Y04C Microfluidic Yeast Plate: 4-5 um

Description: The Y04C plate contains 4 independent chambers, each with 6 upstream inlet channels. Each chamber has microfluidic trap regions of 4.0, 4.5, and 5.0 micron in height to hold cells in a single focal plane during long term, high magnification, perfusion imaging.

Applications:
- Time-lapsed, high magnification imaging of yeast cells (4-6 um diameter)
- Long term continuous perfusion experiments (3 days typical, up to 14+ days)
- Solution exchange experiments (induction, inhibition, drug dosing, etc.)
- Comparing up to 4 different cell types or exposure conditions in parallel
- Cell division tracking (follow mother/daughter cells over generations)
- Temperature and gas atmosphere control (temperature shift, anoxic, etc.)

Product Specifications:
- Use with ONIX-262 system and F08 manifold
- SBS standard footprint frame (fits to typical 96 well stage holders)
- #1.5 thickness (170 um) glass slide bottom (in contact with cells)
- Three trap heights per chamber (4.0, 4.5, 5.0 micron)
- Laminar flow rates of 1-100 ul/hr (typical chamber refresh times of 10-60 seconds)
- Microfluidic gas exchange channels

Plate Design:

The Y04C has 4 independent units (A-D), each with 6 inlet wells (1-6), a cell inlet (8), and a large outlet well (7). All four culture chambers are located under a single imaging window.

The 4 culture chambers are located under a large imaging window for high magnification phase objectives and to minimize travel distance. All channels are resistance matched for uniformity.

The F08 manifold has 8 pressure channels (V1-V8) to control flow rates through the microfluidics. A vacuum line is used to seal the plate to the manifold, and a gas line enables atmosphere control.

The culture chamber is 3.0 x 3.0 mm in area with heights of 4.0, 4.5, and 5.0 micron. Nine position markers indicate unit number and relative position.
Cell Trapping Mechanism

- Elastic Ceiling
- Pressure driven cell loading
- Physical trap of cells
- Bare glass slide
- CellASIC Chamber

The microfabricated chamber gently holds cells against the glass imaging surface to maintain a single focal plane during perfusion imaging experiments. The Y04C has 3 trap heights of 4.0, 4.5, and 5.0 micron.

Imaging Quality

The Y04C plate is designed for optimal image quality for high end microscopes.
- The cells are held against a #1.5 thickness (170 um) glass coverslide floor, making the plate compatible with immersion and high NA objectives
- The large imaging window allows light to pass freely for optimal phase contrast quality
- The four microchambers are located within a 1.5 cm area, minimizing stage travel and focus drift

Images courtesy the Lim Lab, UCSF, and the Forsburg Lab, USC

Solution Switching

Our advanced perfusion control enables experiments not possible with existing instrumentation.
- Six switchable inlet wells for each chamber
- Highly laminar flow provides uniform exposure profiles and sharp transition boundaries
- Low shear ensures minimal stress on cells
- Rapid solution exchange rates and <10 nL dead volume for fine time resolution experiments
- Perfusion rates of ul/hr allow continuous multi-day experiments on your microscope

Solution exchange profile between a fluorescent dye and buffer solution in a 0.6x0.8 mm field of view (10X objective).

Long Term Culture

The innovative microfluidic plate is designed for long term cell happiness.
- Continuous perfusion ensures fresh medium and waste removal, even at confluent cell densities
- Small chamber areas allow uniform temperature control using only an objective heater
- The sealed manifold and microfabricated air diffusion channels allow user control of the gas atmosphere in equilibrium with imaged cells

Images courtesy the Maheshri Lab, MIT

Fluorescently tagged yeast cells tracked over a few cell division cycles in the CellASIC chamber.
Operation Instructions

1. The Y04C microfluidic plate contains 4 parallel chambers, each with 6 solution inlets (Figure 1). Each row of wells (A-D) addresses the corresponding chamber. The plate is shipped pre-primed with sterile dl water containing penicillin/streptomycin, which can be replaced with a buffer of choice prior to experiment. Plate performance guaranteed up to the 6 month expiration date.

2. Fill the six sets of flow wells (col 1-6) with up to 300 µl of solution. If less than 4 units will be used, fill the unused inlet wells with buffer. Empty the outlet well (col 7).

3. Fill the cell inlet wells (col 8) with 50 µl of cell suspension, making sure to cover the hole at the bottom of the well. A density of 1-20 •10^6 cells/ml is recommended depending on desired trapping density.

4. Seal the microfluidic plate to the F08 manifold: Clean the manifold gasket with 70% ethanol and blot dry. Place the microfluidic plate on a flat surface. Align and set the manifold over the wells of the plate. Turn on the vacuum switch on the ONIX box and push down on the manifold with slight force for ~5 seconds to ensure uniform contact during sealing. When a proper seal is formed, the green “sealed” light will be lit. Make sure a proper seal is formed before proceeding. Leave the vacuum on during the course of the experiment. (If the seal is unsuccessful, turn off the vacuum switch and wait for the blue “ready” light to turn back on. Repeat step 4 above. If a seal cannot be formed, please contact CellASIC.)

5. Place assembly on an inverted microscope (Figure 2). Focus on the center of the imaging area. The trapping region is 3x3mm in size with 4.0, 4.5, and 5.0 micron ceiling heights in series as depicted in Figure 1. Nine location markers indicate the chamber number and location.

6. Open the ONIX FG software on a computer attached to the USB line from the control box. Select the “Y4” tab from the front page. If you do not see the tab, make sure you have an updated version of the software (www.cellasic.com/Products-downloads) or contact CellASIC.

7. On the control window (see figure 6), set “Cell Load” parameters to 8 psi and 5 seconds. Click the “Load Cells” button. Depending on your cell type/strain and desired cell density, modify and repeat the loading process as necessary.

8. Wash un-trapped cells by flowing one or more inlet solutions at 5psi for 5 minutes. This will also serve to prime the specified inlet channel by flushing out the shipping solution. Cells remaining in the trap regions are now firmly held in x,y,z for imaging.

9. Flow properties are given in Figures 3 and 4. Figure 3 shows the total flow rate out of each inlet well at the specified pressures. The flow velocity is of the laminar front moving through the chamber, or the local switch rate for cells in the chamber. Figure 4 gives the time for the laminar front to move through the entire chamber.
Operation Instructions (cont.)

10. Use the tabs on the right side of the software control window to set up your experiment. Manual operation is possible by clicking on the valve buttons and dragging or typing in values on the flow bars on the left of the software control window.

11. For custom tuning of flow scheduling, use the “Protocol” tab to enter text based commands. The commands are given in Figure 6.

12. Click “Run” to run the perfusion program.

Software Operation

Text Commands:
- `setflow X n` where n = 0.25-10 (psi) ; sets flow rate on X (orange)
- `setflow Y n` where n = 0.25-10 (psi) ; sets flow rate on Y (blue)
- `open V1` ; V1, V2, ..., V8, all ; opens pneumatic valve
- `close V1` ; V1, V2, ..., V8, all ; closes pneumatic valve
- `wait n` ; n is minutes ; holds current condition until next step
- `end` ; ends the program ; shuts off all valves and resets regulators
- `%` ; Put at the beginning of line for comments