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Abstract 

A transition to a low-carbon economy requires moving to the production of goods that are less 
energy- and material-intensive than current practices. This may prove difficult, as producer 
objectives may not align with reducing pollution, unless this is a consumer priority, or is imposed 
by regulations. It has been argued that changing lifestyles and consumer preferences can drive 
technological change towards sustainability. In this paper we use the model by Windrum et al. 
(2009b) to show that the interactions between the populations of consumers, producers and 
technologies, when product components are interdependent, generate complexity, as a result of 
which changing consumer preferences may be insufficient to achieve sustainability objectives. 
Complexity may influence negatively the rate and direction of innovations towards the production 
of greener goods, causing a vicious cycle. Firms tend to remain stuck in local optima of the existing 
technological landscape, if most consumers are satisfied with the non-green characteristics of 
goods. As a result, firms are less likely to explore innovation possibilities to improve environmental 
performance of their products, which in turn reduces consumer expectations with respect to the 
environmental quality of future goods. As pro-environment consumers also imitate the higher 
preferences for non-green characteristics, firms have even higher incentives to improve those 
characteristics in the current technological paradigm than to explore new greener paradigms. The 
toy model proposed in this paper can be applied to study diffusion of ‘green’ products in a number 
of industries and to study environmental policies that can reduce complexity. The paper also offers 
a selected review of micro and industry level models of sustainable transitions. 
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1. Introduction 

Agent-based models (ABM) have been recently suggested as a promising way of modelling 
climate change impacts, because they can accommodate the multiple and complex ways in 
which the economy and the environment interact (Farmer et al., 2015; Stern, 2016; Balint et 
al., 2017; Ciarli and Savona, 2019). Modelling disaggregated interactions between 
heterogeneous agents, structural change and innovations goes beyond the simplification of 
the Integrated Assessment Models (IAMs) that dominate in the climate policy assessment. 
IAMs have been criticized for adopting unrealistic assumptions (Pindyck, 2013; Stern, 2013; 
Lamperti et al., 2018). They rely on the constructs of equilibrium and representative agents. 
In such models, firms employ energy in production, which is a source of carbon dioxide 
emissions that accumulates in the atmosphere, reducing the productivity of output. On the 
demand side, a rational representative consumer decides each period on the allocation of 
income between savings and consumption. Savings are invested in capital accumulation, 
which then drives economic growth. The entire complexity of human decision-making on the 
supply and demand side is captured in the IAM by a single parameter: a discount rate. 
In this paper, we argue that these models cannot deal with a changing structure of the 
economy in the context of low-carbon transitions. They underplay the role of interactions 
between consumers and producers and technological complexity in the process. To guide the 
economy towards sustainability, we need to understand how interactions between consumers 
and producers shape the direction in which firms innovate, and how boundedly-rational 
consumers choose between different products that differ with respect to their environmental 
impacts. In this paper we thus offer a toy agent based model to analyze these processes. 
Our approach is motivated by the fact that transitions to a low carbon economy require a 
change in lifestyles and preferences of consumers to stimulate wider adoption of goods, which 
production and/or use are less energy- and material-intensive. This may happen because of 
consumers’ inherent pro-environmental preferences or because they find ‘green’ goods more 
attractive, i.e. better and cheaper. Either way, consumers must have some motivation to 
purchase such goods. Their consumption choice, in turn, will influence firm behavior. This may 
induce firms to try to reduce the environmental impact of their goods and services, for 
instance by improving energy efficiency of their production techniques or by adopting less-
polluting energy technologies. However, due to several interactions between consumers, 
producers and the technology, the process leading to a transition is not as simple as nudging 
consumers to buy energy-efficient appliances. 
Interactions between consumers, producers, and the components of a technology play an 
important role in the process. Such interactions may lead to increasing returns such as 
economies of scale or learning by doing that can lock in a system to a single technology (Arthur, 
1989; Cowan and Gunby, 1996). Once a technology becomes dominant, its consecutive 
adoptions enhance its leading position. Once this happens, it is difficult to change the direction 
of technologies progress (Scoones et al., 2007; Johnstone and Stirling, 2015). This can be best 
illustrated with the lock-in to fossil fuel technologies, and difficulties in promoting diffusion of 
renewable energy. In this context, a transformation of the dominant technological regime 
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requires not only investments in R&D, or subsidies for new technologies, but also facilitating 
access to knowledge, technological possibilities and opportunities, or interactions among 
companies, scientists and engineers (Grin et al., 2010; van den Bergh et al., 2011). 
On the supply side, technological progress is not straightforward. Innovations are inherently 
uncertain. For simple technologies, which can be decomposed into parts, each working 
independently from the other, the problem of improving the technological performance is 
relatively simple: it suffices to improve each component (Simon, 2002; Kauffman and Levin, 
1987; Frenken et al., 1999). However, many products are complex, they are built of many 
interdependent components or sub-technologies. In this case, the functioning of one 
component depends on performance of other components. As a result, changing any 
component on its own influences the way in which all other components work and contribute 
to the technological performance. This is in particular problematic in the context of 
sustainability, when firms attempt to reduce environmental impact of a single component. For 
integrated products, even when the environmental impact of one component is reduced, its 
interactions with the other components of the technology may increase the overall 
environmental impact of the product. For example, using a less polluting fuel for a car, may 
require changes in the car’s engine and the exhaustion pipe; otherwise the fuel may be more 
polluting than its predecessor. 
Addressing the environmental impact of a good made of several integrated component may 
be harder when each is produced by a different company, which controls only part of the 
production process (Langlois, 2002; Ciarli et al., 2008). Each company may not be fully aware 
of the changes implemented in other components, how they integrate in the final good, and 
what are the consequences in terms of environmental impact. 
On the demand side, the impact of technological choice is also uncertain. The rebound effect 
(Steve Sorrell, 2007; Barker et al., 2009; Stapleton et al., 2015) provides an example to 
illustrate how difficult it is to assess an environmental impact of consumers’ choice. The use 
of less polluting (and energy intensive) goods may induce consumers to increase their use, 
with an overall increase in emissions. There is also high uncertainty about externalities and 
unforeseen effects. For example, the car was initially welcomed as a ‘clean’ option with 
respect to polluting horses (Windrum et al., 2009a). This could have been the case when only 
few consumers could afford and use low-energy cars. But as we know, cars became a major 
source of pollution when they diffused massively and their engine became more powerful and 
energy intensive (unforeseen at the time of the transition from horse to car).  
As a result of the interactions between complex technologies and consumers behavior, the 
direction of technological change comes with advantages and disadvantages for 
environmental sustainability that are difficult to assess a priori (Leach et al., 2007). Advantages 
and disadvantages of innovations are difficult to assess a priori because of the full range of 
behavioral and technological effects that they may have. This difficulty can affect the behavior 
of consumers, influencing their preferences and incentives. Different consumers may form 
expectations about future innovation pathways, which influence their preferences and may 
affect firms strategies. 
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Let us illustrate such uncertainty with an example. As simple as it may seem, it is not obvious 
to compare the environmental impact of washing dishes by hand or using a dishwasher. A 
Google search of ‘dishwasher vs hand washing environmental’ returns millions perspectives 
and answers. This is because such comparison requires a life cycle analysis of all components 
used in hand and machine washing, i.e studying where the metal comes from, how it is 
assembled, or how the detergent is produced, as well as an assessment of how consumers 
employ each component and how each of them impacts on the environment. On top of this, 
small behavioral changes can influence producer choice and changes in technical features (e.g. 
energy efficiency and cost), which in turn influence consumer behavior; and so on. 
Such technological and behavioral complexities have been largely ignored in climate policy 
discussions. They can be studied with evolutionary-economic models that employ an agent-
based modelling (ABM) approach. Following the ABM approach, macroeconomic outcomes 
emerge from interactions between large numbers of distinct agents in distinct networks 
(Tesfatsion, 2006). In ABM, agents are modelled as independent entities having their 
individual objectives, preferences, knowledge, who perceive and adapt to changes in the 
environment. They are often described by rules that can accommodate a variety of boundedly 
rational behaviors, but also include rational behavior and utility maximization. The 
interactions between agents and the feedbacks from aggregate emerging outcomes, are the 
sources of nonlinear dynamics and of further emergent phenomena. Evolutionary ABM have 
proved capable of explaining a number of stylized facts, which traditional economic 
approaches rule out as ‘out-of-equilibrium’ properties such as the cascades of bankruptcies of 
firms and banks or business cycles. Such models have been widely adopted in modelling 
industrial dynamics and technological change (Malerba and Orsenigo, 1997; Janssen and Jager, 
2002; Oltra and Saint Jean, 2009; Windrum et al., 2009b,a; Safarzynska and van den Bergh, 
2010), economic growth (Dosi et al. (2010); Cincotti et al. (2010); Ciarli et al. (2018)), or the 
cascades of bankruptcies in financial markets (Tedeschi et al., 2012; Thurner and Poledna, 
2013). 
Over the last two decades, evolutionary ABM have achieved an increasing attention in 
modeling different aspects of sustainability transitions. For instance, the co-evolutionary 
models discussed in Section 2, have offered important insights on how to unlock the market, 
where evolving consumers preferences affect the direction towards which firms innovate. 
More recently, authors have combined evolutionary models with energy markets and/or 
climate modules (e.g. Gerst et al., 2013; Wolf et al., 2013; Ponta et al., 2018; Lamperti et al., 
2018) to study interactions of different sub-systems in the economy and how they can 
generate a systemic risk, or can amplify damages from climate change. 
In this paper we focus on, and extend, a toy-model by Windrum et al. (2009a) that explains 
how the interactions between consumers, between firms, between consumers and firms, and 
between technological components may influence the environmental impact of consumption 
and related production (Section 3). Before presenting and discussing the model, Section 2 
provides a brief overview of the evolutionary-economic literature relevant to deepen our 
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knowledge about sustainability transition. Section 4 concludes and proposes extension to the 
toy model. 
 

2. A Selected Literature Review 

Evolutionary-economic models can provide important insights to modelling sustainability 
transitions (Ciarli and Savona, 2019; see Safarzynska et al. (2012) for a review of policy 
oriented evolutionary-economic models; and Balint et al. (2017),  Lamperti et al (2019) and 
Hafner et al. (2020) for overviews of evolutionary ABM). In this section, we discuss how 
technological change, evolving preferences and consumer-producer interactions (co-
evolution) are modelled in evolutionary-economic theories, and discuss their relevance to 
understand sustainability transitions. 
Industry dynamics models explain economic and organizational change as a result of 
evolutionary forces acting on the population of firms: innovations introducing new varieties 
to the population and selection causing differential growth of firms. In such models, 
heterogeneous firms actively search technological landscapes for better solutions or to imitate 
frontier technologies (Nelson and Winter 1982). New technologies and products can emerge 
at any time. Most early industry models depict products (technologies) as defined over one or 
two dimensions such as quality and cost. However, transitions to sustainability generally 
involve changes in large technological systems or complex technologies embodying many 
technical components, where different sub-technologies co-evolve. This creates a challenge 
as changes in one sub-technology, for instance improving the technical characteristic of a 
single component, may negatively affect the functioning of other components, reducing the 
overall performance of the technology. Examples of non-modular technologies are numerous: 
cars, aircrafts, or computers combine different technological solutions in a single product. A 
particularly well known way to represent interdependencies between sub-technologies is to 
use the NK-model originally developed in the context of biological evolution (Kauffman and 
Johnsen, 1991; Kauffman, 1993). It has been shown that as the complexity of technologies 
increases, as a function of the interdependence between its components, it becomes more 
difficult to find an element to be improved (Kauffman, 1993; Auerswald et al., 2000). 
Optimizing the performance of non-modular technologies is inherently difficult because the 
‘fitness landscape’ consists of many local optima. Building on the concept of fitness landscapes 
underlying the NK-model, Alkemade et al. (2009) study transitions pathways as a series of 
changes in sub-technologies leading to a transition from a current system to a new (locally 
optimal) system. The authors show that due to the path dependent and irreversible nature of 
innovation in complex technologies, an initial transition step along some preferred path may 
cut off paths that later may turn out to be more desirable. The authors apply the model to 
study the possible transition paths in the mobility sector, by comparing the relative 
performance of potential future car systems as a result of incremental innovations in car 
characteristics. 
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The important insights from this line of research is that maintaining diversity of technologies 
options is important to prevent lock-in to a single technology that initially looks promising, but 
overtime may turn sub-optimal. 
Diversifying investments in technological options allows also for combining existing 
technologies and ideas, which is widely recognized as an important source of innovation (Tsur 
and Zemel, 2007; Weitzman, 1998). Here, experimenting with variations of existing 
technologies may contribute to knowledge creation. However, maintaining the diversity of 
options is generally expensive for a single firm, and at the same time the benefits from each 
innovation are uncertain (Safarzynska and van den Bergh, 2010, 2013). 
Zeppini and van den Bergh (2011) focus on the trajectory of technologies as an outcome of 
firm innovation. They extend Arthur (1989) lock-in model introducing the possibility of 
innovating by recombining technologies from different trajectories. The two competing 
technologies are green and brown, which are substitutes. The authors show that the 
recombination of the technologies may offer hybrid technological pathways, with lower 
environmental impact than that of incumbent technologies. 
Most evolutionary models of industrial dynamics reduce the consumer side to a static 
selection environment, while assuming that the processes of innovation, creation, and 
selection are independent. Theories of ‘technological push’ emphasizes the role of market 
forces in the process of change. They rely on the one-way causal determination from science 
to technology and production, largely ignoring the role of economic factors in the process of 
change (Dosi, 1982). In turn, theories of ‘demand-pull’ assume that the market is capable of 
signaling consumer needs through the relative movements in prices and quantities and 
consequently of pulling the innovative activities of producers in a particular direction of 
search. Both approaches are criticized for offering a partial explanation of market dynamics 
and technological change. Many successful innovations, which seem to be unrelated to user 
needs (e.g. innovation emanating from blue-sky research), stem from user-producer 
interactions (Mowery and Rosenberg, 1979). 
A number of evolutionary models have been proposed to study technological change as a 
result of the co-evolution of technologies on the supply side and of consumer preferences on 
the demand side. In models of demand-supply co-evolution, the substitution of an incumbent 
by a new technology relies on the pace of technological change and evolving consumer 
preferences. For instance, Windrum and Birchenhall (1998) propose a formal model of 
demand-supply coevolution to examine determinants of technological succession. In their 
framework, firms offer products to satisfy clients in consumer classes, to which they are 
randomly assigned. In addition, firms engage in product innovation to attract new consumers. 
Consumers move between consumer classes depending on the relative attractiveness of 
products offered by incumbent firms. They imitate the consumption choices of their peers, if 
this can help them achieve a higher utility. Evolving preferences determine which firms are 
successful, and thus the direction of product innovations.  
Building upon this line of research, Safarzynska and van den Bergh (2010) propose a co-
evolutionary model that conceptualizes five different mechanisms of increasing returns, which 
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can prevent diffusion of new products. On the demand side, imitation is an important 
mechanism that, by exploiting information already acquired by others, allows saving on costs 
of individual learning, experimentation, or searching. Following others’ choices may be the 
source of additional advantages, such as the creation of a network of users. In addition, 
advertising contributes to informational increasing returns: the better the product is known, 
the more individuals are willing to buy it, and the higher is the probability of creating a network 
of users. On the supply side, the product quality improves as firms increase their competence 
through production and market experience, referred to as learning-by-doing, and learning-by-
using. Intuitively, the more a particular product is adopted, the more resources (R&D budget) 
are available for the product development and its quality improvement. Typically, incumbent 
firms have more resources to invest in promotion, which improves their market advantage. 
Finally, economies of scale cause the average cost of production to fall with the number of 
units produced. The model has been used to study a number of policy instruments aimed at 
escaping lock-in to a single technology. The analysis reveals that the effectiveness of such 
policies depends on the structure of network interactions between boundedly rational 
consumer as well as the strength of different types of increasing returns. The authors suggest 
how knowledge about feedback loops can be used to design policies to prevent the dominance 
of a single technology. 
The key insights from the discussed literature for sustainability transitions are: creating a 
network of users of environmental innovations is crucial to promote their diffusion; 
investments in diverse technological options can prevent lock-in to technologies based on 
fossil-fuels and lead to the emergence of recombinant innovation with possibly improved 
environmental impacts compared to incumbent technologies. However, as we will show 
below, the complexity that emerges from the interaction between consumers, producers and 
technological component, may require a stronger intervention in directing technological 
change. 
Other policies which can help prevent dominance of a less sustainable alternative have been 
identified in the evolutionary-economic literature as: labelling of environmental products; 
informing consumers about environmental performance of the products, or sharing 
ownership of products. For instance, Bleda and Valente (2009) show that environmental labels 
reduce uncertainty and drive production towards more sustainable goods. Buenstorf and 
Cordes (2008) argue that because green technologies are not necessarily better than brown 
technologies in terms of performance, promoting environmental values is more relevant for 
the diffusion of green goods than learning about the environmental impact of one product. 
Pasimeni and Ciarli (2018) show that where adoption of an environmental product is too 
expensive for a single consumer, creating coalitions of consumers who co-own the product 
may reduce production and material use in the economy.  

3. A Toy Model 

In this section we describe a model, first published in Windrum et al. (2009b), which helps to 
conceptualize the relevance of the interactions between consumers, producers and 
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technology components, for the emergence of less polluting products. In Section 3.8 we 
extend the model to capture the uncertainty rooted in the technological change towards more 
sustainable goods. We add the interaction between several components of a technology, 
which makes the exploration of technological landscape complex, reducing the relevance of 
the expectations on future technological trajectories for consumer choice. The uncertainty for 
both producers and consumers increases with the complexity of the technology, as firms 
discover information about the technology while exploring it. Such uncertainty may not allow 
to fully exploit the technology green potential, if firms randomly start on a search path that 
leads to local optima, where the global optimum is the most sustainable technology in a given 
technological paradigm. The more complex and newer is the technology, the higher the 
chance for a firm to follow a suboptimal research strategy and lock-in in local optima; and the 
higher the chance for consumer to lower their expectations about the green potential of the 
new technology. 
We use this model as it captures several features that apply to the co-dynamics between 
consumers and producers that are crucial to understand how firms improve the environmental 
impact of their goods, and the process of their adoption. Innovation in this model is the 
outcome of a co-learning process between producers and consumers. The model is also quite 
flexible: it can be easily extended to capture more sophisticated firm and consumer behavior, 
to add more sectors, such as finance or energy, and to include a macroeconomic account. 
The model features two types of interacting agents: firms and final consumers. Firms produce 
a good with a vector of product characteristics that define its use properties (Lancaster, 
1966a), a price and an environmental impact (from consuming it). Firms target a given 
consumer class, endowed with given preferences. Firms can improve the feature of the goods 
that they produce through innovation, which may affect its cost (therefore price), quality (the 
vector of characteristics), or the environmental impact of consuming it. Environmental impact 
in the model is a property of the good, which depends on its ‘environmental fitness’, rather 
than a property of the production process (as more commonly analyzed in the literature). 
Because pollution depends on the goods purchased, consumers are concerned about the 
pollution externality of using a given good, rather than about the technology to produce it. 
This is like assuming that the environmental impact of a good depends both on its production 
and use. Firms may face a trade-off between increasing the quality of the good (or some of 
the characteristics that define it), reducing the price (negatively related to quality) and 
decrease its environmental impact, i.e. pollution (related to quality in a way unknown to firms 
and consumers). For example, firms may increase a car’s speed, which will also tend to 
increase pollution, or may focus on electric cars, which also decrease autonomy and increase 
the price. We assume that incumbent firms have an advantage with respect to new entrants 
in an existing technological paradigm, due to learning and accumulating knowledge. But new 
firms may enter new technological paradigms, once they are discovered (more on this below). 
Consumers are distributed across different classes. By pertaining to a consumer class, they 
differ, among other things, with respect to their preference for the price, quality (along a 
vector of the product characteristics that define its use), and the environmental pollution 
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caused by using a good. Within a class, consumers are homogeneous. This introduces in the 
model the crucial difference between individual and collective benefits of individual choices. 
The actions of a small number of environmentalists through consumption may have a small 
impact on the stock of pollution, unless their action is imitated by similar consumers. Two 
opposite outcomes may occur: classes of environmentalist consumers manage to attract 
consumers that are initially less concerned about the polluting features of the consumed good. 
Or environmentalists are so poorly catered by existing companies, that they may need to 
change class, give up their environmental preferences and imitate consumers that enjoy 
higher utility by caring more about non-green product characteristics than about pollution. 
Technological change is then the consequence of consumers and firms interactions. 
Consumers purchasing behavior signal their preferences, and influence firms innovation 
behavior. Changes in the produced goods, as an outcome of innovation, modifies purchasing 
behavior. This is because purchasing behavior and innovation influences the dynamics of both 
populations. The population of firms changes depending on how successfully they innovate, 
where success depends on the preference of the prevalence of consumers, and the ability to 
capture a sufficient large niche. Consumers population changes as a function of the product 
available on the market: consumers in a class that enjoy high utility (because preferences are 
better aligned with the prevailing goods) will thrive and outnumber consumers in classes 
whose preferences are poorly matched by firm innovation. The model thus features co-
evolution between the two populations, influencing both their dynamics, and changes in the 
technology. 
The product features (price, quality characteristics and environmental impact) are defined 
over a given paradigm. A paradigm shift implies a shift in the boundaries of these features: 
price, quality and environmental impact. That is, improvements of the quality and the 
environmental impact of a good within a paradigm are limited (incremental innovation); a 
paradigm shifts, instead, opens up new frontier for radical and incremental changes. 
Within a technological paradigm, firms and consumers know the boundary of the product 
environmental impact, i.e. the minimum pollution that it can cause, if firms innovate and move 
towards that boundary. Because both firms and consumers know the attainable 
environmental impact in a given paradigm, consumers assess firms based on their relative 
achievement with respect to this known minimum environmental impact.  
Pollution is a function of the vector of product characteristics that define its quality. For 
instance, a bicycle is slower, less comfortable in long distances, and more exposed to the 
weather than a car, but it has a lower environmental impact. When innovating, firms change 
both the characteristics of a product that cater specific user services (e.g. the speed of 
mobility) and the environmental impact.  In general, we assume that increasing the use 
characteristics of goods, increases their environmental impact when consumed. A good’s 
environmental impact is thus modelled as a technological landscape of several dimensions, 
where each dimension is one of the product characteristics. All characteristics contribute to a 
good’s pollution: the impact of one characteristic on pollution is given by the position of each 
of the other characteristics on the technological landscape. This may make environmental 
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innovations complex, depending on the interaction between the different product 
characteristics.  
The level of complexity determines the uncertainty of technological change aimed at reducing 
the environmental impact of the consumption of goods. This implies that each innovation may 
cause several unintended consequences. In other words, certain directions of technological 
change may result in more pollution than expected, even when the innovation is believed to 
reduce environmental impact. 
Through successive innovations, economies may move to a new paradigm. For this to occur, 
firms need to find their way through the technological landscape towards its maximum, i.e. 
the minimum pollution that a product produced within that paradigm can cause. Once they 
achieve a paradigm’s global optimum (minimum pollution), firms open up opportunities to 
explore a new paradigm, with a new maximum, i.e. lower minimum pollution. Moving to new 
paradigms, in our model, is then crucial to reduce the environmental impact of consumption. 
When firms enter a new paradigm, however, they face a radically new, unchartered and 
complex technological landscape, which they need to explore in order to improve the product 
characteristics and environmental fitness. 
The model was developed based a number of empirical regularities (Windrum et al., 2009b). 
On the demand side: wealthy consumers seek for different options when negative 
externalities are too high (such as pollution in large cities or the congestion of public 
transport); consumers derive their utility from a set of product characteristics, beyond price, 
that define the use of the good and motivates its consumption (Lancaster, 1996); consumers 
have limited information and different beliefs about future technological feasibility (Archibugi, 
2017); consumption choices generate externalities for other consumers. On the supply side: 
new technological paradigms retain features of older paradigms (“deep path dependency”); 
new firms champion new technologies (Klepper, 1996); pollution externalities induce 
environmental innovations (Safarzynska and van den Bergh, 2010); firms target different 
niches of consumers. 
In the reminder of this section we describe the toy model in detail (3.1-3.6), summarize its 
main properties (Sec 3.7), and then extend it to analyze how technological complexity and 
uncertainty may influence pollution through firm and consumer behavior (Sec 3.8). The model 
is in discrete time. We suppress the use of the time index for clarity, unless when it is needed 
to distinguish between current and lagged variables. 

3.1. Demand 
We model �̂�𝐶  =  500  consumers distributed across 𝑁𝑁 =  20  classes j. Consumers are 
heterogeneous across classes, but homogeneous within classes: preferences differ across 
classes, and when a consumer changes class, they also change their preferences and budget 
constraint. In 𝑡𝑡 =  0 consumers are distributed equally across classes (in each class there are 
25 consumers).  
A class utility �𝑢𝑢𝑗𝑗�, if function of the good’s price (𝑝𝑝𝑖𝑖), a vector of use characteristics (�⃗�𝑥𝑖𝑖), and 
the environmental impact generated by consuming it �𝑠𝑠(�⃗�𝑥𝑖𝑖 ,𝐺𝐺)�, which is in turn a function of 
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the characteristics (𝑥𝑥�𝑖𝑖) and of the stock of pollution 𝐺𝐺. Each firm produces an heterogeneous 
good (Section 3.2), therefore we index a good’s feature with that of the producing firm 𝑖𝑖. 
Formally, a class utility is expressed as: 

 𝑢𝑢𝑙𝑙,𝑗𝑗 = 𝑣𝑣�𝑚𝑚𝑗𝑗 ,𝑝𝑝𝑖𝑖� + 𝑑𝑑(�⃗�𝑥𝑖𝑖) + 𝑒𝑒�𝑠𝑠(�⃗�𝑥𝑖𝑖)� (1) 

where 𝑚𝑚𝑗𝑗  is the budget constraint of all individuals in class j. The three terms of the class utility 
function have the following form:  

 

𝑣𝑣𝑗𝑗 = 𝛼𝛼𝑗𝑗�𝑚𝑚𝑗𝑗 − 𝑝𝑝𝑡𝑡−1,𝑖𝑖   ∀𝑝𝑝𝑡𝑡−1,𝑖𝑖 < 𝑚𝑚𝑗𝑗

𝑑𝑑𝑗𝑗 = ∑ 𝛽𝛽𝑗𝑗,ℎ�𝑥𝑥𝑡𝑡−1,ℎ,𝑖𝑖ℎ∈𝑧𝑧𝑗𝑗                     

𝑒𝑒𝑗𝑗 = 𝑛𝑛𝑗𝑗
�𝐸𝐸𝑗𝑗�𝑠𝑠𝑡𝑡−1,𝑖𝑖�−𝑠𝑠�

1−𝜌𝜌

1−𝜌𝜌
∀𝑠𝑠 < 𝐸𝐸(𝑠𝑠)   

 (2) 

where 𝛼𝛼𝑗𝑗  and β𝑗𝑗,ℎ  are the consumer preferences with respect to the price and quality of the 
good (determined by a vector of characteristics �⃗�𝑥𝑖𝑖).  
The first component of 𝑢𝑢𝑗𝑗  simply represent a consumer preference for saving (in a given class 
j). The price of the good 𝑝𝑝𝑖𝑖  is relatively more relevant the lower is the consumer budget 
constraint. In other words, the preference for savings decreases with the budget constraint: 
consumers in wealthy classes are less influenced by prices in their purchasing decision. 
The second component is the direct utility from consuming a good and benefiting from its hth 
characteristics (as in Lancaster, 1966a; Saviotti and Metcalfe, 1984; Gallouj and Weinstein, 
1997). For example, speed, memory, hard drive, and weight of a laptop. Note that each service 
enters equally in the consumer utility, and the contribution of each characteristic (𝛽𝛽𝑗𝑗,ℎ) may 
differ across classes. In other words, the direct utility is a weighted average of the level of a 
good’s characteristics, where the weights are the preference terms β𝑗𝑗,ℎ . Characteristics 
change across technological paradigms (Sections 3.4 and 3.5), to reflect the fact that a laptop 
is radically different from a typewriter, or a digital technology is radically different from an 
analogue one. All products produced within a paradigm z have Hz  use characteristics, which 
yield direct utility to consumers when the product is consumed (Lancaster, 1966a,b; Saviotti 
and Metcalfe, 1984). 
The third component, the environmental utility, is a composite function that reflects the 
hyperbolic absolute risk aversion (HARA) of consumers (e.g. Merton, 1971) towards the 
negative externalities of environmental pollution G, where 𝜌𝜌  and 𝜂𝜂𝑗𝑗  are parameters that 
reflect, respectively, the relative risk aversion toward pollution and the discount rate of a 
consumer class; 𝐸𝐸𝑗𝑗(𝑠𝑠𝑖𝑖) is the consumer class expectation of firm environmental fitness, which 
is related to the knowledge that consumers have about the technology (and thus includes 
uncertainty); and (𝑠𝑠) is the minimum level of environmental fitness that a class is ready to 
accept from a good, and the firm producing it. Note that (𝑠𝑠) differs from the level of pollution, 
which depends on what other consumers purchase, not only on the single good. In other 
words, utility increases as firms produce more environmentally sustainable good, for a given 
discount rate and risk aversion. It should be noted that when we refer to a firm environmental 
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performance, in this model we only refer to the features of the good they produce, and not to 
a firm production process. 
The expected environmental fitness of a firm (i.e. of the product produced) 𝐸𝐸𝑗𝑗(𝑠𝑠𝑖𝑖)   is a 
combination of the fitness of the best technology available in the market (�̂�𝑠(𝑧𝑧)) in a given 
time period (t)1 and the firm environmental fitness 𝑠𝑠(�⃗�𝑥𝑖𝑖): 

 𝐸𝐸𝑗𝑗(𝑠𝑠𝑖𝑖) = 𝜂𝜂𝑗𝑗
𝑝𝑝 𝑠𝑠(�⃗�𝑥𝑖𝑖)
1+�̂�𝑠(𝑧𝑧)−𝑠𝑠(�⃗�𝑥𝑖𝑖)

 (3) 

where 𝜂𝜂𝑗𝑗
𝑝𝑝 ∈ [0,1] is a weight that consumers attach to the current environmental impact of 

design 𝑖𝑖2 relative to the technological promise of the most recent paradigm �̂�𝑠(𝑧𝑧) (note that a 
design (�⃗�𝑥𝑖𝑖) is specific to a firm i). 
Finally, the minimum level of environmental fitness (higher fitness means lower impact) that 
a class is ready to accept in a good (s) is a logistic function of the pollution stock: 

 𝑠𝑠𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧𝑠𝑠𝜏𝜏 +

�̂�𝑠𝑡𝑡 2⁄ − �̂�𝑠𝜏𝜏

1 + ��̂�𝑠𝑡𝑡 2⁄ − �̂�𝑠𝜏𝜏
𝑠𝑠0

− 1� 𝑒𝑒−𝑟𝑟(𝐺𝐺𝑡𝑡−1−𝐺𝐺𝜏𝜏)
   𝛥𝛥𝐺𝐺𝑡𝑡−1 > 0

𝑠𝑠𝜏𝜏
1 + �

𝑠𝑠𝜏𝜏
𝑠𝑠0
− 1� 𝑒𝑒−𝑟𝑟𝐺𝐺𝑡𝑡−1

                                   𝛥𝛥𝐺𝐺𝑡𝑡−1 < 0
 

(4) 

where τ is the time period in which the boundaries of the minimum environmental fitness may 
change due either to a change in the paradigm z – which implies a change in �̂�𝑠𝑡𝑡 – or to a change 
in the sign of pollution growth (∆𝐺𝐺 ); r is the rate of growth of the minimum level of 
environmental fitness of a good with respect to pollution; and 𝑠𝑠0 is the lower asymptote. As 
pollution increases, we assume that consumers may become more demanding with respect to 
the environmental fitness of the good that they would like to purchase. Consumers are 
assumed to be relatively less concerned about growth in pollution when pollution stock is low, 
than when it is high: this feature is captured by the logistic shape. 
This specification captures three key properties about consumer preferences with respect to 
environmental sustainability. First, the role of expectations: in the initial phases of diffusion, 
consumers need to make their judgement based on what is known about the environmental 
impact of a good (e.g. from research), rather than from the actual observed impact on the 
environment caused by the use of goods. Second, the expectations about how much a 
technology may pollute, does not always match its actual impact, once the good is diffused (as 
this depends on the dynamics of the consumer populations). Third, different consumers, with 
different risk aversion and care for future generations, weight the relevance of expectations 
and observed pollution differently. 
Consumers may change preferences due to ‘imitation'. If they observe that other consumers, 
in different classes, are enjoying a relatively higher utility, they may change class. This 
consumer population dynamic is oversimplified in this model, and can be easily extended to 
better capture social imitation. In its current form, we assume that classes in which consumers 
enjoy relatively higher utility attract consumers from classes where consumers experience a 
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relatively lower utility. In other words, a class that is well catered by existing goods (i.e. goods 
that balance the trade-offs between the direct, indirect, and environmental preferences of 
that consumer class), experiences a higher average utility than a class that is not well catered 
for by the existing goods.  
Formally, the movement of individual consumers across classes is modelled as a replication 
dynamics. Classes with above-average utility, grow as a proportion of the total population, 
while classes with below-average utility decline. As a result, the combination of preferences 
in the population also change, moving towards the preference of the classes that grow in 
number of consumers (the total population is fixed). In turn, this change in consumer 
population (and average preferences) also changes the signal for firms, which may need to 
adapt their innovation behavior to accommodate the changing distribution of consumer 
preferences. Because with a pure replicator dynamics only one class is likely to survive in the 
limit, which would also lead to a single dominant design, and a single firm dominating the 
whole market, we use a ‘tamed’ replicator (Wirkierman et al. (2018)): an intensity parameter 
𝑓𝑓 tempers the strength of selection, allowing a number of classes with similar utility to have 
the same share 𝜓𝜓𝑗𝑗,𝑡𝑡  of total consumers �̂�𝐶.  
The number of consumers 𝐶𝐶𝑗𝑗,𝑡𝑡  =  𝜓𝜓𝑗𝑗,𝑡𝑡�̂�𝐶 in each class j is computed as a ratio 𝜓𝜓𝑗𝑗,𝑡𝑡 of the total 
number of individual consumers: 

 𝜓𝜓𝑗𝑗,𝑡𝑡 = 𝜓𝜓𝑗𝑗,𝑡𝑡−1
𝑢𝑢𝑗𝑗,𝑡𝑡−1
𝑓𝑓

𝑈𝑈𝑗𝑗,𝑡𝑡−1
𝑓𝑓  (5) 

where 𝑢𝑢𝑗𝑗
𝑓𝑓is the average utility of class j: 

 𝑢𝑢𝑗𝑗,𝑡𝑡
𝑓𝑓 = 𝑓𝑓

∑ 𝑢𝑢𝑙𝑙,𝑗𝑗,𝑡𝑡+𝜀𝜀𝑢𝑢 𝐶𝐶𝑗𝑗,𝑡𝑡�𝑙𝑙

∑ 𝜓𝜓𝑗𝑗,𝑡𝑡�∑ 𝑢𝑢𝑙𝑙,𝑗𝑗,𝑡𝑡𝜀𝜀𝑢𝑢 𝐶𝐶𝑗𝑗,𝑡𝑡⁄𝑙𝑙 �𝑗𝑗
= 𝑟𝑟𝑟𝑟𝑢𝑢𝑛𝑛𝑑𝑑 �𝑓𝑓 𝑢𝑢𝑗𝑗,𝑡𝑡

𝑈𝑈𝑡𝑡
� (6) 

𝑈𝑈𝑡𝑡−1
𝑓𝑓

 is the average utility across all classes; 𝑢𝑢𝑙𝑙,𝑗𝑗,𝑡𝑡  is the utility of a single consumer l in class j; 
and 𝜀𝜀𝑢𝑢  is a small parameter allowing each class to survive through time, so that it can be 
populated again, in case it becomes attractive when its fitness change (e.g. because of a 
change in the technological paradigm). 
In each time period, consumer classes access the market in random order (a different one in 
each period). When it is their turn, each consumer in a class select the firm that best satisfies 
their utility. To simplify, we assume that each consumer buys one unit of the selected good. 
Firms use their inventories and finished goods to match the demand from a class. When they 
run out of inventories, consumers move to the second best firm, and so on, until all consumers 
from the class have purchased one unit.2 As firms run out of inventories, it is possible that a 
consumer class finds no firms that can offer a good that attain a utility that is larger than the 
utility from not consuming �𝑢𝑢𝑗𝑗 < 𝛼𝛼𝑗𝑗�𝑚𝑚𝑗𝑗�. Similarly, consumers from a given class my not find 
a firm that sells at a price which is below their budget constraint. Finally, firms may produce 
below the overall demand, leaving consumers at the end of the line in a given period with no 
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purchasing options. When consumers do not consume for one of these reasons, their utility 
comes from saving, or consuming the budget on a different market: 𝛼𝛼𝑗𝑗�𝑚𝑚𝑗𝑗. 
 
3.2. Supply 
We model F firms indexed by i producing an heterogeneous good, with different use 
characteristics, to satisfy one unique consumer need. Firms are initially homogeneous, 
endowed with the same market share and capital, the only factor of production. Production is 
kept to its simplest form, to allow focusing on the innovation process, industrial dynamics, and 
the interaction with consumers. As times goes by, firm market shares depend on the relation 
between consumer preferences, the price, quality and environmental fitness of the produced 
good. To produce the good firms invest in capital, which defines their production capacity. 
Depending on the relation between production and demand, firms accumulate non-perishable 
inventories, which are carried on from one period do the next. Firms innovate in order to 
improve their good, but depending on the market signal they receive from the consumers 
buying from them, they may follow different innovation paths in the technological landscape. 
Firms that do not manage to maintain a sufficient amount of capital, exit the market. 
Firms define a target level of output (𝑦𝑦𝑖𝑖∗) as a linear combination between consumer demand 
(𝐷𝐷𝑡𝑡,𝑖𝑖) and actual sales (𝑆𝑆𝑡𝑡,𝑖𝑖  =  𝑚𝑚𝑖𝑖𝑛𝑛(𝐷𝐷𝑡𝑡,𝑖𝑖 , 𝑞𝑞𝑡𝑡−1,𝑖𝑖)), which cannot be higher than the available 
inventories 𝑞𝑞𝑖𝑖,𝑡𝑡−1: 

 𝑦𝑦𝑖𝑖∗  =  𝜆𝜆𝑦𝑦𝐷𝐷𝑖𝑖  +  (1 −  𝜆𝜆𝑦𝑦)𝑆𝑆𝑖𝑖  (7) 

where 𝜆𝜆𝑦𝑦 ∈  [0,1]  allows to adjust smoothly to changes in demand and avoid sudden 
oscillations. 

Given 𝑦𝑦𝑖𝑖∗ and the financial constraint, a firm may (dis-)invest, according to the following rule:  

𝐼𝐼𝑡𝑡,𝑖𝑖 = �
𝜆𝜆𝑐𝑐min�𝑦𝑦𝑡𝑡,𝑖𝑖

∗ − 𝑘𝑘𝑡𝑡−1,𝑖𝑖 ,𝑤𝑤𝑡𝑡,𝑖𝑖
∗ �           if 𝑦𝑦𝑡𝑡,𝑖𝑖

∗ > 𝑘𝑘𝑡𝑡−1,𝑖𝑖

−𝜆𝜆𝑐𝑐min�𝑘𝑘𝑡𝑡−1,𝑖𝑖 − 𝑦𝑦𝑡𝑡,𝑖𝑖
∗ ,𝑘𝑘𝑡𝑡−1,𝑖𝑖�     if 𝑦𝑦𝑡𝑡,𝑖𝑖

∗ <  𝑘𝑘𝑡𝑡−1,𝑖𝑖
  (8) 

 
where 𝜆𝜆𝑐𝑐 ∈  [0,1] represents potential physical constraints in changing production levels in 
the short run. Firms invest when the target output is above the available capital, otherwise 
they disinvest and sell capital. When they invest, the amount is the minimum between the 
capital needed to achieve the desired level of output, and the financial constraint, the sum of 
the cumulated financial resources and last period profits: �𝑤𝑤𝑡𝑡,𝑖𝑖

∗ = 𝑤𝑤𝑡𝑡−1,𝑖𝑖 + 𝜋𝜋𝑡𝑡,𝑖𝑖�. When output 
decrease and a firm needs to disinvest, they sell the difference between the available capital 
and the capital required to produce 𝑦𝑦𝑖𝑖∗– unless the difference is larger than the available 
capital, in which case they sell only the remaining capital available. 
Changes in the capital stock then depend on the above investment rule and the financial 
resources in t: 

𝑘𝑘𝑡𝑡,𝑖𝑖 = �
𝑘𝑘𝑡𝑡−1,𝑖𝑖 + 𝐼𝐼𝑡𝑡,𝑖𝑖                    if 𝑤𝑤𝑡𝑡,𝑖𝑖

∗ > 0
max�𝑘𝑘𝑡𝑡−1,𝑖𝑖 + 𝑤𝑤𝑡𝑡,𝑖𝑖

∗ , 0�  if 𝑤𝑤𝑡𝑡,𝑖𝑖
∗ < 0

    

       (9) 
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As a result of the investment, the stock of financial resources that will be available in the 
following periods also changes: 

 𝑤𝑤𝑡𝑡,𝑖𝑖 = 𝑤𝑤𝑡𝑡,𝑖𝑖
∗ − �𝑘𝑘𝑡𝑡,𝑖𝑖 − 𝑘𝑘𝑡𝑡−1,𝑖𝑖� (10) 

Profits also form part of the financial assets available to firms to invest in the following period. 
They are computed as the difference between monetary sales (sales times unit price of the 
good) and costs (output times variable and fixed costs): 

 𝜋𝜋𝑖𝑖  =  𝑆𝑆𝑖𝑖𝑝𝑝𝑖𝑖  −  𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖  (11) 
Price is given by a simple mark-up rule on costs, where the mark-up is fixed (equal across 
firms): 𝑝𝑝𝑖𝑖 = (1 +  𝜈𝜈)𝑐𝑐𝑖𝑖. Costs depend on a fixed component F and a variable component (𝑐𝑐ℎ) 
that depends on the quality of the good, i.e. the characteristics h that define it 

 𝑐𝑐𝑡𝑡,𝑖𝑖 = 𝐹𝐹
1+𝑦𝑦𝑡𝑡−1,𝑖𝑖

∑ 𝑐𝑐ℎ𝑥𝑥𝑡𝑡,𝑖𝑖,ℎ
2

ℎ∈𝑍𝑍𝑖𝑖  (12) 

where 𝑧𝑧𝑖𝑖  is the set of use characteristics that define the good. We assume that each 
characteristic h has a given cost 𝑐𝑐ℎ : improving the quality of h also makes the good more 
expensive, more than linearly. As we discuss in Section 3.4, firms face a trade-off between 
quality and price when they innovate. 𝑦𝑦𝑡𝑡−1,𝑖𝑖  is the level of production in the previous period: 
we assume that there are some positive returns to scale, due to learning, which contribute to 
reduce the cost as firms gain market share, decreasing the trade-off between price and quality. 
Finally, firms produce using a production function with constant returns and capital as the sole 
input 

𝑦𝑦𝑡𝑡,𝑖𝑖 =  𝑘𝑘𝑡𝑡−1,𝑖𝑖 

Output is used to cumulate inventories to be sold in the next period 

(13) 

𝑞𝑞𝑡𝑡,𝑖𝑖 =  𝑦𝑦𝑡𝑡,𝑖𝑖 −  𝑆𝑆𝑡𝑡,𝑖𝑖 +  𝑞𝑞𝑡𝑡−1,𝑖𝑖 (14) 
 

3.3. Environmental impact of goods 
The environmental impact of using a good depends on the environmental fitness that the firm 
producing it reaches. Goods with high environmental fitness are less polluting than those with 
low environmental fitness, so the more consumers purchase goods with high environmental 
fitness, the lower is the rate at which the stock of pollution grows. We assume that the 
environmental fitness depends on the quality of each of the use characteristics of a good. For 
example, the environmental impact of a car may depend on it speed, size, and acceleration. 
We thus compute environmental fitness as the average fitness of the use characteristics 
�⃗�𝑥𝑖𝑖 over all characteristics 𝐻𝐻𝑧𝑧𝑖𝑖  that form part of the good in paradigm 𝑧𝑧𝑖𝑖: 

 𝑠𝑠(�⃗�𝑥𝑖𝑖) =
∑ 𝜑𝜑𝑧𝑧,𝑖𝑖,ℎℎ∈𝑧𝑧𝑖𝑖

𝐻𝐻𝑧𝑧𝑖𝑖
 (15) 

where 𝜑𝜑𝑧𝑧,𝑖𝑖,ℎ𝐻𝐻𝑧𝑧𝑖𝑖  is the fitness of the single characteristic; and 𝐻𝐻𝑧𝑧𝑖𝑖  is the set of characteristics 
that defines a good in paradigm z. In this basic version of the model we assume that the 
technology is modular, i.e. each characteristic contributes to the environmental fitness 
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independently. When this is the case, firms can improve each characteristic independently 
from the others. The choice to innovate in one or the other direction, is driven by the trade-
off between improving the characteristic and improving its environmental fitness (as we 
discuss in Section 3.4 below). 
The environmental impact of consuming the good produced by firm i is a decreasing function 
of environmental fitness, with a steeper slope for intermediate levels of fitness:3 

 𝜁𝜁𝑖𝑖 = 𝜁𝜁�

1+�
𝑠𝑠�𝑥𝑥��⃗ 𝑖𝑖�−𝑠𝑠0

𝜙𝜙 �
2 (16) 

where 𝜁𝜁 is the maximum environmental impact of a good; 𝑠𝑠0 is the minimum level of fitness 
attainable; and 𝜑𝜑  is a parameter that defines the rate at which an improvement in the 
environmental fitness of the good reduces its impact on pollution. The function is similar to a 
logistic. In the beginning, innovation is exploratory and yields marginal improvements to the 
environmental fitness: for very low levels of fitness, a fitness increase has a small impact in 
reducing the pollution impact of the good. As R&D activities continue, innovation manages to 
make larger steps, and improvement in fitness reduce the impact of using the good on the 
environmental sustainability. As the fitness reaches closer to its maximum, i.e. its maturity, 
returns to R&D to reduce the impact on the environment slow down. In other words, although 
increases in fitness are perceived by consumers in the same positive way, their impact on 
pollution differs for different phases of the innovation process, which come with different 
opportunities. 

3.4. Innovation 
As explained in Section 3.1, consumers choose goods depending on their utility, which 
depends on three features of the good produced by firms: the price, the vector of 
characteristics, and the environmental impact caused by its use. Firms have an incentive to 
reduce the price, increase the quality of its characteristics, and increase the environmental 
fitness. But they face trade-offs. 
We assume that all firms undertake R&D in each period to modify the characteristics of the 
produced good, within a given paradigm. Modifying a characteristic has three effects: (i) 
changes the quality of the good, (ii) its cost (see Eq. 12) and (iii) the environmental fitness (see 
Eq. 15). We model innovation in two steps. In the first step, firms invest in R&D to innovate 
(‘mutation’), attempting to change one characteristic. In the second step, firms assess this 
change, taking into account the preferences of the consumers in the class that they target 
(assigned at the outset and fixed throughout the firm’s life time), and how the change modifies 
the trade-offs between quality, cost and environmental fitness (‘evaluation’). Firms decide 
whether to retain the innovation(s) depending on the expected changes in the demand of the 
consumer class that they target. 
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Mutation 
For simplicity we assume that R&D does not depend on firm revenues. All firms attempt an 
innovation, in each time period, on one random product characteristic h. There is a small 
probability ι that the innovation is successful and results in a mutation of the position 𝑥𝑥𝑖𝑖,ℎ  of 
characteristic h on the technological landscape. When the innovation is successful, the firm 
draws a random number from a Standard distribution that defines the extent of the change of 
characteristic h: 

 ∆𝑥𝑥𝑖𝑖,ℎ  =  𝑁𝑁 (0,1)  ·  𝜉𝜉 (17) 

where 𝜉𝜉  is a parameter that allows to measure how local is the innovation process. If 
successful, as a result of R&D a one bit mutation then occurs: a change in the value of 𝑥𝑥𝑖𝑖,ℎ  by 
a factor ∆𝑥𝑥𝑖𝑖,ℎ. 

Evaluation 
If R&D was successful for at least one characteristic, the firm evaluates the environmental 
fitness of the new product (see Eq. 15), and simulates the impact of the innovation on the 
utility of its target consumer class j through the cost, quality and environmental fitness. For 
simplicity, we assume that firms has perfect information about the utility function of its target 
consumer class (see Eq 1-4). This is like assuming that firms invests in market surveys to elicit 
its consumers acceptance of an incremental innovation. 
The final value of the product characteristic, following a successful innovation, then depends 
on the result of the evaluation process. If the utility of the targeted class increases as a result 
of the innovation, the final value integrates the change obtained with the mutation. 
Otherwise, the characteristic remains unchanged. Formally: 

   𝑥𝑥𝑡𝑡,𝑖𝑖,ℎ = �
𝑥𝑥𝑡𝑡−1,𝑖𝑖,ℎ                                    if 𝑢𝑢𝑗𝑗

𝛥𝛥𝛥𝛥 > 𝑢𝑢𝑗𝑗
min�𝑥𝑥𝑡𝑡−1,𝑖𝑖,ℎ + 𝛥𝛥𝑥𝑥𝑖𝑖,ℎ, 0�      if 𝑢𝑢𝑗𝑗

𝛥𝛥𝛥𝛥 ≤ 𝑢𝑢𝑗𝑗
∀ℎ        (18) 

where 𝑢𝑢𝑗𝑗
𝛥𝛥𝛥𝛥  is the utility that consumers in class j would attain, should they buy in period 𝑡𝑡 + 1 

from firm i the good with the modified characteristic value. 
 
3.5. Paradigm shift and Pollution Stock 
Goods pertain to a given technological paradigm z, which defines the boundaries of its use 
characteristics, their relation to environmental fitness, and the maximum environmental 
fitness that can be reached. To decrease the impact of consumption on pollution, firms need 
to move to a new paradigm, which has a higher potential fitness. 
Because consumers evaluate the environmental fitness of a firm with respect to the 
environmental expectation that can be reached within a paradigm, by moving to a new 
paradigm firms have renewed opportunities to gain market share by increasing the fitness, 
but initially they may lose market shares, as they will be seen less performing with respect to 
firms still producing in older paradigms that have a lower maximum fitness (and expectations). 
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Incumbent firms are also constrained by their target class: we assume that a firm cannot 
switch to a consumer class when moving to an alternative paradigm. New firms are then 
crucial in opening new technological opportunities by exploring new technological paradigms, 
when they become available. 
As discussed in the previous section, when they innovate, firms attempt to change the use 
characteristics of a good in order to improve its quality and environmental fitness. Their target 
is the maximum environmental fitness of a paradigm: �̂�𝑠(𝑧𝑧). They attempt to move in this 
direction on the technological landscape. This happens when product innovations towards 
higher environmental fitness improve the utility of a consumer class – given the trade-off 
between environmental fitness, cost and use value. When at least one firm reaches the 
maximum environmental fitness, we assume that this opens a window of opportunity to start 
researching for a new, improved, paradigm. We assume such a search to be exogenous (for 
instance driven by public sector research (Wirkierman et al., 2018)). 
More formally, the exogenous search for a new paradigms starts when �̂�𝑠(𝑧𝑧) − 𝑠𝑠(�⃗�𝑥𝑖𝑖) <
𝑁𝑁(0,𝜎𝜎𝑍𝑍) for any firm i in time t. That is, when a firm reaches, for all product characteristics, 
an area of the landscape that is within a distance defined by a Normal distribution with 
average 0 and variance 𝜎𝜎𝑍𝑍.

𝑖𝑖 𝛥𝛥

4 When this occurs, exogenous scientific research identifies a new 
paradigm z after 𝜏𝜏𝑧𝑧~𝑈𝑈[𝜏𝜏𝑀𝑀 𝑀𝑀

𝑧𝑧 , 𝜏𝜏𝑀𝑀𝑀𝑀𝑧𝑧 ] time steps. 
The new paradigm is defined by a higher maximum, potential, environmental fitness: 

 �̂�𝑠(𝑧𝑧)𝑡𝑡,𝑧𝑧 = �̂�𝑠(𝑧𝑧)𝑡𝑡−𝜏𝜏𝑧𝑧,𝑧𝑧 +  ∆𝜑𝜑  (19) 

where ∆𝜑𝜑  is a parameter that measures the exogenous technological progress with respect to 
environmental sustainability. 
Although the increase in the potential fitness can be exploited by firms to increase the utility 
of their class, the new paradigm is defined by a new, unknown, technological landscape, with 
a different relation between the product characteristics and environmental fitness, which 
firms need to explore: 

 �̂�𝜒𝑡𝑡,𝑧𝑧  =  𝑁𝑁 (�̂�𝜒𝑡𝑡−𝜏𝜏𝑧𝑧,𝑧𝑧,𝜎𝜎𝜒𝜒) (20) 

where 𝜎𝜎𝜒𝜒  is a measure of the technological distance between the old and the new paradigm. 
We assume that the number of the product characteristics 𝑥𝑥ℎ  between paradigms is constant 
(𝐻𝐻𝑧𝑧) and that two consecutive paradigms share at least one characteristic: 𝑧𝑧𝑡𝑡 ∩  𝑧𝑧𝑡𝑡−𝜏𝜏𝑧𝑧 ≠ 0. 
Therefore, the number of new characteristics that can emerge when a new paradigm is 
achieved is 𝑈𝑈(1,𝐻𝐻𝑧𝑧 − 1). 
We also assume that only start-ups can explore the new paradigm by way of their R&D activity. 
Due to lock-in, incumbent firms compete on the older paradigm. 
Finally, the stock of pollution cumulated through periods depends on the fitness of firms 
products and on the number of consumers purchasing them (consumer preferences): 

 𝐺𝐺𝑡𝑡 =  𝐺𝐺𝑡𝑡−1 + ∑ 𝜁𝜁𝑡𝑡,𝑖𝑖 · 𝑆𝑆𝑡𝑡,𝑖𝑖𝑖𝑖  (21) 
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A rate of pollution decay is implicit in the relationship between environmental fitness and 
impact (eq 16). 
 
3.6. Market dynamics 
Every 𝜏𝜏𝑟𝑟 ∼ 𝑈𝑈[𝜏𝜏𝑀𝑀𝑖𝑖𝑀𝑀𝑟𝑟 , 𝜏𝜏𝑀𝑀𝑀𝑀𝛥𝛥𝑟𝑟 ] the least efficient firms (that do not produce anymore) and empty 
consumer classes (due to migration of consumers from one class to another (see eq 5)) are 
replaced as described below. 

Consumers dynamics 
To maintain a variety of consumer preferences in 𝜏𝜏𝑟𝑟, any class j that is populated by less than 
𝛿𝛿𝑐𝑐 = 2 consumers 𝐶𝐶𝜏𝜏𝑟𝑟−1,𝑗𝑗  is replaced by a new class 𝑗𝑗𝜏𝜏𝑟𝑟  with the same number of consumers 
but different preferences for the product characteristics: 𝛽𝛽𝜏𝜏𝑟𝑟,𝑗𝑗,ℎ ∼ 𝑈𝑈[𝛽𝛽𝑀𝑀𝑖𝑖𝑀𝑀,𝛽𝛽𝑀𝑀𝑀𝑀𝛥𝛥]. When a 
class is replaced after the introduction of a new paradigm, we assume that its consumers 
positively value the product characteristics of the new paradigm (𝑧𝑧𝜏𝜏𝑟𝑟 >  𝑧𝑧𝑡𝑡−𝜏𝜏𝑟𝑟). As a result, 
through time, a number of new classes that replace classes that were not well catered by 
existing goods, establish a market for the good produced by start-ups in the new paradigm. 

Firms dynamics 
In 𝜏𝜏𝑟𝑟  all firms whose capital stock 𝑘𝑘𝜏𝜏𝑟𝑟−1,𝑖𝑖  is below a given level 𝛿𝛿𝑘𝑘 =  0.2 are replaced by new 
entrants. New firms start with a capital stock and financial wealth equal to the market 

averages in 𝑡𝑡 − 1: �𝑘𝑘𝜏𝜏𝑟𝑟−1,𝑖𝑖 = 𝑘𝑘𝜏𝜏𝑟𝑟−1,𝑖𝑖� and (𝑤𝑤𝜏𝜏𝑟𝑟,𝑖𝑖 = 𝑤𝑤𝜏𝜏𝑟𝑟−1). They are also endowed with an 
inventory of finished products to satisfy consumers demand: (𝑞𝑞𝜏𝜏𝑟𝑟,𝑖𝑖 =  𝑘𝑘𝜏𝜏𝑟𝑟,𝑖𝑖). New firms also 
enter with improved product characteristics 𝑥𝑥𝑖𝑖,ℎ  with respect to the incumbent, as if they were 
successful innovators: ∆𝑥𝑥𝑖𝑖,ℎ = 𝑁𝑁(0,1) · 𝜉𝜉. 
Following the discovery of a new paradigm, all new firms adopt the new technological 
paradigm, if there is at least one consumer class that has entered after the new paradigm has 
emerged, and that they can target. The old paradigm’s product characteristics 𝑥𝑥𝑖𝑖,ℎ,𝑧𝑧𝑡𝑡−𝜏𝜏𝑟𝑟are 

replaced by characteristics pertaining to the new paradigm: 𝑥𝑥𝑖𝑖,ℎ,𝑧𝑧𝑡𝑡−𝜏𝜏𝑟𝑟~𝑈𝑈�𝑥𝑥ℎ, 𝑥𝑥�ℎ� ; where 𝑥𝑥ℎ  

and 𝑥𝑥�ℎ  are respectively the minimum and the maximum value of the product characteristics 
currently in the market.5 Finally, the new firms randomly target a new consumer class 𝑗𝑗𝜏𝜏𝑟𝑟  

purchasing products of the new paradigm. 

3.7. Properties and main results 
We summarize here the main general properties and results of the model. Details can be found 
in Windrum et al. (2009b,a). Details about the initialization of the model are provided in 
Appendix A. 
In the basic version of the model the pollution stock (e.g. GHG emissions) grows at a decreasing 
rate. This is due to consumers tolerance with respect to pollution, which drives firms to 
increase the environmental fitness of their good – despite a relative reduction in the direct 
utility, and explore new technological paradigms. A pollution threshold in consumer tolerance 
is fundamental to push firms toward new, less polluting, paradigms: if consumers become 
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alerted to pollution, when close to their tolerance threshold, marginal changes in fitness have 
a large impact on utility, offsetting reductions in the product characteristics. Consumers enjoy 
a higher utility, on average, with less performing, more environmental goods.  
In the basic version of the model we also observe market concentration, with the economy 
converging to oligopoly, even when firms compete on several co-existing paradigms. This is 
partly driven by consumers concentrating in few classes, reducing market differentiation. 
However, demand concentration is not a necessary condition in our model, as firms manage 
to target different classes with the same technology. 
As expected, increasing the average relevance of environmental preferences across consumer 
classes reduces pollution. However, in our model this also has a perverse effect. Because the 
environmental component of the utility function is conditional on the potential environmental 
fitness of a technology (in a paradigm), for extremely high average environmental preferences 
firms may be better off exploiting the current paradigm and increase the value of product 
characteristics, rather than moving to new paradigms, where they will be punished for being 
too far from the potential frontier. In other words, if consumers expect a high environmental 
performance from a new technological paradigm, and they also have high preferences for 
environmental fitness, no firm has an incentive to move to the new technological paradigm, 
because by the time they manage to introduce incremental innovations, they would not be 
able to compete with firms performing at the edge of the older paradigm. This sounds familiar 
with many experimental green technologies, that require public support to attract private 
investors. 
Aside from the average preferences, for a given low level of average environmental 
preferences across classes, higher heterogeneity of preferences across classes also reduces 
the pollution stock. This is because consumer classes with high environmental preferences, on 
average, attract more consumers, as they enjoy a higher utility when firms increase the 
environmental performance of their good. ‘Eco-warriors’ experience a larger utility, attract 
consumers that are less sensitive to the environment, increasing the demand for more eco 
innovations. When compared, the average environmental preference has a stronger impact 
on reducing pollution in our model, than the heterogeneity among consumer classes. 
The model also shows that the positive effect of environmental preferences occurs when 
consumer preferences for product characteristics are sufficiently low. When there is a high 
trade-off between the use characteristics and the environmental fitness of a good, the former 
may prevail, reducing firm incentive to innovate towards environmental fitness. The 
preference for the product characteristics play a negative role on pollution abatement also 
when the average is relatively low, but the heterogeneity across consumer classes is high. With 
a very heterogenous population (with respect to their preferences for the use characteristics), 
firms have the option to focus on either the use characteristics or the environmental fitness 
of their good, which holds back environmental innovations. 
With respect to the willingness to pay for improved environmental fitness, we find that the 
level of pollution depends on the distribution of consumer preferences with regards to the 
trade-off between environmental and price preferences. The larger the difference between 
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price and environmental preferences, the higher the level of pollution. In other words, in the 
presence of consumer classes that are highly sensitive to price differences (high price 
elasticity), even the presence of consumer classes highly sensitive to pollution does not help 
reducing the environmental impact of consumption. When this is the case, firms target two 
different niches of consumers with old (low price and more polluting) and new technologies 
(high price and less polluting). The presence of the class of environmentally sensitive 
consumers, with their quota of green consumption, help maintaining pollution to a level that 
is low enough to allow firms to keep producing polluting goods for classes that prefer (or can 
afford only) cheaper goods. 

3.8. Model extension: coordination and technological complexity 

So far, we have assumed that the environmental impact of each product characteristic is 
perfectly modular. That is, it suffice for a firm to increase the environmental fitness of one 
characteristic to increase the overall fitness of the product. This is like assuming that improving 
the environmental fitness of goods is an easy walk on the technological landscape for all firms, 
and that there are no trade-offs between increasing one or the other characteristic, nor 
unintended consequences. Results above are driven by firm behavior as a pure response to 
market incentives under no constraints related to technological complexity. 
In reality, improving the environmental fitness of a product characteristic, may come at the 
cost of other characteristics becoming more polluting. Biofuels may be overall less polluting 
than oil, but they also induce soil depletion. When they were first introduced, cars polluted 
cities less than horse manure, while they were slow and few. A dishwasher may be less 
polluting than hand washing, or a different dishwasher depending on several characteristics 
such as the relative use of water, material used and  their provenance, organization of 
production (e.g. transportation involved), and so on. Batteries may allow to reduce the waste 
in energy production, but they impose a heavy demand on lithium extraction, refinement and 
transportation. In other words, while firms and consumers may have expectations on the 
potential achievement of a technology, they have only partial knowledge about how to reach 
it because of their complexity. It is also possible that intermediate improvements in the 
technology are less sustainable than original technologies, because of the partial improvement 
of some characteristics, that make the other characteristics more polluting. 
The uncertainty related to the complexity of the potential impact of goods on pollution is 
magnified by the segmentation of production across different producers, which provide 
different product components, which are assembled by a final good producer. Producers of 
consumables face a coordination problem: they must coordinate producers of a vertically 
integrated industry, and usually have competences on specific components. The less modular 
is a good/technology, the more final producers may struggle to coordinate specific features of 
the final good, such as environmental fitness (Ciarli et al., 2008). 
In sum, the lower is the product modularity of a technology/good (with respect to pollution), 
and the higher the division of labor to produce it, the more difficult it is for one single firm 
(e.g. the final producer downstream) to find ways to improve the environmental fitness of the 
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produced good, and meet the expectations that consumers may have within a technological 
paradigm. 
On the demand side, as explained in Section 3.1, consumers value the quality of a product 
characteristics, price, and pollution; they imitate better off peers and their preferences; and 
they have expectations on the potential environmental fitness of a good in a paradigm. 
Depending on the initial distribution of preferences (as summarized in Section 3.7), consumers 
may steer firms towards different directions of innovation, more or less green. When we 
introduce technological complexity, though, the coordination between consumer preferences 
and firms decision becomes less obvious. Uncertainties about the impact of improving product 
characteristics on its polluting performance may hinder both firms effort to innovate and 
consumer pressure to do so. Consumers may internalize firms coordination problem. As a 
result, when improving environmental fitness of the good proves too difficult, firms may 
privilege other consumer preferences, such as price and use characteristics. We model and 
analyze these features in what follows. 

3.8.1 Model Details 

To model technological complexity related to the interaction among several product 
components, we introduce the interaction between the use characteristics of a good as a 
determinant of its environmental fitness. Borrowing from the literature on fitness landscapes 
(Kauffman and Levin, 1987), we use a continuous version of the NK model (Valente, 2014) and 
assume that firms need to improve the environmental fitness of a good on a complex 
technological landscape, which shape is given by the interaction between the characteristics. 
As discussed in Section 3.3, the environmental fitness of a good (𝑠𝑠(�⃗�𝑥𝑖𝑖)) is given by the average 
fitness over its use characteristics (Eq. 15). For simplicity, we can assume that each 
characteristic is provided by one product component – for example the battery, RAM and CPU 
of a computer would determine, respectively, its off-the-grid autonomy, capability of dealing 
with several processes, and processing speed. However, unless the product is perfectly 
modular, the environmental fitness of each of these use characteristics h in a given paradigm 
z for a firm i (𝜑𝜑𝑧𝑧,𝑖𝑖,ℎ) depends on its own position on the technological landscape (𝑥𝑥𝑖𝑖,ℎ), as well 
as on the position of the other use characteristics that are part of the same technological 
paradigm z: 

 𝜑𝜑𝑧𝑧,𝑖𝑖,ℎ = �̂�𝑠(𝑧𝑧)
1+�𝛥𝛥𝑖𝑖,ℎ−𝑣𝑣𝑖𝑖,ℎ�

 (22) 

where �̂�𝑠(𝑧𝑧)  is the maximum environmental fitness achievable in paradigm z; and 𝑣𝑣𝑖𝑖,ℎ  is a 
variable that measures the relation between different characteristics, which depend on the 
position of the other characteristics on the landscape (𝑥𝑥𝑖𝑖,𝑔𝑔≠ℎ) and on the strength of the 
relation between 𝑥𝑥𝑔𝑔  and 𝑥𝑥ℎ  (𝑎𝑎𝑔𝑔,ℎ): 

 𝜐𝜐𝑖𝑖,ℎ =  𝜒𝜒𝑧𝑧,𝑖𝑖 + ∑ 𝑎𝑎𝑔𝑔,ℎ𝑥𝑥𝑖𝑖,𝑔𝑔≠ℎ𝑔𝑔∈𝑧𝑧𝑖𝑖  (23) 
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where 𝜒𝜒𝑧𝑧,𝑖𝑖  is a variable that measures the fitness of each use characteristic with respect to 
it optimal position ( �̂�𝜒𝑧𝑧) , i.e. the value that firms attempt to attain to minimize the 
environmental impact of their good: 

 𝜒𝜒𝑧𝑧,𝑖𝑖 = �̂�𝜒𝑧𝑧 −  ∑ �̂�𝜒𝑧𝑧𝑎𝑎𝑔𝑔,ℎℎ∈𝑧𝑧𝑖𝑖  (24) 

The crucial parameter here is 𝑎𝑎𝑔𝑔,ℎ. When 𝑎𝑎𝑔𝑔,ℎ = 0, 𝜒𝜒𝑧𝑧,𝑖𝑖 = �̂�𝜒𝑧𝑧 and 𝜐𝜐𝑖𝑖,ℎ =  𝜒𝜒𝑧𝑧,𝑖𝑖: it is sufficient to 
improve each characteristic towards their optimal position to reach the maximum 
environmental fitness. This is the model we discussed in the earlier Sections. When 𝑎𝑎𝑔𝑔,ℎ > 0, 
each change in a characteristic determines the contribution of all others to the product 
environmental fitness. As 𝑎𝑎𝑔𝑔,ℎ approaches 1 the technological landscape is extremely complex 
because even small changes in the position of one characteristic has a strong impact on the 
relative fitness contribution of all other characteristics. Back to our computer example, 
improving the CPU will also reduce the off-the-grid autonomy for a given battery. 
As explained in Section 3.4, each firm, in each time period, attempts to innovate. If successful, 
the firm has the opportunity to change the position of one characteristic h on the landscape 
(mutation). Differently from the above model, we now introduce the feature that a change in 
the position 𝑥𝑥𝑖𝑖,ℎ  of characteristic h on the technological landscape changes the contribution 
to the environmental fitness also of characteristics 𝑔𝑔 ≠ ℎ. 
When moving to the second innovation step (evaluation) the firm considers if the utility of the 
target consumer group increases as a result of the innovation. The outcome now depends not 
only on the trade-off between quality of the good characteristics, price, and environmental 
fitness, but also on the technological complexity. That is, on whether the change of one 
characteristic towards the optimal position determines an overall environmental fitness 
improvement or not, even when its own fitness improves (the specific component that is 
changed is less polluting). As before, an increase in 𝑥𝑥𝑖𝑖,ℎ  results in an increase in the direct 
utility, and a decrease in the indirect utility (Eq. 2) to an extent that depends on the consumer 
class preferences. But it is not foreseeable what happens to the environmental component of 
the utility, which may increase or not, depending on the complex interaction between the 
different product characteristics. Even more important, as shown in the literature on NK 
fitness landscapes, mutations that lead to increases in the environmental fitness may easily 
lead to a local optimum, that is a condition from which no other mutation would yield to an 
increase in the environmental fitness (unless the firm is able to make several steps at a time, 
along different product characteristics, and move to a different part of the technological 
landscape – something that we do not model here). As a result, firms that may not find ways 
to improve the environmental fitness, for example because they get stuck in a local optimum 
on the landscape, may decide to improve the quality of the product characteristics, which are 
appealing to the consumer preferences with respect to quality, and abandon efforts to 
improve the environmental fitness.  
In what follows, we use this extended version of the model to study how the sheer complexity 
of the technology may influence the transition towards the production of greener goods.  
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3.8.2 Results 

For the sake of comparability with the results discussed in Section 3.7, we use the same 
benchmark initialization of the model described in Appendix A, with equal consumer classes, 
all endowed with the same preferences, except for the product characteristics which are 
randomly distributed (with same support of the distribution). Differently from results 
discussed in Section 3.7, we now allow 𝑎𝑎𝑔𝑔,ℎ  to change, to study the role of technological 
complexity and uncertainty on environmental outcomes. 
Using the extended version of the model, the first property that we study is the relation 
between a measure of technological complexity 𝑎𝑎𝑔𝑔,ℎ and pollution stock. Figure 1 shows that 
as the technological complexity increases, as expected, the pollution stock in the final time 
step of the simulation is also higher. This is because for firms it is more difficult to improve the 
environmental fitness of their product, reach the peak of a technological paradigm, and 
therefore also move to new, less polluting, paradigms (See Figure 5 in Appendix B). Figure 1 
also shows that the relation is not linear: small changes in complexity and uncertainty over 
innovation outcomes for low and high complex technologies have a small impact on the 
pollution stock. The largest impact on pollution occurs for intermediate values of technological 
complexity, suggesting that policy interventions are best targeted at supporting innovation or 
reducing uncertainty for products that are integrated, but not too much. 
 

[Figure 1 about here] 
 
To understand how this result emerges from firm behavior, and their interaction with the 
heterogenous consumer classes, Figure 2 plots the average distance across all product 
characteristics with respect to their optimal position in the technological landscape of a the 
technological paradigm on which they operate when we start the simulations. The optimal 
position is the one that would attain the maximum level of environmental fitness in a 
paradigm. In this configuration the optimal position in the initial paradigm is two, and the 𝑥𝑥𝑖𝑖,ℎ   

can range between 0 and 2.5 (they are initially assigned a position at random between the 
minimum and the maximum values on their space). So, a distance equal to 0.2 means that, the 
average product characteristic, across all firms, and over all simulations and simulated time 
steps stands at 1.8 or 2.2. This is high enough to find a balance between consumer preferences 
on the product characteristics and environmental fitness, without having to reach maximum 
environmental fitness. We report the average over all periods and across firms. The full fitted 
line is the simple average across firms, whereas the dashed fitted line is the average weighted 
by firm market shares.  
Results in Figure 2 show that, in the absence of complexity (𝑎𝑎𝑔𝑔,ℎ = 0), there is a significant 
number of firms that compete without improving the environmental fitness of the good (the 
simple average distance of use characteristics with respect to optimal position is around 0.15). 
However, these firms tend to have a tiny market share: when weighted by market shares, the 
average distance with respect to the optimal position is nearly 0. This implies that the firms 
that succeed and grow must improve also the environmental fitness of the produced good. 
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Second, Figure 2 shows that as complexity increases (for larger values of 𝑎𝑎𝑔𝑔,ℎ), on average 
firms perform worse with regards to environmental fitness. This is in line with the results 
discussed in Figure 1. As noted then, beyond middle levels of complexity �𝑎𝑎𝑔𝑔,ℎ ≻ 0.5� firm 
performance in terms of increasing environmental fitness within a paradigm does not worsen. 
This confirms that the impact of technological complexity on pollution stock (Figure 1) is due 
to firm inability to discover new technological paradigms. 
Third, the results using the weighted average in Figure 2 suggest that the best performing 
firms, even in the presence of high complexity/uncertainty, manage to find close to optimal 
position for most of the product characteristics: the average distance is rather low, even for 
intermediate levels of complexity. 
Fourth, we note that for the best performing firms (those with larger market shares) the 
distance even reduces as complexity moves beyond middle levels. This is because, as noted in 
Figure 5 in Appendix B, for very high levels of complexity, new paradigms are less likely to 
emerge. Therefore, new firms tend to enter in lower (on average more polluting) paradigms. 
The larger the number of firms that attempt to improve the environmental fitness in a 
technological paradigm, starting each time from a different random position, the larger the 
probability that at least one will find their way to the global maximum (those who start with 
product characteristics that are already very close to the maximum). In other words, in the 
presence of high technological complexity/uncertainty, firms are better off exploiting mature 
paradigms, than exploring new ones. This reduces the number of emerging, less polluting, 
technological paradigms, and contributes to increase the pollution stock, even if the most 
successful firms in mature paradigms, on average, produce more sustainable goods. 
 

[Figure 2 about here] 
 
The above results on firm environmental performance depend on consumer behavior and 
leverage. We show this in Figure 3, where we plot the minimum environmental fitness of 
goods tolerated by consumers, for varying level of the technological complexity. As discussed 
in Eq. 4, as pollution increases, the minimum level of environmental fitness tolerated increases 
logistically, until it reaches a given ceiling which represents the maximum fitness attainable 
within a given technological paradigm (which the average firm, as shown in Figure 2, cannot 
reach). The ceiling increases in the next technological paradigm, requiring firms to reach a 
higher fitness to compete in new paradigms. 
Figure 3 shows the average minimum environmental fitness tolerated by consumers (for 
increasing levels of technological complexity) in three different time steps: after 250 periods 
(red crosses); after 380 time steps (green circles with crosses in the middle); and at the end of 
the simulation, after 3000 time steps (blue circles). Starting from the last period (blue 
hollowed circles), the results show that as complexity increase, the minimum level of 
environmental fitness that attain a positive environmental utility decrease with the level of 
technological complexity/uncertainty. This seems at odds with the result that, with higher 
complexity also total pollution increases (Fig. 1): with higher level of pollution, consumers 
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utility decreases drastically, which in turn decreases their tolerance with respect to pollution. 
This should also increase the minimum level of environmental fitness they demand. However, 
consumers form their expectation within a technological paradigm. Therefore, unless a new 
paradigm is explored, or comes to existence, consumers expectation are tailored on what can 
be reasonably expected from technological improvement within that existing mature 
paradigm. Because technological complexity reduces the pace at which new paradigms 
emerge, this also keeps consumer expectation low. This is also why firms are better off 
exploiting the current paradigm than exploring new ones (as discussed with reference to 
Figure 2).  
We show this better as we look at results in earlier time steps. At the beginning of the 
simulation, around about 250 time steps (red crosses in Figure 2), when all firms are still 
exploring the existing paradigm (no new one has emerged), complexity increases the 
minimum level of environmental fitness tolerated in a good, because firms advance slowly on 
a complex landscape, causing a fast increase in pollution. After about 380 time steps 
complexity has no impact on the minimum level of environmental fitness tolerated in a good, 
because with low complexity new paradigms emerge, raising expectation (and therefore the 
minimum level), whereas with high levels of complexity new paradigms do not emerge but 
consumers react to the increasing pollution, increasing the minimum level. For low levels of 
complexity, when it is easy to improve the environmental fitness, the increase in the minimum 
level is driven by increased expectations about the technology, leading to a virtuous cycle and 
lower pollution; for high level of complexity the increase in the minimum level does not lead 
to more green innovation: consumer keep demanding for less polluting goods, but firm 
innovation alone cannot satisfy them. 
 

[Figure 3 about here] 
 
Because firms find it so difficult to improve the environmental fitness, in the presence of a 
complex technology, they have a stronger incentive to address different preferences to 
preserve higher market shares: use characteristics and price. We show this analyzing the 
relation between technological complexity and consumer utility. Figure 4 plots the relation 
between technological complexity and average consumer utility (panel a) and the weighted 
average of consumer preferences for product characteristics (using consumer classes 
population shares as weights). Because the environmental fitness falls with technological 
complexity, so does overall consumer utility, the more so, the less firms are able to address 
the negative externalities of increased pollution stock (Figure 4, panel a). 
However, the decrease in overall utility is relatively low because firms can target other 
preferences, such as price and use characteristics, keeping consumers relatively happy and 
polluted. Because with high technological complexity steering the product characteristics 
towards a higher environmental fitness rarely works, firms tend to target classes with higher 
preferences for the product characteristics (recall that the quality of each product 
characteristic is independent from the quality of the other characteristics: in the model we 
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assume that it is only the environmental fitness that depends on their interaction). This is what 
we show in Figure 4, panel b, where we plot the relation between technological complexity 
and the preferences of the surviving consumed classes for quality (rather than environmental 
fitness). In the presence of high technological complexity, the classes that thrive, and attract 
more consumers, are those with higher preferences for the quality of product characteristics. 
In other words, in the presence of high technological complexity a simple improvement of 
product characteristics within the same paradigm has higher returns, on average, than 
attempts to increase the environmental fitness. Also for this reason, firms that exploit the 
existing paradigm rather than exploring new more sustainable ones are able to thrive (as 
discussed in relation to Figure 2). 
To sum up, the expectation of technological solutions to environmental problems may not be 
sufficient to reduce the environmental impact of consumption. This is  especially the case in 
the presence of technological complexity, uncertainty with respect to the relation between 
innovation and environmental fitness, or lack of coordination between the producers of 
different component of a good along a value chain (see discussion in Section 4). In such 
situations, firms alone may easily find themselves locked in suboptimal areas of the 
technological landscapes, unable to improve the environmental fitness. Because of this, firms 
alone are also less likely to discover new paradigms when dealing with complex technologies. 
Slow paradigm shifts (exploitation of mature paradigms, rather than exploration of new ones) 
give firms an opportunity to reduce pollution only marginally, while improving product 
characteristics, and avoiding to move to a new, unknown, complex landscape. This is also 
because consumers pressure is less effective with high technological uncertainty 
(complexity/lack of coordination), as consumers tend to imitate peers that care more about 
the use characteristics than about the environmental fitness of the consumed good. 
 
4. Discussion and Concluding Remarks 
We model an economy in which improving the environmental fitness of goods produced by 
private firms is not straightforward. The interactions between different use characteristics of 
a product (e.g. the speed, security, autonomy of a car), as well as between the three 
populations of consumers, producers and products make any innovation process complex and 
uncertain. Here we are mainly interested in the environmental outcome of this process, i.e. 
whether the new good is more or less polluting (i.e. its environmental fitness is lower or 
higher).  
 
[Figure 4 about here] 
 
In the model, firms face trade-offs between three features of their products, which they can 
improve to satisfy consumers preferences, namely price, environmental fitness, and a vector 
of characteristics that define the good quality. For example, improving the environmental 
fitness may require to change the quality attached to the use characteristics of the product 
(e.g. the autonomy of an electric car). As a result of firms focusing on improving selected 
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product characteristics that improve the utility of the consumers that they target, they may 
fail to see that along different innovation pathways substantially bigger improvements in the 
environmental fitness were possible. Such complexity may be difficult to govern by individual 
firms that control only parts of the production process, and therefore can innovate only on 
some of the product characteristics. To capture such complexity we model a scenario in which 
firms attempt to improve their product searching on a complex technological landscape. That 
is, a landscape that has multiple dimensions and which they discover as they explore it. All 
dimensions are interdependent, so changes in one dimension simultaneously affects all other 
dimensions, and the way in which they influence the environmental fitness of the product. As 
they explore the landscape, firms target evolving consumer preferences with respect to the 
quality of use characteristics, price, and environmental fitness (i.e. low pollution). Because of 
trade-offs between quality, price and environmental fitness and because of heterogeneous 
consumer preferences, depending on firm innovation some consumers benefit more than 
others and enjoy higher utility. In our model consumers imitate these better-off consumers, 
and slowly most consumers become mostly interested in the features that dominate the 
market (the quality of a given characteristic, price or environmental fitness). If most 
consumers benefit from the quality of a given product characteristic, because of the way in 
which the interactions between them the firms and the technology evolves, other consumers 
will also slowly become less interested in the environmental fitness of what they purchase. 
Because in the presence of complex technologies firms find it difficult to improve the 
environmental fitness, it is also less likely that new paradigms, with less polluting technologies, 
are discovered. As a result, because expectation with respect to environmental fitness vary 
across paradigms (as consumers can only compare technologies that exist), consumer 
expectations with respect to environmental fitness remain low, and firms remain stuck in 
mature, polluting, paradigms. 
Technological complexity introduces a vicious cycle. Firms tend to remain stuck in local optima, 
and stop innovating towards more environmentally friendly goods. As a result, the likelihood 
of finding a new paradigm reduces, which also reduces the likelihood that consumers raise 
their expectations with respect to the environmental fitness. Because consumer expectations 
settle on low environmental fitness paradigms, firms are better off exploitation mature 
paradigms and improving the quality of product characteristics rather than exploring new 
paradigms, which would increase environmental fitness potential but which would also 
increase consumer expectations. As a result, the consumers that enjoy the highest utility are 
those that have lower preferences for environmental fitness. Firms then have an even stronger 
incentive to remain in the same technological paradigm and to increase the utility of 
consumers by improving the product characteristics that they prefer. Slow paradigm shift 
(exploitation) allows more firms to reduce pollution marginally, while at the same time 
improving product characteristics, rather than moving to a new, unknown, technological 
landscape. 
Such vicious cycle requires a policy intervention, which is not modelled here, but would be an 
interesting extension to the toy model we proposed. How would public sector research 
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influence the results, for example by exploring a wider space of the technological landscape, 
reducing the lock-in on optimal solutions? Regulations may also increase the coordination 
between producers of different component of final goods, for example by setting 
environmental standards. 
The model proposed in this paper can be applied to study diffusion of green products in a 
number of industries. It is especially applicable to study diffusion of complex, non-modular 
technologies and products, the use of which is energy intensive, such as electric cars, 
refrigerators and air-conditioners. For instance, it could be used to study a radical 
transformation of the transport system, while promoting the diffusion of electric vehicles. The 
electrification of transport is expected to reduce CO2 emissions, ease gasoline-dependency, 
and improve cities’ air quality. However, electric cars are in general perceived as less reliable 
than conventional vehicle because of their low battery lifespan. In addition, a high purchasing 
price of electric vehicles creates a barrier for many consumers. There are high hopes that 
environmentally-conscious consumers would be among early adopters, driving transitions to 
electric cars. In the example of our model this would require a large group of ‘eco warriors’ 
that are numerous and strong enough to attract more consumers. As we show in Windrum et 
al. (2009b) this also risks that a relatively small number of eco-warriors are well catered by 
green firms, and are enough for other consumers to free ride and consume goods with low 
price and environmental fitness. 
Moreover, consumers are often unable to assess the overall environmental impacts of 
different car designs, as these depend on pollution created in the process of generating 
electricity, environmental impact of batteries and other technical features. As a result, 
consumers compare uncertain environmental performance against other car characteristics. 
This can make firms prefer to improve  characteristics different from environmental 
performance, which in turn would make them fail to achieve maximum reductions in pollution. 
For instance, the emission reductions due to improvements in fuel-efficiency have been offset 
by increasing the average weight of new cars. Introducing environmental standards is one way 
to direct firms innovative effort to improve environmental performance of their car designs. 
In this context, the model proposed here can help to study optimal policies to guide 
innovations by firms towards improving environmental performance of their products and 
how this would affect a general technological progress in the automobile industry. 
Another example of an application is e-waste in the computer industry. The fast advance in 
computational power (Moore’s law) has been accompanied by a fast advance in the 
production of software. Hardware and software are strongly integrated, and their production 
is decentralized across different producers. Producers in both industries attempt to improve 
their profits, by improving the fitness of the use characteristics on which they specialize, for 
instance computer power (CPU) and software functionalities. As computer power increases, 
software producers have a lower incentive to increase the efficiency of the software, and a 
higher incentive to add features. Consumers also have different preferences and needs, and 
each benefit from the addition of functionalities in the software that may be used by a small 
portion of consumes. These consumers demand constantly more powerful computers, which 
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causes existing computers to become quickly outdated, generating e-waste. Firms in the 
computer and software industry do not search to coordinate actions to reduce e-waste, and 
therefore the impact of computers on the environment. Instead, they focus on the innovation 
in product characteristics, to appeal to most consumers, who have little information on and 
rather uncertain exactions about the environmental impact of computers. 
The model misses several relevant aspects that may allow to address the complexity and that 
suggest useful extensions for policy making. For instance, R&D has no cost in this version of 
the model, which may make firms incentives to move to a new paradigm even lower. Unless 
the demand or policy constraints are large enough. We encourage the use of the code in the 
modular LSD application6 to extend the model in several useful directions and applications. 
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A Initialization 

We set up a benchmark configuration with average values of the critical parameters (Table 1). 
Consumers preference toward the environmental sustainability of goods (η) is fixed and equal 
across consumer classes; similarly for indirect preference (α); direct preferences toward each 
product characteristic (βh) are randomly drawn from a uniform distribution that is also equal 
across classes. In sum, benchmark results are an outcome of a random selection between 
consumer classes, which occurs as their preferences randomly change through time – as 
classes that enter the market bring novelty in consumption tastes; rather than an outcome of 
a selection on environmental preferences. 
We run simulations with a population of 25 firms and 500 consumers divided into 100 
consumer classes, all fixed through time. Both firms and classes start with equal endowments 
and equal share of sales and consumers respectively. We run each setting for 3000 time 
periods. Unless differently stated in the text, all result present average simulation outcomes 
over 10 different runs: after a preliminary analysis of the model we have considered this a 
good trade-off between results verification and computational effort. The interested reader 
may refer to Windrum et al. (2009a) for a sensitivity analysis. 

Table 1: Parameters setting 
Par /  

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡−1 

Description Value 

�̂�𝐶 total number of consumers in the economy 500 
f replicator tamed parameter 5 
𝜀𝜀𝑢𝑢 minimum survival term 0.02 

𝑚𝑚𝑗𝑗 Endowment 10 

𝛼𝛼𝑗𝑗 Indirect utility preference 0.5 
𝛽𝛽𝑗𝑗,ℎ Preferences for product characteristics U [0.1,0.3] 
𝜂𝜂𝑗𝑗 Preference for environmental sustainability (discount rate) 0.6 

ρ Relative risk aversion toward pollution 0.5 

𝜂𝜂𝑗𝑗
𝑝𝑝 Preference toward the actual environmental sustainability of 

the good rather than the potential sustainability of the 
techno–environmental paradigm 

0.5 

𝑠𝑠0 Lower asymptote of the minimum environmental fitness 
logistic function 

0.01 

𝑉𝑉 Rate of growth of the minimum environmental fitness logistic 
function 

5e−005 

𝜆𝜆𝑦𝑦 Rate of adjustment of production decisions 0.2 
𝜆𝜆𝑐𝑐 Rate of adjustment of capital stock to production needs 0.2 
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𝜈𝜈 Mark–up 0.1 

𝜁𝜁 Maximum environmental impact of goods 1 
𝜑𝜑 Speed of impact reduction of a fitness increase 2 
𝜄𝜄 Probability of success of innovation on one characteristic 0.2 
𝜉𝜉 Mutation weight 0.2 
𝜎𝜎𝑍𝑍 Peak variance that allows to open a new window of 

opportunity 
0.005 

𝜏𝜏𝑀𝑀𝑀𝑀𝑀𝑀𝑍𝑍  Minimum number of periods needed to discover a new techno-
environmental paradigm 

100 

𝜏𝜏𝑀𝑀𝑀𝑀𝑀𝑀𝑍𝑍  Maximum number of periods needed to discover a new techno-
environmental paradigm 

50 

∆𝝋𝝋 Change in the maximum level of environmental fitness across 
paradigms 

0.5 

𝝈𝝈𝝌𝝌 Variance of the technological change of the environmental 
landscape 

0.3 

𝜹𝜹𝒄𝒄 Minimum number of consumers below which a class is replaced 2 

𝜹𝜹𝒌𝒌 Minimum amount of capital below which a firm is replaced 0.2 

𝝉𝝉𝑴𝑴𝑴𝑴𝑴𝑴𝒓𝒓  Minimum number of periods between two firms and 
consumers turnovers 

10 

𝝉𝝉𝑴𝑴𝑴𝑴𝑴𝑴𝒓𝒓  Maximum number of periods between two firms and 
consumers turnovers 

20 

𝜷𝜷𝑴𝑴𝑴𝑴𝑴𝑴 Minimum value consumer preferences toward product 
characteristics 

0.1 

𝜷𝜷𝑴𝑴𝑴𝑴𝑴𝑴 Maximum value consumer preferences toward product 
characteristics 

0.3 

𝑯𝑯𝒛𝒛 Number of user characteristics in any design in any paradigm 3 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 Minimum value of a product characteristic in the first period 0.1 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 Maximum value of a product characteristic in the first period 2.5 

   

 Technological complexity  

𝑴𝑴𝒈𝒈,𝒉𝒉 Environmental fitness interaction term: the effect of a change 
in 𝑥𝑥𝑔𝑔  on the fitness of 𝑥𝑥ℎ 

𝑈𝑈 [𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀] 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 Minimum value of the product characteristics environmental 
fitness interaction 

tested 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 Maximum value of the product characteristics environmental 
fitness interaction 

tested 
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 Initial values  

𝜏𝜏0𝑧𝑧 Initial number of periods to discover a new paradigm 50 

𝑥𝑥0,𝑀𝑀,ℎ Initial value of each product characteristic 𝑈𝑈[𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀, 𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀] 

𝛽𝛽0,𝑗𝑗,ℎ Initial value of the preference for each product characteristic 𝑈𝑈[𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀,𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀] 

𝑧𝑧0 Initial paradigm 1 
 

𝜏𝜏0𝑟𝑟 Initial number of periods before a firms and consumers 
replacement occurs 

20 

𝐺𝐺0 Initial level of environmental pollution 0 
 

𝑢𝑢0,𝑗𝑗
𝑓𝑓  Initial average (fuzzy) utility 1 

�̂�𝜒𝑧𝑧=1 Optimal position of the xh on the environmental landscape in 
the initial paradigm 

2 

𝜓𝜓0 Initial ratio of consumers per class 1/100 

 

Figures 

 

Notes. Fitted polynomial regression between different initial values of 𝑉𝑉𝑔𝑔,ℎ  and average pollution stock in the last time 
period of the simulation. 

Figure 1: Relation between complexity (𝑉𝑉𝑔𝑔,ℎ) and environmental impact (G) 
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Notes. Fitted polynomial regression between different initial values of 𝑉𝑉𝑔𝑔,ℎ  and the average distance between each 
characteristic and their optimal position (the one that attains maximum environmental fitness) across characteristics and 
firms. The average is further averaged across the 3000 time periods. The full fitted line (and hollowed circles) represents the 
simple average; the dash fitted line (and crosses) is the weighted average, using firm market share as weights 

Figure 2: Relation between complexity (𝑉𝑉𝑔𝑔,ℎ) and the average distance of product 
characteristics with respect to their optimal position 

 

 

Notes. Fitted polynomial regression between different initial values of 𝑉𝑉𝑔𝑔,ℎand the minimum level of good’s environmental 
fitness accepted by consumers (s) at the end of given periods. The red crosses are used to plot the relation after 250 
periods; the green circles with crosses are used to plot the relation after 380 periods; the blue hollowed circles are used to 
plot the relation at the end of the simulation (3000). 

Figure 3: Relation between complexity (𝑉𝑉𝑔𝑔,ℎ) and the minimum level of good sustainability 
accepted by consumers 
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0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 a (technological complexity)

 a (technological complexity) 

 (a) Average Utility (b) Surviving classes’ quality preferences 

Notes. Fitted polynomial regression between different initial values of 𝑉𝑉𝑔𝑔,ℎand average consumer utility in the last period 
(panel a) and the weighted average of the preferences with respect to product characteristics (βh) across classes and 
periods. 

Figure 4: Relation between complexity (𝑉𝑉𝑔𝑔,ℎ) and consumer utility and preferences 

B Extra Figures 

 

Notes. Fitted polynomial regression between different initial values of 𝑉𝑉𝑔𝑔,ℎ  and average number of paradigm discovered in 
the last time period of the simulation. 

Figure 5: Relation between complexity (𝑉𝑉𝑔𝑔,ℎ) and the number of paradigms discovered 

1 Paradigms z evolve endogenously in the model and are assumed to improve exogenously as an 
outcome of basic research – see section 3.5. 

2 In the unlikely event that two firms attain the same utility for a specific class, one of the two is 
randomly picked with equal probability. 

3 A modification of a truncated Cauchy function. 
4 Note that while the first term is strictly positive, the second can be negative: when a firm reaches 

the proximity of the maximum environmental fitness, it might not see the opportunity of a new 
paradigmatic search. 

5  As mentioned in section 3.5 at least one characteristic is in common to two consecutive 
paradigms. 

6  Laboratory for Simulation Development, available for free at the following website 
https://github.com/ marcov64/Lsd 
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