawing period 

21. Block B3 displayed minor settlement during all but one freezing period (mean = –0.09 ± 0.05 mm) 

and minor heave (mean = 0.11 ± 0.07 mm) during all but one thawing periods. Block B4 showed 

negligible heave or settlement during both freezing and thawing periods (mean = 0.00 ± 0.04 and 0.02 ± 

0.06 mm, respectively). 

In the unidirectional freezing experiment, the two wettest blocks (U1 and U2) also experienced the 

greatest mean values of heave and settlement, although values for U2 were greater during both freezing 

periods (1.56 ± 0.55 mm) and thawing periods (–1.49 ± 0.46 mm) than in U1 (1.13 ± 0.39 and –1.09 ± 

0.31 mm, respectively; Table S2). In comparison, the four drier blocks (U3 to U6) showed mean values of 



heave and settlement an order of magnitude or more lower; for example, the driest block (U6) 

experienced a mean value of just –0.12 ± 0.07 mm during freezing periods and 0.12 ± 0.08 during 

thawing periods. The sign of the relationship between freezing periods and mean heave switched (from 

positive to negative), and between thawing periods and mean settlement (from negative to positive) for 

blocks U3, U5 and U6 relative to blocks U1 and U2 (Fig. 4). Thus, U3, U5 and U6 tended to settle during 

freezing periods and heave during thawing periods, although the magnitudes were small. 

Distinct trends in heave and settlement developed at different times in the unidirectional freezing 

experiment (Fig. 5C). Progressive settlement characterised the first 15 or so freeze-thaw cycles in blocks 

U1 and U2, prior to progressive heave that continued until the end of the experiment. Blocks U3 to U6 

also showed progressive settlement, during the first two to three cycles, but thereafter showed no 

trend. 

 

3.5.3. Bidirectional freezing time series of heave 

Time series of heave and settlement also varied according to thermal regime, water content, the 

number of freeze-thaw cycles and the timing of macrocracking (Fig. 5). All four blocks subject to 

bidirectional freezing usually showed small but progressive heave of about 0.05–0.1 mm during active-

layer thawing periods (Fig. 5B). Heave behaviour is classified into two stages for wet blocks B1 and B2. 

During the first stage, incremental heave alternated with bursts of early winter heave of about 0.2–0.6 

mm at the beginning of active-layer freezing periods and similar bursts of early summer settlement at 

the beginning of active-layer thawing periods (Figs. 5B, 6A and 7A). 

The second stage began when a threshold was crossed, after which the magnitude of heave during 

active-layer thaw increased by an order of magnitude. The threshold was about day 150 in B1 and day 

368 in B2 (Fig. 5A), preceding heave totalling 4.6 mm in B1 and 2.1 mm in B2 during the remainder of 

the thawing period (Figs. 5A, 6B and 7B). Such summer heave encompassed the first observation, on day 

166, of a subhorizontal macrocrack at a depth of 250 mm in B1, and a similar macrocrack was observed 

at a depth of 250–270 mm in B2 at the end of the experiment. We cannot exclude the possibility that 

the macrocrack in B1 developed several days before day 166. In both blocks, summer heave passed, 

with a small inflection, into a short period of early winter heave in freezing periods 11 in B1 (Fig. 6B) and 

22 in B2 (Fig. 7B). Thereafter heave and settlement of B1 varied, as summer heave was episodically 

interrupted by settlement during some simulated late-summer conditions, when active-layer 

temperatures peaked (Fig. 6C). For example, abrupt settlement of nearly 10 mm on day 283 coincided 

with unusually high air temperatures. But summer heave during the next three thawing periods led to 

complete recovery of the block top to its pre-settlement elevation (Fig. 5A). 

All blocks showed, at times, an in-phase relationship between heave and temperature. The relationship 

is clearly shown by the coincidence of minor (<0.1 mm) heave and settlement cycles with small (<3°C) 

rises and falls in the temperature at 400 mm depth, which were driven by the thermostatically-

controlled basal cooling plate. The cycle frequency was about 1 day during thawing periods (Fig. 6A) and 

4–5 days during freezing periods, the latter displaying a distinctive sawtooth pattern of gradual winter 

heave of about 0.1 mm preceding abrupt winter settlement of a similar amount (Figs. 8A and 9A). 

Independent of the cooling plate, additional winter settlement of about 0.1 mm coincided with rapid 

cooling of the rock following the zero curtain freezing conditions in B2 (e.g. freezing periods 4, 7 and 9; 

Fig. 7A) and B3 (freezing periods 2, 3 and 4; Fig. 8B). The in-phase relationship between heave and 

temperature in B3, however, changed to anti-phase during the heatwave in thawing periods 18 and 19. 

In both of these periods heave occurred initially as the rock warmed (Fig. 8C). But after day 282 in 

thawing period 18 and day 306 in thawing period 19, settlement commenced as the active layer 

deepened more than usual (Fig. 2A). 



The abrupt bursts of heave and settlement that characterised the start of many freezing and thawing 

periods, respectively, in the wettest blocks B1 and B2 (Figs. 6 and 7A), occurred only occasionally in B3 

and appeared to be absent in B4 (Fig. 9B,C). The rare occurrence of abrupt winter heave at the start of 

freezing period 6 in B3 (Fig. 8B) occurred when the upper 150 mm of the active layer was cooling but 

still above 0°C while the permafrost was also cooling, leading to upfreezing from the permafrost table. 

Likewise, settlement during heatwave conditions of thawing periods 18 and 19 was negligible in B4 (Fig. 

9C) and minor (≤0.1 mm) in B3 (Fig. 8C) relative to B1 (Fig. 5A). 

 

3.5.4. Unidirectional freezing time series of heave 

In the unidirectional freezing experiment the two wettest blocks (U1 and U2) generally displayed the 

opposite heave and settlement behaviour to the drier blocks (U3 to U6; Fig. 5C). U1 and U2 heaved 

during freezing periods and settled during thawing periods. Freezing periods showed three stages of 

heave (stages 1 to 3), the first two marked by a distinct ‘shoulder’ on Fig. 10A,B: (1) rapid heave of about 

0.1−0.6 mm began at the start of the freezing period and lasted for several hours, during freezing of the 

upper few tens to several tens of millimetres of rock; (2) slowing or cessation of heave, followed by zero 

heave or minor heave of about 0.1 mm in U1 and by minor settlement of a similar magnitude in U2, 

lasted about 1−3 days; and (3) rapid heave of about 0.8−2.0 mm re-commenced a few to several hours 

after the zero curtain phase ended at about 100 mm depth (and rapid freezing commenced at this 

depth) and terminated at the end of the freezing period, usually several days later. Stage 3 heave 

coincided with the zero curtain freezing at depths of 150 mm or more and its rate declined as the rock 

progressively froze.  

Thawing periods in U1 and U2 showed either one or three stages of settlement (stages 4 to 6), the first 

two, where present, marked by a shoulder more subdued than the freezing shoulder (Fig. 10A,B): (4) 

rapid settlement of about 0.05−0.5 mm frequently occurred over a period of a few to several hours, as 

the rock warmed rapidly while the surface temperature remained below 0oC; (5) slow settlement (or 

even heave of 0.1−0.2 mm during some thawing periods in U1) commenced with the start of zero 

curtain thawing and lasted about one day; and (6) rapid settlement re-commenced as thawing reached a 

depth of about 20−60 mm and slowed once thawing reached a depth of about 50−110 mm during the 

middle to later part of the zero curtain phase. The overall settlement during stage 6 was about 0.5−2.0 

mm over about 4−5 days. In some cycles, stages 4 and 5 were absent. Settlement was followed by a 

period of stasis during the later part of the thawing period, when rock temperature exceeded 0oC and 

thawing had finished. 

The driest blocks U5 and U6 settled during freezing periods and heaved during thawing periods, at rates 

in proportion to rates of temperature change (Fig. 11B,C). Settlement of about 0.2 mm took place in 

over several days during freezing periods, and heave of a similar amount over several days during 

thawing periods. Interestingly, delayed cooling caused by zero curtain conditions during freezing of the 

lower part of U5 generally had little if any impact on the rate of settlement.  

Blocks U3 and U4 showed more complex and variable behaviour during freeze-thaw cycles than U5 and 

U6. Some cycles in U3 showed a spike of rapid heave at the start of freezing periods (e.g. 16F in Fig. 

10C). All showed some settlement during freezing and heave during rapid warming of rock post-thaw. 

U4 displayed a spike of rapid heave of about 0.1−0.2 mm at the start of freezing periods, often followed 

by rapid settlement as the block cooled rapidly. During zero curtain freezing little heave or settlement 

occurred. Warming of frozen rock prior to onset of zero curtain thaw was sometimes marked by a 

second, smaller spike in heave. Thereafter, settlement characterised the period of zero curtain thawing. 

Heave re-commenced once thawing was complete and the rock warmed rapidly.  



 

3.6. Macrocracks and ground ice 

Macrocracks developed in the four wettest blocks (B1, B2, U1 and U2) during the experiments (Figs. 12 

and 13). By the end of the experiments, the cracks, typically horizontal to subhorizontal, were 

concentrated just beneath the permafrost table in B1 and B2 (Fig. 14), and mostly in the upper 15 cm of 

rock in U1 and U2 (Fig. 15). The cracks were first observed in B1, U1 and U2 near the start of phases of 

accelerated heave (B1) or progressive heave (U1 and U2) (Fig. 5). Segregated ice was observed as lenses 

usually no thicker than a few millimetres (maximum = 10 mm) within many of the cracks. Pore ice was 

present in interstices within the chalk between the cracks, as indicated its shiny appearance while the 

blocks remained frozen. In addition, a single macrocrack was found across the whole block B4 between 

a depth of 200 and 270 mm, and had a few small offshoot cracks. Unlike the cracks described previously 

in frozen blocks, this crack was not observed until the block had thawed.  

 

4. Discussion 

Four processes, operating singly or in combination in the blocks are inferred from our observations of 

heave, settlement and fracture. 

 

4.1. Thermal expansion and contraction 

Thermal expansion and contraction caused heave and settlement of the driest blocks throughout the 

experiments and influenced the behaviour of the other blocks when little or no phase change occurred 

between liquid water and ice. Thermal strain accounts for the ‘winter heave’ and ‘winter settlement’ 

shown by B3 and B4 (Figs. 8A and 9A) and for most of the heave and settlement behaviour of U5 and U6 

(Fig. 11B,C). Because the rock blocks were unconfined vertically upwards (and horizontally), in order to 

simulate the upper surface of a natural rock outcrop, thermal stresses caused these blocks to heave 

(expand) during warming phases and settle (contract) during cooling phases.  

Similar directional strains have been monitored at the surface of a bedrock block of migmatite granite in 

southern Finland, which heaved vertically upward in summer and settled in winter, the movements 

strongly correlated with rock temperature (Lehmuskoski et al., 2006; Hokkanen et al., 2007). These 

authors found that the movement exceeded the expected thermal expansion effect by an order of 

magnitude, and they suggested a lever system related to thermal expansion of bedrock. More generally, 

thermal stresses may generate thermal fatigue and thermal shock in the outermost centimetres of rock 

and may constitute a significant cause of rock weathering, particularly in arid cold regions (Hall, 1999; 

Hall and Thorn, 2014). 

 

4.2. Volumetric expansion 

Volumetric expansion of pore water freezing in situ caused short bursts of early winter heave and early 

summer settlement in wet blocks B1 and B2 (Figs. 6A and 7A) and U1 and U2 (stages ‘1’ and ‘4’ in Fig. 

10A,B). The bursts coincided with the start of freezing and thawing periods, when the upper millimetres 

of rock quickly froze or thawed, limiting migration of unfrozen water. Similar behaviour has been 

recorded in experiments with rapid freezing and thawing of small specimens of saturated tuff (Figs. 12 

and 13 of Matsuoka, 1990), near-saturated tuffeau (Fig. 2 of Prick, 1995), and sandstone at 50% and 



90% saturation (‘stage III’ in Fig. 4 of Jia et al., 2015). We suggest that limited water migration occurred 

in all these experiments but did not keep pace with rapid frost penetration. 

In the present experiments, rapid heave and settlement attributed to volumetric expansion dominated 

the overall heave behaviour in the first 10 freeze-thaw cycles in the bidirectional freezing experiment 

(Figs. 5A,B, 6A and 7A), but in subsequent cycles they became less distinct. By contrast, rapid heave of 

stage 1 and, to a lesser degree, settlement of stage 4 (Fig. 10A,B) persisted through most of the 27 

freeze-thaw cycles of the unidirectional freezing experiment (Fig. 5C). The fundamental difference 

relates to progressive accumulation of segregated ice in the upper layer of permafrost in the 

bidirectional experiment. 

 

4.3. Ice segregation and rock fracture 

Ice segregation is indicated by the formation of segregated ice within newly formed macrocracks and by 

heave during both thawing and freezing periods (Murton et al., 2006). In the bidirectional experiment 

segregated ice accumulated incrementally near the permafrost table (Figs. 12 and 14), whereas in the 

unidirectional experiment it grew and melted during each cycle in the upper third of the block (Figs. 13 

and 15). Unlike the abrupt heave that we attribute to volumetric expansion at the start of freezing 

periods, heave resulting from ice segregation was sustained for longer periods of time and occurred 

during both thawing and freezing periods. Heave during thawing periods (‘summer heave’ in Figs. 6B, 

6C, 7A and 7B) tended to be greatest during their middle to late stages, when temperatures in the active 

layers were more or less constant through time but declined with depth, driving unfrozen water down 

into cracks in the uppermost layer of permafrost. The same process causes summer frost heave by ice 

segregation in Arctic permafrost soil (Mackay, 1983). Summer heave passed, with a small inflection 

(Figs. 6B and 7B), into early winter heave, as upward freezing from the permafrost table (Fig. 3A) caused 

ice segregation in the lower part of the active layer, at the same time as the upper millimetres of the 

active layer heaved rapidly by volumetric expansion. 

The influence of ice segregation on heave behaviour changed over time from subordinate to dominant 

in the two wettest blocks (B1 and B2) in the bidirectional experiment. In the first 10 freeze-thaw cycles, 

heave was dominated by bursts attributed to volumetric expansion, while smaller amounts of heave 

occurred gradually during some thawing periods, as illustrated for all four blocks in Fig. 5B, and 

particularly clearly for B2 during thawing period 5 (Fig. 7A ‘summer heave’). We attribute this small 

amount of heave to the progressive accumulation of segregated ice, too small to be visible to the naked 

eye, in microcracks developing near the permafrost table. During thawing period 10 in B1 and thawing 

period 21 in B2, ice segregation began to dominate the heave behaviour, following the development of 

the first macrocrack observed. We infer that once microcracks merged to form macrocracks, ice 

segregation and resulting frost heave increased substantially, and started to dominate the heave 

behaviour. This represents the crossing of a threshold in heave behaviour. The onset of macrocracking 

and frost heave at the same time has also been measured, under a sustained temperature gradient, in 

Kimachi sandstone and Noboribetu soft rock by Nakamura et al. (2007). The orientation of macrocracks 

in the present experiment, dominantly horizontal to subhorizontal, was parallel to the freezing fronts 

and similar to crack patterns formed by ice segregation in Ohya tuff (Fig. 1 of Nakamura et al., 2014). 

Segregated ice accumulated incrementally in the uppermost layer of artificial permafrost and 

episodically melted. Rates of accumulation after thawing period 10 in B1 range from 0.26 to 6.19 mm 

per thawing period (Table S1), similar to estimates of between 0.2 and 5.0 mm yr−1 for annual 

accumulation of aggradational ice (mostly segregated ice) in near-surface permafrost in wet frost-

susceptible Arctic permafrost soil (Mackay and Burn, 2002; O’Neill and Burn, 2012). Accumulation of an 

ice-rich layer in rock (or soil) renders the near-surface permafrost sensitive to late-summer air 



temperatures (or wet summer conditions), which can lead to rapid melt of the segregated ice closest to 

the rock surface and therefore settlement of the rock surface, as occurred for B1 during high air 

temperatures of thawing period 18 at the start of the European heatwave of summer 2003 (Fig. 5A). As 

air temperature varied from cycle to cycle so melt and settlement varied (Table S1), similar to natural 

inter-annual variability of heave and settlement of frost-susceptible Arctic permafrost soils. 

The heave and settlement behaviour of the wettest blocks in both experiments is remarkably similar to 

that of frost-susceptible soil. The shape of the heave curves for blocks U1 and U2 resemble those 

monitored, during studies of solifluction under conditions of unidirectional freezing, in sandy silt soil in 

the laboratory (see ‘Vire’ soil in Fig. 4 of Harris et al., 1995) and a frost-susceptible soil in southern 

Norway (Fig. 8 of Harris et al., 2007). For example, all share a distinctive ‘freezing shoulder’ (stage 1 in 

Fig. 10A,B). Likewise, the heave curves, post-macrocracking, in blocks B1 and B2 of the bidirectional 

experiment closely resemble those measured in bidirectional freezing of soliflucting soil in the Caen cold 

rooms (Fig. 5 of Harris et al., 2008). All show a characteristic summer frost heave (Figs. 6B,C and 7B).  

4.4. Freeze-thaw consolidation 

Freeze-thaw consolidation may explain the progressive settlement of blocks subject to unidirectional 

freezing, which is clearest for blocks U1 and U2 during the first 15 cycles (Fig. 5C). The settlement is 

attributed to temperature-gradient-induced migration of unfrozen water (cryosuction) towards freezing 

sites, causing an increase in effective stress below the freezing front and consolidation of that part of 

the rock from which water was drawn out of (cf. Thomachot and Matsuoka, 2007). Such consolation can 

result from freeze-thaw cycling of saturated fine-grained soils (Chamberlain and Gow, 1979) and mine 

tailings (Dawson et al., 1999), where it causes a net decrease in the void ratio and an increase in 

permeability. The freeze-thaw behaviour of the chalk was qualitatively similar to that of frost-

susceptible soil because not only did ice segregation occur (Section 4.3.) but vertical to subvertical 

cracks (Fig. 13D) developed that are similar to vertical shrinkage cracks formed by freezing of saturated 

fine-grained soils (Chamberlain and Gow, 1979; Arenson et al., 2008). Freeze-thaw consolidation also 

occurs in fine-grained soils in active layers, as reported in western Arctic Canada (Smith, 1985; Mackay 

and Burn, 2002). The apparent absence of freeze-thaw consolidation in the bidirectional freezing 

experiment may be because the volume subject to freeze-thaw cycles was about 50% smaller than that 

in the unidirectional experiment and because accumulation of segregated ice in the uppermost 

permafrost counteracted consolidation. 

Freeze-thaw consolidation of the tuffeau probably resulted from emptying and closing of fine pores 

when unfrozen water, drawn by cryosuction, migrated from fine pores towards larger partially empty 

pores, where ice was forming (Prick, 1995; Prick et al., 1993). These authors, who examined the dilation 

behaviour of the same tuffeau lithology that we have used, concluded that very small pores (<0.05 m 

in diameter) allow shrinkage by desiccation, permitting contraction of tuffeau with a saturation 

coefficient of 72% during freezing; conversely, filling of these tiny pores during thawing promoted 

dilation (heave). We note, however, that it is difficult to distinguish such consolidation during freezing of 

unsaturated tuffeau from thermal contraction, except when contraction occurs without a change in 

temperature. Evidence for migration of unfrozen water due to cryosuction in the present experiments is 

shown where the unfrozen water content dropped as the active layer froze, with the minimum value 

occurring in the centre of the active layer (150 mm depth) at day 113 (Fig. 3B), because water had 

migrated towards both the permafrost and the rock surface. Such dewatering at 150 mm depth, induced 

by bidirectional freezing of the active layer, characterised the late stages of the freezing periods and the 

early stages of the thawing periods in B1. 

Freeze-thaw consolidation of U1 and U2 ended about half way through the unidirectional freezing 

experiment and was replaced by net heave that we attribute to developing networks of macrocracks. 



Significantly, the first macrocracks were observed about the time when the net heave commenced (Fig. 

5C). As the cracks grew in number and length, the rock dilated and heaved. The absence of macrocracks 

in blocks U3 to U6 is consistent with the absence of a net heave trend (Fig. 5C). 

 

5. Conclusions 

We draw the following conclusions from this experimental study:  

1. The heave and settlement behaviour of the tuffeau is essentially the same as that of frost-

susceptible soil, because their porosity and pore-size characteristics are similar and the tensile 

strength of the tuffeau is small (0.07 to 1.07 MPa; see Murton et al., 2000). The main difference 

is probably that cementation of the chalk (causing increased tensile strength) delayed the 

appearance of macrocracks and ice lenses (cf. Nakamura et al., 2007) for several freeze-thaw 

cycles, relative to fissuring and ice lensing during the first freeze-thaw cycle in most soils. 

2. Thermal expansion and contraction controlled rock heave and settlement when little or no 

water-ice phase change was involved. Such thermal strain, however, was overshadowed in 

moist to saturated rock by (1) volumetric expansion, (2) ice segregation or (3) freeze-thaw 

consolidation. 

3. Volumetric expansion of water freezing in situ caused bursts of heave as wet rock froze rapidly 

at the onset of freezing periods and was followed by rapid settlement at the onset of thawing 

periods, corresponding to the growth and melt of pore ice in the outermost millimetres of rock. 

In the bidirectional experiment, bursts of heave and settlement were clearest during the first 

several cycles before being overshadowed by heave due to ice segregation. 

4. Ice segregation initially led to microcracking and gradual accumulation of segregated ice (too 

small to be visible to the naked eye) in the uppermost layer of permafrost, as indicated, in the 

early cycles of the bidirectional experiment, by gradual heave of the rock surface during thawing 

periods. When the microcracks joined to form macrocracks, a threshold was passed, after which 

the magnitude of heave (and settlement) increased by an order of magnitude. Ice segregation 

led to sustained periods of heave during the middle to late stages of thawing periods (‘summer 

heave’) as water migrated down into the upper layer of permafrost, driven by gravity and 

cryosuction, and visible segregated ice accumulated incrementally in macrocracks. This 

accumulation left the near-surface permafrost vulnerable to melt and settlement during 

unusually warm summer conditions, producing substantial variability of heave and settlement 

between freeze-thaw cycles. 

5. Freeze-thaw consolidation resulted when unfrozen water, driven by cryosuction, migrated from 

the finest pores towards freezing sites and caused an increase in effective stress below the 

freezing front and consolidation of that part of the rock from which water was drawn out of. 

Such consolidation caused net settlement of the surface of the two wettest blocks subject to 

unidirectional freezing, until a developing macrocrack network led to net dilation and heave. 

The wider implications of this study to field studies of frost-susceptible bedrock are as follows: 

6. Continuous monitoring of bedrock permafrost heave and settlement with relatively inexpensive 

and robust displacement transducers may indicate the change from subsurface microcracking to 

macrocracking. This may be particularly useful in monitoring mountain rock walls that contain 

pre-existing microcracks between joints. 



7. Ice segregation and bedrock fracture are favoured in wet parts of the environment, such as 

depressions, river valleys, and coasts, as inferred previously by Matsuoka (2008). 

8. Fractured bedrock (regolith) formed by ice segregation in the upper layers of permafrost 

beneath natural hillslopes or artificial slopes is liable to heave and settle seasonally or 

episodically, gradually moving downslope by solifluction (frost creep and gelifluction) and/or 

creep of ice-rich permafrost. This may have contributed to the downslope deflection of 

brecciated slates and shales commonly observed in areas of past permafrost, such as southwest 

England (Murton and Ballantyne, 2016) and northwest France. 
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Tables 

 

Table 1. Freezing regime, water supply, mean volumetric unfrozen water content (θu) and per cent saturation  

during freezing and thawing periods 

Freezing 

regime 

Block Water supply θut (%)
b
 % sat.

 c
 θuf (%)

d
 % sat.

 c
 

 

 

Bidirectional 

(active layer 

above 

permafrost) 

B1 Water table at base during initial permafrost 

aggradation; thereafter surface sprinkling 

41±6 AL 

17±4  P 

86±11 AL 

34±9 P 

14±2 29±5 

B2 Surface
 a

 35±2 AL 

17±6  P 

72±5 AL 

35±12 P 

13±1 27±3 

B3 Surface
 a

 24±1 AL 

15±4 P 

49±2 AL 

31±9 P 

12±1 24±3 

B4 None 8±2 AL 

12±1 P 

18±4 AL 

25±2 P 

8±3 17±5 

 

Unidirection

al (seasonal 

frost) 

U1 Water table at base; water sprinkled onto surface 45±4 93±8 24±10 49±20 

U2 As above 43±4 90±8 20±5 42±10 

U3 Surface
 a

 32±4 66±8 16±2 32±4 

U4 Closed system (block sealed in polythene) 35±5 73±8 17±1 35±3 

U5 Surface
 a

 22±2 47±3 12±1 24±3 

U6 None 6±1 12±1 4±0 8±1 

a
 Water sprinkled onto top of block during thawing periods. 

b
 θut = Mean volumetric unfrozen water content (%) at end of thawing periods (determined for whole block in U1–

U6, and subdivided into active layer (AL) and permafrost (P) for B1–B4). n = 21 for B1–B4; n = 26 for U1–U6 

(missing data for thawing period 26). 

c
 % saturation = θut / water porosity measured under vacuum; or θuf / water porosity measured under vacuum. 

d
 θuf  = Mean volumetric unfrozen water content (%) at end of freezing periods (determined for whole block). n = 

17 for B1–B4 (missing data for freezing periods 11, 16, 18 and 19); n = 21 for U1–U6 (missing data for freezing 

periods 5, 13, 21, 22, and 26). 

‘±’ measurements given as mean value of standard deviation for each freezing period and thawing period. 

 

 

 

Table 2 Matrix of correlation coefficients (Pearson’s r) between ALT versus air temperature and water 

content 



  Max. air temp. Mean air temp. Vol. unfrozen water content in active layer 

at end of thawing cycles (θut) 

ALT B1 (wettest) 0.69
 a
 0.46

 c
 -0.51 

c
 

B2 0.66 
b
 0.44

 c
 0.44 

c
 

B3 0.73
 a
 0.64

 b
 0.43 

ns
 

B4 (driest) 0.87
 a
 0.72

 a
 0.64 

b
 

a p-value (two-tailed) < 0.000 

b p-value (two-tailed) < 0.00 

c p-value (two-tailed) < 0.05 

ns Not significant at 0.05 level 

 

  



Figures 

 

 

Fig. 1. Schematic diagram of freezing regimes, location of sensors and water contents for the 

bidirectional freezing experiment (A) and unidirectional freezing experiment (B). Values of mean 

volumetric water content are for the end of freezing periods (θuf) and the end of thawing periods (θut) (± 

mean value of standard deviation per cycle). Mean values of active-layer thickness (ALT) (± 1 std dev.) 

are for the bidirectional freezing experiment. ALT for thawing period 18 is approximate due to missing 

data. 

 



 

Fig. 2. Mean air temperature (± 1 std dev.) during the freezing and thawing periods of the bidirectional 

freezing experiment (A) and the unidirectional freezing experiment (B). Maximum air temperature 

during thawing periods and active-layer thickness (ALT) are also shown in (A). 



 

Fig. 3. Rock temperature and unfrozen volumetric water content time series between days 95 and 125 

with depth for the wettest blocks (B1 and U1), compared with temperature between days 137 and 167 

for the driest blocks (B4 and U6). Thick black lines in (A), (C), (D) and (F) indicate 0°C isotherm, and in (B) 

and (E) 25% water content. The upward attenuating spikes in (A) and (C) indicate upward cooling from 

the thermostatically controlled basal cooling plate. 



 

Fig. 4. Boxplots showing heave (positive values) and settlement (negative values) of the tops of blocks 

B1−B4 subjected to bidirectional freezing and blocks U1−U6 subjected to unidirectional freezing. ‘F’ 

above boxes (on left of each group of three boxes per block) indicates heave/settlement during freezing 

periods, ‘T’ above boxes (in middle) during thawing periods, and ‘N’ above boxes (on right) indicates net 

heave per cycle. Note extended scale on y-axis in middle of plot for the wettest blocks B1, U1 and U2. 

The boxes show the interquartile range, the horizontal line within the boxes is the median, and the 

whiskers extend to the highest and lowest values within 1.5 times the interquartile range. Outliers 

(crosses) are more than 1.5 times the interquartile range above the upper quartile or below the lower 

quartile. Vertical dashed line separates boxplots from the two experiments. 



 

Fig. 5. Time series of heave and temperature. (A) Heave and air temperature during 21 cycles of 

bidirectional freezing of blocks B1−B4. ‘1F’ to ‘20F’ indicate freezing periods 1 to 20, and '1T' to '19T' 

indicate thawing periods. (B) Detailed heave behaviour between thawing period 1 (‘1T’) and freezing 

period 6 (‘6F’). The temperature at 450 mm depth is the mean value at the base of the four blocks. (C) 

Heave and air temperature during 26 cycles of unidirectional freezing of blocks U1−U6. Numbers below 

air temperature graph indicate freezing periods. Dashed black lines indicates 0°C. Note different vertical 

scales of heave in A to C. 

 



 

Fig. 6. Heave and rock temperature of block B1 during pre-macrocracking (A), macrocracking (B) and (C) 

stages. Freezing periods are numbered ‘7F’ etc. and thawing periods are numbered ‘7T’ etc. Note 

different vertical scales of heave in A to C. 



 

Fig. 7. Heave and rock temperature of block B2 during pre-macrocrack (A) and macrocrack (B) stages. 

Freezing periods are numbered ‘2F’ etc. 



 

Fig. 8. Heave and rock temperature of block B3 during freezing period 18 (A), between thawing period 1 

and freezing period 6 (B), and between thawing period 18 and freezing period 22 (C). 



 

Fig. 9. Heave and rock temperature of block B4 during freezing period 18 (A), between thawing period 1 

and freezing period 6 (B), and between thawing period 18 and freezing period 22 (C). 



 

Fig. 10. Heave and rock temperature of blocks U1 (A), U2 (B) and U3 (C). Arrows on (A) and (B) mark the 

time when visible fractures where first observed in the blocks. 1, 2 and 3 on (A) and (B) indicate stages 

of heave, and 4, 5 and 6 indicate stages of settlement (see text). 



 

Fig. 11. Heave and rock temperature of blocks U4 (A), U5 (B) and U6 (C). 



 

Fig. 12. Developing macrocracks network in block B1 during the bidirectional freezing experiment. The 

same vertical face was photographed during (A) thawing period 10, (B) thawing period 19 and (C) 

freezing period 23. Depths in (A) and (C) refer to depths of capacitance sensor rods below top of block. 

Note the horizontal macrocrack in (C) at a depth of about 300 mm which formed between thawing 

period 19 and freezing period 23. The segregated ice in the macrocrack at about 250 mm depth in (C) is 

about twice as thick as that shown in the same crack in (B) and must have developed mainly during 

thawing periods 21 and 22 (see heave curve in Fig. 5A). Note difference in vertical and horizontal scales, 

especially between B and C. 



 

Fig. 13. Developing macrocrack network in block U2 during the unidirectional freezing experiment. The 

same vertical face was photographed during (A) thawing period 19, (B) thawing period 20, (C) thawing 

period 21 and (D) freezing period 27. Note occurrence of short vertical cracks linking horizontal to 

subhorizontal cracks in (D). Depths in (A) refer to depths of capacitance sensor rods below top of block. 

Note difference in vertical and horizontal scales, especially between C and D. 

 



 

Fig. 14. Final macrocrack networks formed in blocks B1 (A and B) and B2 (C and D) at the end of freezing 

period 23 of the bidirectional freezing experiment. The blocks are frozen and the cracks are filled with 

segregated ice. Scales in centimetres and millimetres. (A) and (B) show a vertical section that was sawn 

through the frozen block, and represents the crack network in the inner part of the block. (C) and (D) 

show a vertical section through one of the original outer faces of the block. 



 

Fig. 15. Final macrocrack networks formed in blocks U1 (A and B) and U2 (C and D) at the end of freezing 

period 27, unidirectional freezing experiment. The blocks are frozen and the cracks are filled with 

segregated ice. Scales in centimetres and millimetres. (A) to (D) show vertical sections through one of 

the original outer faces of the blocks. The vertical face shown in (C) and (D) is perpendicular to the face 

shown in Fig. 13. 
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Table S1 Heave and settlement of blocks B1 to B4 during freezing periods (‘Freeze’) and thawing periods 

(‘Thaw’) of the bidirectional freezing experiment 

 B1 Heave (mm) B2 Heave (mm) B3 Heave (mm) B4 Heave (mm) 

Cycle Freez

e 

Thaw Net a Freez

e 

Thaw Net Freez

e 

Thaw Net Freez

e 

Thaw Net 

1  0.12   0.11   0.23   0.15  

2 0.22 -0.27 -0.06 0.14 -0.18 -0.04 -0.14 0.06 -0.09 -0.10 -0.01 -0.11 

3 0.24 -0.20 0.04 0.21 -0.09 0.12 -0.09 0.17 0.08 0.01 0.07 0.08 

4 0.33 -0.43 -0.10 0.11 -0.21 -0.10 -0.13 0.09 -0.04 -0.04 0.01 -0.03 

5 0.50 -0.40 0.10 0.10 0.04 0.14 -0.06 0.13 0.07 0.00 0.03 0.03 

6 0.37 -0.40 -0.03 0.01 -0.04 -0.03 0.03 0.06 0.09 -0.01 0.10 0.08 

7 0.53 -0.44 0.09 0.10 -0.11 -0.01 -0.06 0.03 -0.03 -0.01 -0.03 -0.04 

8 0.40 -0.42 -0.02 0.04 0.01 0.06 -0.03 0.13 0.10 0.01 0.01 0.03 

9 0.37 -0.26 0.12 0.16 -0.07 0.09 -0.10 0.13 0.03 0.06 -0.03 0.03 

10 0.36 4.60 4.96 -0.07 0.16 0.09 -0.13 0.25 0.12 0.00 0.13 0.13 

11 0.42 0.26 0.67 -0.10 0.06 -0.04 -0.19 0.06 -0.13 -0.04 -0.04 -0.08 

12 0.69 0.26 0.95 -0.07 0.14 0.07 -0.07 0.14 0.07 -0.01 0.06 0.04 

13 0.23 -1.66 -1.43 -0.10 -0.02 -0.11 -0.13 0.07 -0.06 -0.01 -0.03 -0.04 

14 0.86 2.68 3.54 0.06 0.14 0.20 -0.07 0.14 0.07 0.03 0.04 0.07 

15 0.22 -0.11 0.10 -0.11 0.11 0.00 -0.14 0.10 -0.04 -0.04 0.01 -0.03 

16 0.33 0.29 0.62 -0.06 0.03 -0.03 -0.04 0.07 0.03 0.03 -0.04 -0.01 

17 0.37 0.30 0.67 -0.11 0.14 0.03 -0.10 0.10 0.00 0.03 0.03 0.06 

18 0.12 -8.54 -8.43 -0.03 -0.04 -0.07 -0.06 0.03 -0.03 0.01 -0.01 0.00 

19 0.60 0.32 0.92 -0.02 0.02 0.00 -0.09 -0.04 -0.13 0.06 -0.07 -0.01 

20 0.86 0.27 1.13 -0.04 0.07 0.03 -0.07 0.10 0.03 0.03 0.00 0.03 

21 0.53 6.19 6.72 -0.13 2.13 2.01 -0.13 0.21 0.09 0.00 0.08 0.08 

22 0.57   -0.01   -0.02   -0.01   

Mean 0.43 0.10 0.53 0.00 0.11 0.12 -0.09 0.11 0.01 0.00 0.02 0.01 

SD 0.20 2.68 2.85 0.10 0.47 0.45 0.05 0.07 0.08 0.04 0.06 0.06 

Min. 0.12 -8.54 -8.43 -0.13 -0.21 -0.11 -0.19 -0.04 -0.13 -0.10 -0.07 -0.11 

Max. 0.86 6.19 6.72 0.21 2.13 2.01 0.03 0.25 0.12 0.06 0.15 0.13 

Range 0.75 14.73 15.15 0.34 2.35 2.12 0.21 0.29 0.25 0.15 0.22 0.24 

Total net heaveb 10.56 2.39 0.23 0.30 

Total vertical strain (%)c 2.35 0.53 0.05 0.07 
a Net heave = freezing period heave minus thawing period heave; determined where values of heave 

during both freezing period and thawing period of a freeze-thaw cycle are available. 
b Overall change in elevation of top of unfrozen block measured during successive cycles of net heave. 

Note that heave was not measured during freezing period 1. 
c Represents total vertical strain of block in unfrozen condition over the course of the experiment, 

except for freezing period 1 and thawing period 22, for which no data were recorded. 
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Table S2 Heave and settlement of blocks U1 to U6 during freezing periods (‘Freeze’) and thawing periods (‘Thaw’) of the unidirectional freezing experiment 1 

 U1 Heave (mm) U2 Heave (mm) U3 Heave (mm) U4 Heave (mm) U5 Heave (mm) U6 Heave (mm) 

Cycle Freez

e 

Thaw Net a Freez

e 

Thaw Net Freez

e 

Thaw Net Freez

e 

Thaw Net Freeze Thaw Net Freeze Thaw Net 

1 1.59 -1.54 0.05 1.84 -1.84 0.00 -0.06 0.09 0.03 0.00 0.00 0.00 -0.17 0.14 -0.03 -0.09 0.00 -0.09 

2 1.45 -1.53 -0.08 1.90 -1.95 -0.06 -0.42 0.23 -0.19 -0.14 -0.09 -0.23 -0.25 0.29 0.03 -0.10 -0.03 -0.14 

3 1.25 -1.22 0.03 1.39 -1.45 -0.06 -0.15 0.23 0.08 0.04 0.10 0.14 -0.25 0.30 0.05 0.00 0.14 0.14 

4 1.24 -1.33 -0.09 1.70 -1.72 -0.02 -0.17 0.12 -0.06 0.04 -0.12 -0.08 -0.25 0.15 -0.10 -0.16 0.06 -0.10 

5 1.24 -1.37 -0.14 1.45 -1.59 -0.14 -0.17 0.09 -0.08 0.08 -0.16 -0.08 -0.15 0.15 0.00 -0.11 0.14 0.02 

6 1.14 -1.16 -0.02 1.36 -1.55 -0.19 -0.09 0.12 0.02 0.26 -0.17 0.08 -0.12 0.17 0.06 -0.06 0.14 0.08 

7 1.08 -1.17 -0.09 1.26 -1.23 0.02 -0.06 0.09 0.03 0.17 -0.20 -0.02 -0.25 0.20 -0.06 -0.22 0.22 0.00 

8 0.83 -0.95 -0.11 1.14 -1.28 -0.14 -0.11 0.16 0.05 0.22 0.04 0.26 -0.12 0.20 0.08 -0.16 0.20 0.04 

9 1.04 -0.98 0.06 1.31 -1.43 -0.11 -0.10 0.06 -0.05 -0.15 -0.02 -0.18 -0.25 0.28 0.02 -0.17 0.20 0.02 

10 1.00 -1.06 -0.06 1.37 -1.23 0.14 -0.03 0.11 0.08 0.00 0.14 0.14 -0.22 0.31 0.09 -0.22 0.33 0.11 

11 0.95 -1.03 -0.08 1.20 -1.28 -0.08 -0.11 0.00 -0.11 0.08 -0.08 0.00 -0.35 0.29 -0.06 -0.17 0.09 -0.08 

12 1.08 -1.22 -0.14 1.53 -1.59 -0.06 0.00 0.00 0.00 0.06 0.00 0.06 -0.17 0.20 0.02 -0.03 0.11 0.08 

13 0.78 b -0.72 0.06 0.95 b -1.00 -0.06 0.00 b -0.02 -0.02 -0.02 b -0.18 -0.20 -0.20 b 0.20 0.00 -0.08 b 0.02 -0.06 

14 0.97 -0.97 0.00 1.20 -1.26 -0.06 -0.04 -0.08 -0.12 0.12 0.00 0.12 -0.16 0.14 -0.02 -0.08 0.14 0.06 

15 0.83 -0.87 -0.03 1.18 -1.14 0.03 0.12 -0.04 0.08 0.02 0.04 0.06 -0.20 0.20 0.00 -0.11 0.11 0.00 

16 0.92 -0.87 0.06 1.16 -1.20 -0.03 0.04 -0.04 0.00 0.08 -0.08 0.00 -0.14 0.20 0.06 -0.08 0.06 -0.02 

17 0.81 -0.83 -0.02 1.35 -1.26 0.09 -0.08 0.14 0.06 0.05 -0.08 -0.04 -0.23 0.23 0.00 -0.03 0.06 0.02 

18 0.91 -0.89 0.02 1.36 -1.39 -0.03 -0.12 0.09 -0.02 -0.02 0.08 0.06 -0.17 0.06 -0.12 -0.06 0.08 0.02 

19 1.14 -1.03 0.11 1.64 -1.45 0.19 -0.09 0.09 0.00 0.02 -0.02 0.00 -0.12 0.14 0.02 -0.14 0.09 -0.05 

20 -0.06 b -0.06 -0.11 0.09 b 0.02 0.11 -0.12 b 0.17 0.06 -0.12 b 0.14 0.02 -0.02 b 0.02 0.00 0.02 b 0.12 0.14 

21 1.33 -1.24 0.09 1.93 -1.79 0.14 -0.11 0.08 -0.03 -0.05 0.05 0.00 -0.16 0.16 0.00 -0.17 0.06 -0.12 

22 1.22 -1.12 0.10 1.87 -1.72 0.15 -0.12 0.23 0.11 -0.02 0.08 0.06 -0.16 0.28 0.12 -0.11 0.17 0.06 

23 1.48 -1.43 0.06 2.19 -2.03 0.16 -0.23 0.23 0.00 -0.06 -0.02 -0.08 -0.22 0.25 0.04 -0.17 0.14 -0.04 

24 1.51 -1.33 0.17 2.65 -2.42 0.23 -0.11 0.08 -0.03 0.00 0.12 0.12 -0.35 0.35 0.00 -0.16 0.16 0.00 

25 1.53 -1.47 0.06 2.56 -2.15 0.41 -0.14 0.17 0.03 -0.09 0.00 -0.09 -0.25 0.16 -0.09 -0.14 0.17 0.04 

26 1.14 -1.06 0.08 1.90 -1.80 0.09 -0.17 0.12 -0.06 0.09 -0.09 0.00 -0.02 0.06 0.03 -0.25 0.28 0.02 

27 2.18   2.53   -0.20   -0.11   -0.25   -0.25   

Mean 1.13 -1.09 0.00 1.56 -1.49 0.03 -0.11 0.10 -0.01 0.02 -0.02 0.00 -0.19 0.20 0.01 -0.12 0.12 0.01 

SD 0.39 0.31 0.09 0.55 0.46 0.14 0.10 0.09 0.07 0.10 0.10 0.11 0.08 0.08 0.06 0.07 0.08 0.07 

Min. -0.06 -1.54 -0.14 0.09 -2.42 -0.19 -0.42 -0.08 -0.19 -0.15 -0.20 -0.23 -0.35 0.02 -0.12 -0.25 -0.03 -0.14 

Max. 2.18 -0.06 0.17 2.65 0.02 0.41 0.12 0.23 0.11 0.26 0.14 0.26 -0.02 0.35 0.12 0.02 0.33 0.14 

Range 2.23 1.48 0.31 2.56 2.44 0.61 0.54 0.31 0.31 0.41 0.34 0.49 0.32 0.32 0.23 0.28 0.37 0.28 

Total net heavec -0.03 0.73 -0.14 0.11 0.14 0.16 

Total vertical strain (%)d -0.01 0.16 -0.03 0.02 0.03 0.04 
a Net heave = freezing period heave minus thawing period heave; determined where values of heave during both freezing period and thawing period of a freeze-2 

thaw cycle are available. 3 
b Approximate value because some data are missing. 4 
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c Overall change in elevation of top of unfrozen block measured during successive cycles of net heave. 5 
d Represents total vertical strain of block in unfrozen condition over the course of the experiment, except for thawing period 27, for which n o data were recorded. 6 

 7 

 8 


