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Distress Risk, Bargaining Power, and Stock Returns

Abstract

We develop and test an agency-based contingent claims model that features debt renego-

tiation for cross-sectional stock returns. Our model performs well for cross-sectional returns

of portfolios formed on financial leverage, book-to-market equity, and asset growth portfolios,

because the time-varying stock-cash flow sensitivity we estimate in a closed-form solution

captures default risk over the business cycle. Moreover, our structural estimation overcomes

the difficulty of finding empirical proxies for unobservable bargaining power at debt renego-

tiation and provides the first direct evidence that the bargaining power helps alleviate equity

risk, particularly during recessions when default probabilities are high.

Keywords: Stock-cash flow sensitivity, debt renegotiation, bargaining power, structural estimation,
financial leverage, default probability, implied-state GMM
JEL Classification: G12, G13, G33
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Equity is a residual claim contingent on a firm’s assets that generate operating cash flows.

Equity holders with bargaining power are able to receive a fraction of assets at bankruptcy.1

Using this fundamental insight, we build an agency-based contingent claims model that

features debt renegotiation for cross-sectional stock returns. In the model, excess stock

returns are excess cash flow rates scaled by the sensitivities of stocks to cash flows. The

sensitivities are determined by dividend payout and bargaining power because both of them

affect the amount of cash flows accruing to equity holders. We test the model via a variant

of implied state generalized method of moments. Our model performs well in explaining

the cross-sectional returns for portfolios formed on market leverage, book-to-market equity,

and asset growth rate. The reasonable performance of our model can be attributed to our

innovative structural estimation for risk premiums and the stock-cash flow sensitivities that

capture cross-sectional and time series variation in default risk.

All the three sets of portfolios are related to default risk. The first set is portfolios

formed on market leverage, which are are natural choices because equity is a residual claim

on operating cash flows after contractual debt payments. Fama and French (1992) show

the positive relation between market leverage and stock returns. Ferguson and Shockley

(2003) link the leverage with financial distress and show their implications for cross-sectional

stock returns. Our second set of testing portfolios is book-to-market portfolios. Gomes and

Schmid (2010) show that value firms have accumulated more debt and book assets during

their expansions and exhibit lower growth rates than growth firms do. Choi (2013) provides

empirical evidence that the value premium is driven by financial leverage instead of operating

leverage. The last set is asset growth portfolios documented by Cooper, Gulen, and Schill

(2008). They find that firms with low-asset growth rates outperform their counterparts with

high-growth rates by 8% per year for value-weighted portfolios and 20% per year for equal-

weighted portfolios. Avramov, Jostova, and Philipov (2007) relate this premium to default

risk.

Our model outperforms the capital asset pricing model (CAPM), and the Fama–French

three-factor model (Fama and French 1992), and the q-factor model (Hou et al. 2015)

because the default-risk related portfolios suits our contingent claims model. For the market

leverage portfolios, the pricing error of the high-minus-low (H–L) portfolio is 1.61% per year,

much lower than 12.59% in the CAPM, 3.32% in the Fama–French model, and 1.88% in the

q-factor model. The mean absolute error (m.a.e.) across the five portfolios is 0.80% per year,

compared with 8.93% in the CAPM, 3.62% in the Fama–French model, and 1.88% in the

1A number of empirical papers find evidence that equity holders recover a considerable fraction of assets
at bankruptcy, including Gilson, John, and Lang (1990), Franks and Torous (1989), and Asquith, Gertner,
and Scharfstein (1994). Roberts and Sufi (2009) find that renegotiation also occurs before debt maturities
and is partially controlled by the contractual assignment of bargaining power.
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q-factor model. For the book-to-market portfolios, the pricing error of the H–L portfolio in

our model is 1.79% per year, which is substantially lower than 15.31% in the CAPM, 7.65%

in the Fama–French model and 7.33% in the q-factor model. For the asset growth portfolios,

the m.a.e. in our model is 2.09% per year, which is considerably lower than 9.17% in the

CAPM, 4.24% in the Fama–French model, and 2.90% in the q-factor model. In short, our

model performs best for the leverage portfolios, followed by the book-to-market portfolios,

and then the asset growth portfolios.

We then explore the economic mechanism behind the model’s good fit, and have three

new insights. First, our results show that stock returns increase with the risk premium of

the operating cash flows. We provide a closed-form solution to show that the cash flow risk

premium in our model is driven by default risk, because it is determined by the difference

in the risk-neutral and physical default probabilities. It is well known that, for a risk-

averse agent, the risk-neutral probability of default is higher than the objective probability.

Therefore, the difference between these two probabilities is positively related to default risk.

Empirically, we estimate the risk premium of cash flows as the difference between the actual

rate and the risk-neutral rate of cash flows. The latent risk-neutral growth rate of cash flows

is from our structural estimation, and the actual growth rate is proxied by the time series

average of the observed rates of cash flows. We document that high-leverage firms, value

firms, and low asset growth firms receive a greater risk premium than low-leverage firms,

growth firms and high asset growth firms. However, the spreads in cash flow risk premiums

between the high- and low- quantile portfolios are similar and small, about 3%, which is not

big enough to explain the much larger spread in stock risk premium, about 13%, for all the

three sets of portfolios. We then turn to the stock-cash flow sensitivity in our model.

Second, our structural estimation shows that the stock-cash flow sensitivity carries in-

formation on default probability over the business cycle. It is important to note that equity

holders do not necessarily bear all the default risk of a firm. Indeed, by renegotiating with

debt holders strategically, they are able to shift the risk to debt holders and make them-

selves less sensitive to the default risk. Equity risk premium they demand is based on their

exposure to the default risk, which is proxied by the time-varying stock-cash flow sensitivity.

We calculate the sensitivity based on a closed-form solution from our parsimonious model

and find that stocks are more sensitive to the changing cash flows in bad times when default

probabilities are high. Our key finding is that the spread in the stock-cash flow sensitivities,

instead of the spread in default premium, is able to explain a large portion of cross-sectional

variation in stock returns for the market leverage and book-to-market portfolios, but a rel-

atively small fraction for asset growth portfolios. The modest performance of asset growth

portfolios relative to other two sets of portfolios can be attributed to the small spread in
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risk-neutral default probability and therefore the small spread in the sensitivity.

Third, our counterfactual estimation demonstrates that the unobservable bargaining

power significantly alleviates equity risk, proxied by stock-cash flow sensitivity, because eq-

uity holders with bargaining power can recover receive a fraction of firm value at bankruptcy.

The structural estimate of bargaining power from a sample of 15 portfolios is 0.58, which

is economically and statistically significant. Our structural model allows us to use a coun-

terfactual parameter value to examine the changes in pricing errors, default probability and

stock-cash flow sensitivity. For example, by setting bargaining power to zero, we find that

the equity risk significantly increases for portfolios with high default probability, such as

high-leverage and value portfolios. For the high-leverage portfolio, the stock-cash flow sensi-

tivity increases from 1.63 to 2.12 by 0.49, and the increase is 0.36 in expansions and 0.89 in

recessions, respectively. For the value portfolio, the sensitivity increases from 1.54 to 1.85 by

0.31, and the increase is 0.22 in expansions and 0.63 in recessions. Therefore, the increases

in the stock-cash flow sensitivities indicate that the bargaining power significantly alleviates

the equity risk, particularly in recessions.

Our work is related to three strands of the literature. The first strand is on the pricing

of default risk. The empirical evidence on the default or distress risk premium is mixed.2

A recent study by Friewald, Wagner, and Zechner (2014) points out the potential problem

for obtaining the mixed evidence is that the aforementioned papers use the physical default

probability but omit the risk-neutral probability. They estimate the default risk premium

from CDS spreads, and then show that stock returns increase with the estimated premium.

We complement their study by emphasizing the risk-neutral default probability, instead

of the physical default probability alone, in evaluating risk premium from stock returns.

However, we differ from Friewald et al. (2014) in three perspectives. First, we estimate the

risk premium from stock returns, instead of CDS spreads. Second, we deliver an analytical

solution to explicitly connect the default probability with risk premium for our model that

emphasizes debt renegotiation. Third, we find that the variation in the stock-cash flow

sensitivities is more important than that in the risk premiums to explain the cross-section

of stock returns in our comparative static study. Additionally, in the same spirit of Almeida

and Philippon (2007) that use the risk-neutral probability to estimate the expected distress

costs, we use it to calculate the expected value of recovered value for equity holders in the

stock-cash flow sensitivity.

The second strand is the emerging literature using agency-based models to study cross-

2For examples, Vassalou and Xing (2004) use the Merton (1974) model and document the positive relation
between the physical default probability and stock returns. Dichev (1998), Griffin and Lemmon (2002) and
Campbell, Hilscher, and Szilagyi (2008) find the negative relation between them.
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sectional stock returns. Most of the dynamic models use investment and financing frictions

to explain the asset pricing (Berk, Green, and Naik 1999; Gomes 2001; Bhamra, Kuehn, and

Strebulaev 2010). Recently, Favara, Schroth, and Valta (2011), Valta (2014) and Hackbarth,

Haselmann, and Schoenherr (2015) deliberately abstract from investment and financing poli-

cies and applies debt renegotiation to studying stock returns. We follow them and focus on

the bargaining game between equity and debt holders. Different from them that need good

empirical proxies for the strength of bargaining power at renegotiation in their regression

analysis, we directly estimate the strength of bargaining power from stock returns using

structural estimation. Indeed, our estimate of bargaining power, 0.58, from a sample of 15

portfolios is economically and statistically significant, therefore providing direct support for

this strand of agency-based models. We further demonstrate the significant impacts from

bargaining power on equity risk.

The third strand of the literature uses structural estimation to quantify the performance

of the dynamic models. Structural models of capital structure have received a lot of attention

recently (e.g., Leland 1994; Goldstein, Ju, and Leland (2001); Hennessy and Whited 2005;

Hennessy and Whited 2007; Strebulaev 2007). Strebulaev and Whited (2011) review the

dynamic models and structural estimation in capital structure and investments. For example,

Cochrane (1996) use GMM to study the implications of neoclassical investment model for

stock returns. Compared with their discrete-time models, our continuous-time model of

default risk faces the well-known difficulty in estimating the latent variables, such as the

risk-neutral growth rate and volatility of the underlying asset or cash flow process. The

IS-GMM procedure we adapt overcomes this difficulty. We contribute to this literature by

providing a new estimation method for the continuous-time models.

The remainder of this paper proceeds as follows. Section 1 presents the agency-based

contingent claims model. Section 2 explains the empirical specifications and procedures.

Section 3 describes the data and empirical measures. Section 4 adapts IS-GMM to estimate

the model and then examines the underlying mechanism in the stock-cash flow sensitivity.

Section 5 concludes the paper.

1 A Contingent Claims Model of Stock Returns

We start by developing a standard contingent claims model and then discuss how to take

the model to the data.

5



1.1 Model

Consider an economy with a large number of firms, indexed by subscript i. Following Hen-

nessy and Tserlukevich (2008), we assume that productivity-adjusted capital assets, Kit, for

a firm, i, are governed by the following stochastic differential equation:

dKit

Kit
= µ̂idt+ σidŴit, (1)

where µ̂i is the expected growth rate, σi is the instantaneous volatility parameter, and Ŵit

is a standard Brownian motion. The expected growth rate of productive assets, µ̂i = δi − ξi,

where δi is the investment rate and ξi is the depreciation rate. While the accumulation of

assets is determined by the capital investment and deprecation, but not necessarily all the

existing capitals are actively producing goods.

Given a “AK” production technology (e.g., Cox, Ingersoll, and Ross 1985), the productive

assets generate operating cash flows, Xit, at a constant rate of Ai > 0, i.e., Xit = AiKit.3

Because cash flows are proportional to capital assets, they have the same lognormal dynamics.

Hence, the observable rates of cash flows, rXit ≡ dXit/Xit, are as follows:

dXit

Xit
= µ̂idt+ σidŴit. (2)

The cash flows are expected to grow at the same rate, µ̂i, as the assets. The counterpart of

µ̂i under the risk-neutral probability measure is µi = µ̂i − λi, where λi is the risk premium.

At time 0, firm i chooses its optimal capital structure by issuing a perpetual bond of Bi

with a coupon payment of Ci. The cash flows are taxed at an effective rate, τeff . At any date

t, the firm first uses the operating cash flows to pay coupons and taxes, and receives a net

income, NIit = (Xit −Ci)(1− τeff ). Then, it distributes a fraction θ of the net income back

to equity holders as dividends, i.e., Dit = θNIit, and uses the rest to make an investment of

δiKit. In the spirit of Cochrane (1996), we assume the dividend-net income ratio, θ, is the

same across all the firms.4

The firm has an option to default, which leads to either immediate liquidation or debt

renegotiation. Upon liquidation, debt holders take over the remaining assets and liquidate

them at a fractional cost of α. Renegotiation incurs a constant fraction κ < α of the assets.

Because liquidation is more costly than renegotiation, debt holders are willing to renegotiate

3The “AK” technology is a special case of the Cobb-Douglas production function with constant returns
to scale.

4In our empirical implementation, we first follow Liu, Whited, and Zhang (2009) and estimate different
θ separately for three individual sets of portfolios, and then restrict θ to be equalized across all the sets of
portfolios.
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with equity holders. Renegotiation surplus α−κ > 0 is then shared between equity and debt

holders. Equity holders are able to extract a fraction η of the surplus, with η ≤ 1 denoting

their bargaining power.

Equity holders determine an optimal bankruptcy threshold XiB to maximize the equity

value Eit(Xit) that leads to the following conditions:

Eit(XiB) = η(α− κ)
XiB(1− τeff )

r − µi
, (3)

∂Eit

∂Xit

∣∣∣
Xit=XiB

= η(α− κ)
(1− τeff )

r − µi
, (4)

where r is the risk-free rate. Equation (3) is the value-matching condition, which states

the equity holders’ payoff in renegotiation. Equation (4) is the standard smooth-pasting

condition that enables equity holders to choose the optimal XiB to exercise their bankruptcy

option (Harrison 1985; Leland 1994).

In Proposition 1 we derive instantaneous stock returns, rMit , implied by our contingent

claims model.

Proposition 1 For Xit ≥ XiB, the instantaneous stock return rMit of firm, i, at time t is

rMit = rdt+ ϵit(r
X
it − µidt), (5)

and the instantaneous stock volatility

σM
it = ϵitσi, (6)

where ϵit is the sensitivity of stock to cash flows:

ϵit =
Xit∂Eit

Eit∂Xit

=1 +
Ci/r

Eit
θ(1− τeff )

︸ ︷︷ ︸
Financial leverage (+)

−
(1− ωi)

Eit

[
Ci

r
θ +

XiB

r − µi
(η(α− κ)− θ)

]
(1− τeff )πit

︸ ︷︷ ︸
Option to go bankrupt (+)

, (7)

and Eit is the equity value

Eit =

[(
Xit

r − µi
−

Ci

r

)
θ + (

Ci

r
θ +

XiB

r − µi
(η(α− κ)− θ))πit

]
(1− τeff ). (8)

where πit ≡ ( Xit

XiB
)ωi is the risk-neutral default probability, and ωi < 0 is given in equation
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(A12) of the Appendix. The optimal bankruptcy threshold is given by

XB =
θω(C/r)

(ω − 1)

r − µ

θ − η(α− κ)
. (9)

Proof: See the Appendix.

Equation (5) states that the model-predicted stock return rMit is the risk-free rate rdt

plus an excess cash flow rate, rXit − µidt, scaled by the stock-cash flow sensitivity ϵit. The

expected excess cash flow rate is the risk premium of cash flow rates, i.e., E(rXit −µidt) = λidt.

Moreover, as shown in equation (6), the instantaneous stock return volatility σM
it is the cash

flow volatility amplified by the time-varying sensitivity. While the underlying cash flow

volatility σi is constant, σM
it is changing over time depending on the sensitivity ϵit.

The stock-cash flow sensitivity ϵit in equation (7) plays an important role in connecting

the expected stock return, rMit , with the cash flow rates, rXit . It consists of three components.

The first one is the cash flow sensitivity, which is normalized to one. The second component

is the well-known financial leverage effect, because Ci/r is equivalent to the value of a

perpetual risk-free bond. The dividend–net income ratio, θ, amplifies this financial leverage

effect. Intuitively, equity holders leverage up their positions by issuing more debt. The

greater fraction θ equity holders can claim from their leveraged position, the more sensitive

their claims are to the fluctuating cash flows. To illustrate the impact of θ on the stock-

cash flow sensitivity, we calibrate this model using standard parameter values. Panel A of

Figure 1 shows that, consistent with this intuition, the stock-cash flow sensitivity significantly

increases with the dividend–net income ratio.

The option to go bankrupt gives rise to the last component of equation (7). The strategic

default policy, XiB, is affected by equity holders’ bargaining power η at bankruptcy. The

higher η, the more asset value equity holders can extract through debt renegotiation. There-

fore, their claim becomes less sensitive to the decline in cash flows at bankruptcy and has

less exposure to downside risk.5 Consistent with this reasoning, stock-cash flow sensitivity

declines monotonically with bargaining power, as shown in Panel B of Figure 1.

Note that the stock-cash flow sensitivity does not necessarily decrease with the risk-

neutral probability of default, πit ≡ (Xit/XiB)ωi . Their relationship depends on the relative

effect of financial leverage and the option to default. Consider two opposite cases: one

when the firm is very healthy and another when the firm is distressed. In the first case,

5Equity holders with greater bargaining power are willing to file for bankruptcy earlier than their counter-
parts with relatively lower bargaining power. Garlappi and Yan (2011) show that the bargaining power helps
us understand the hump-shaped relationship between default probability and cross-sectional stock returns.
Favara et al. (2011) provide international evidence regarding the negative impact of bargaining power on
equity risk.
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Xit is very large and a decrease in its value only slightly increases the likelihood of default.

However, at the same time, it increases the financial leverage component by decreasing its

denominator, Eit. Because the small increase in πit is negligible for the healthy firms, the

increase in financial leverage dominates and therefore boosts the stock-cash flow sensitivity.

Therefore, the higher default probability appears to be positively associated with the stock-

cash flow sensitivity for the healthy firms. In the second case, Xit is close to the default

boundary. The put option to go bankrupt becomes more valuable to the distressed firms

when πit increases. As a result, stocks with this embedded put option become less sensitive

to the decrease in cash flows. Hence, the negative effect of the default option dominates

the positive effect of leverage, resulting in a negative association between πit and ϵit among

the distressed firms. Consistent with this intuition, Garlappi and Yan (2011) identify an

inverted U-shaped relationship between πit and ϵit.

1.2 Default-related risk premium

To establish the link between the default risk premium with the default probability as in

Duffie and Singleton (2012), we simplify our model and consider a special case where the

risk-neutral growth rate is close to the risk-free rate. The following corollary connect the

instantaneous stock return with default risk.

Corollary 1 If the risk-neutral rate µi → r, the instantaneous stock return rMit of firm, i,

at time t for Xit ≥ XiB is

rMit =rdt+ ϵit
(
λidt+ σidŴit

)
, (10)

=rdt+ ϵit

[(
log(πit)− log(π̂it)

log(Xit)− log(XiB)
+ 1

)
σ2
i

2
dt+ σidŴit

]
. (11)

where π̂it ≡ ( Xit

XiB
)ω̂i is the physical (actual) default probability, and ω̂i < 0 is defined in the

Appendix.

Under the simplified assumption, we explicitly shows that the risk premium of the un-

derlying cash flows is given by [(log(πit) − log(π̂it))/(log(Xit) − log(XiB)) + 1]σ2
i /2 and is

indeed related to the default risk. It is intuitive that the risk-neutral probability of default

exceeds its actual proability for a risk-averse agent, i.e., log(πit)− log(π̂it). Combined with

the condition of Xit ≥ XiB, the model implies a positive risk premium λi. We call λi the

default-related risk premium in this framework, because the default risk is not the only

driving force of this risk premium.
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2 Empirical Design and Specification

2.1 Overview

To take the model to the data, we need to estimate the risk premium of the cash flow rates,

λidt, which can be modeled in the standard asset pricing frameworks. In the CAPM,

λidt = βX
i E(rmt − rdt), (12)

where βX
i is the market beta of cash flows and rmt is the market return. Favara et al.

(2011) assume the same βX
i across all the stocks and label ϵit the stock market beta. We

do not estimate βX
i because the market return rmt is unobservable (Roll, 1977) and different

estimation windows and data frequencies could result in lower estimation power. Rather, we

directly use the observable operating cash flows as our state variable and assume that they

capture the market movement. This approach is similar to Cochrane (1996), who infers real

macroeconomic shocks from firms’ investment returns.

We test the equality between the observed stock returns, rSit+1, and the predicted returns

from our contingent claim model, rMit+1, at the portfolio level as follows:

E[rSit+1 − rMit+1] = 0, (13)

where E[.] is an unconditional mean operator and Et[.] is a conditional mean operator for a

time series. We adapt IS-GMM to test the model.6

Assume that the model holds for each time t. To construct the predicted return rMit+1 in

equation (5), we take constant values of the market-wide variables from recent studies (e.g.,

Carlson, Fisher, and Giammarino 2004; Morellec, Nikolov, and Schrhoff 2012), including r,

α, κ, and τeff , and obtain the firm- and time- specific variablessuch as Xit, Ci, and Eit from

the data.7

The latent parameters, µi and σi, and, the two policy parameters, θ and η, are to be

estimated. We first discuss the procedure of how to back out the risk-neutral rate µi and the

cash flow volatility σi in Section 2.2 and then present our adapted IS-GMM procedure on

how to estimate θ and η in Section 2.3. Because we use the first moment of stock returns to

estimate the two policy parameters and use their second moment to back out the implied cash

flow volatility, we essentially jointly match the first and second moments of stock returns.

6The consistency and asymptotic normality of the IS-GMM estimators can be found in the Appendix of
Pan (2002).

7We take the coupon (or its associated debt) exogenously, because it is well known that a simple structural
model is not able to generate a low financial leverage observed in the data (Huang and Huang, 2003).

10



2.2 Unobservable risk-neutral cash flow rate and volatility

The parameters of cash flows, µi and σi, are not observable. Using the IS-GMM procedure

proposed by Pan (2002), we back out µi and σi from the observable market capitalization Sit

and stock return volatility σS
it. In her IS-GMM procedure, the latent stock return volatility is

the second time-varying state variable in the European stock option model. In contrast, both

the latent risk-neutral rate and volatility of cash flows are constant in our American option

framework. The constant parameters enable us to obtain the closed-form solution for the

optimal default threshold for the American option of going into bankruptcy. Our procedure

is also in the spirit of the commonly used Moody’s KMV method of credit risk (Crosbie and

Bohn, 2003). See e.g., Vassalou and Xing (2004); Bharath and Shumway (2008); Davydenko

and Strebulaev (2007).

Before finding the true values of θ and η, we initialize a pair of trial values for them

in each IS-GMM iteration loop, which we discuss further in the next section. Combining

the trivial values with the information set Θit = (Xit, Cit, Sit, σS
it, r,α,κ, τeff ), we solve the

following system of two equations for the two unknowns, µi(θ, η,Θit) and σi(θ, η,Θit):

Sit = Eit; (14)

σS
it = σM

it . (15)

Equation (14) states that the average of observed equity values equals that of predicted

equity values, and equation (15) shows the average of the observed volatility of stock returns

equals that of predicted volatility. In an early version, we estimate equity value and volatility

year by year and obtain time-varying cash flow rate and volatility. The results estimating the

time-varying rate and volatility are qualitatively similar. Sit and σS
it and obtained from the

data, while Eit and σM
it are calculated from equations (8) and (6). Therefore, by combining

equation (13) with (15), we effectively jointly test both first and second moments of stock

returns.

2.3 IS-GMM framework

Given the implied µi and σi for each period t, the discrete-time version of the predict return

from equation (5) is:

rMit+1 = r∆t+ ϵit+1

(
∆Xit+1

Xit
− µi∆t

)
, (16)

where ϵit+1 is the expected stock-cash flow sensitivity of t + 1 given the information up to

the end of June of each year t.
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We test the model at the annual frequency (∆t = 1). Our results hold when we test the

model at the quarterly frequency and are reported in the Internet Appendix. In addition to

potential specification errors, this discretization might suffer from measurement errors (Lo

1986).8 However, we can still test the weak condition of equations (13) as in Cochrane (1991)

and Liu et al. (2009). Our results in the Internet Appendix show that our main results still

hold when the model is tested at the quarterly frequency.

Denote b ≡ [θ, η]′. The pricing error for each portfolio i at time t is:

eMit (b,Θit) ≡ eMit (b,Θit, µi(b,Θit), σi(b,Θit)) = rSit+1 − rMit+1 (17)

and the expected pricing error for each portfolio, i, is:

eMi = E[eMit (b,Θit)]

= E[rSit+1 − rMit+1]

= E[rSit+1 − (r + ϵit+1(r
X
it+1 − µi))].

(18)

The sample moments of pricing errors are gT = [eM1 ...eMn ]′, where n is the number of

testing portfolios. If the model is correctly specified and empirical measures are accurate,

gT converges to zero for an infinite sample size. Both measurement and specification er-

rors contribute to the expected pricing errors. Under the weak condition of equation (13),

the objective of the IS-GMM procedure is to choose a parameter vector, b, to minimize a

weighted sum of squared errors (Pan 2002):

JT = g′

TWgT , (19)

s.t. 0 < θ ≤ 1, (20)

0 < η ≤ 1, (21)

where W is a positive-definite symmetric weighting matrix. Until the optimal parameter

vector b ≡ [θ, η]′ is found, both µi and σi are recalculated for each trial set of b in the IS-

GMM optimization loops. Following Cochrane (1991), we choose an identity matrix W = I

in one-stage IS-GMM. By weighting the pricing errors from individual portfolios equally, the

identity-weighting matrix preserves the economic structure of the testing assets (Cochrane

1996).9

In summary, we back out µi and σi from observable stock price and stock return volatility

8For instance, equity is a convex function of underlying cash flows. The aggregation of cash flows at the
portfolio level may induce a upward bias in equation valuation.

9A robustness check using two-stage IS-GMM is provided in the Internet Appendix.
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and estimate the optimal values of θ and η using the following IS-GMM procedure:

1. A trial set of b0 ≡ [θ, η]′ is initialized.

2. Given the initial values of b0 and information set of Θit, the expected µi and σi are

solved from the system of equations (14) and (15) for each portfolio-year observation.

3. Given b0 and Θit as well as the implied µi(b0,Θit) and σi(b0,Θit), ϵit+1 and rMit+1 are

calculated based on equation (16), respectively.

4. The pricing error eMi for each portfolio is obtained from (18) and the objective value

JT in equation (19) across all the portfolios is calculated.

5. Repeat from Step 1 until the optimal vector b ≡ [θ, η]′ is found that minimizes JT .

3 Data

We use daily and monthly stock returns from the Center for Research in Security Prices

(CRSP), as well as the Compustat annual industrial files from 1964 to 2010. We exclude

firms from the financial (SIC codes 6000 – 6999) and utility (SIC codes 4900 – 4999) sectors

and include all the common stocks listed on the NYSE, AMEX, and NASDAQ with CRSP

codes 10 or 11. For the Compustat data, we restrict the sample to firm-year observations

with non-missing values for operating income, debt, and total assets and with positive total

assets and debt. The three Fama–French factors are from Kenneth French’s website. We

follow Hou, Xue, and Zhang (2015) and construct the four q-factors for the investment-based

asset pricing model, such as the market factor, a size factor, an investment factor, and a

return on equity factor. Because of the limited availability of quarterly accounting data, the

four q-factors are from 1972 to 2010.

3.1 Variable measurement and parameter values

For the market-wide variables, the effective tax rate τeff is set to 15%, the expected liqui-

dation cost α = 0.45, the renegotiation cost κ = 0, and the after-tax annual risk-free rate

r = 3.6%.10

10Andrade and Kaplan (1998) consider 31 distressed firms and find the costs of financial distress to be 10%
– 20% of firm value. Korteweg (2010) finds bankruptcy costs amount to 15%–30%. Davydenko, Strebulaev,
and Zhao (2012) find that the cost of default is 21.7% of the market value of assets. Different from the
above papers, Glover (2015) argues that the bankruptcy costs estimated from defaulted firms are potentially
downward biased because those firms are likely to have smaller costs of bankruptcy and endogenously choose
high levels of debt, resulting in a high likelihood of default. He uses SMM to estimate a structural model
and shows that average firms are expected to lose 45% of firm value at bankruptcy.
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We follow Fama and French (1995) and Liu et al. (2009) and aggregate firm-specific

characteristics to portfolio-level characteristics. The most important state variable in this

study is the operating cash flows Xit. Following Glover (2015), we use operating income after

depreciation (Compustat item OIADP) to proxy for the operating cash flows. The operating

income observations are trimmed at the upper and lower one-percentiles to eliminate outliers

and eradicate errors. Sit is the observed equity value (price per share times the number of

shares outstanding) and coupon Cit is the total interest expenses (item XINT).11 Xit, Sit,

and Cit in year t are aggregated for all the firms in portfolio i formed in June of year t,

while σS
it is the annualized standard deviation of daily returns of the stock portfolios from

the beginning of July of year t−1 to the end of June of year t. rXt+1 is the percentage change

of the aggregate operating cash flows from year t to year t+ 1.

We use the observed operating income to proxy for Xit, and the updated, current coupon

payment Cit at time t to proxy for Ci. The empirical counterpart of Eit is the observed equity

market capitalization Sit, and the counterpart of σM
it is the annualized standard deviation of

the past one-year daily returns σS
it.

3.2 Testing portfolios

We employ three sets of testing portfolios: five market leverage portfolios, five book-to-

market portfolios, and five asset growth portfolios. We choose five portfolios for each asset

pricing anomaly to ensure that the simultaneous equations (15) and (14) are solvable for

all portfolio-year observations. We follow Liu et al. (2009) and Fama (1998) and use equal-

weighted portfolios because these portfolios are more difficult to be explained by asset pricing

models.

We follow Fama and French (1992) and construct stock portfolios with NYSE breakpoints

for every set of portfolios. Based on the ranking variables calculated at the end of year t−1,

we first sort firms into quintiles and then form equal-weighted portfolios at the end of each

June of year t. Then, we rebalance them each June. Raw returns of equal-weighted portfolios

are computed from the beginning of July of year t to the end of June of year t+ 1.

We use standard procedures to calculate ranking variables and form stock portfolios

(Fama and French 1992, 1993). The first ranking variable is market leverage, which is

calculated as book debt for the fiscal year ending in calendar year t− 1 divided by the sum

of book debt and market equity (ME) at the end of December of year t−1. Book debt is the

sum of short-term debt (Computstat item DLC) and long-term debt (item DLTT). ME is

price per share (CRSP item PRC) times the number of shares outstanding (item SHROUT).

11We use the most updated coupon payments instead of the fixed coupon payment.
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Book-to-market equity (BE/ME) ratio is the variable of interest for the second set of

portfolios. The ratio is calculated as book equity (BE) of the fiscal year ending in calendar

year t − 1 divided by the ME at the end of December of year t − 1. The BE is the book

value of equity (Computstat item CEQ) plus balance sheet deferred taxes (item TXDB)

and investment tax credit (ITCB, if available), minus the book value of preferred stock.

Depending on availability, we use redemption (item PSTKRV), liquidation (item RSTKL),

or par value (item PSTK) in that order to estimate the book value of preferred stock.

Observations with negative BE/ME are excluded.

The third variable considered is the asset growth rate for the asset growth portfolios.

Following Cooper et al. (2008), the asset growth rate is the percentage change in total assets

(Compustat item AT). The growth rate for year t − 1 is the percentage change from the

fiscal year ending in calendar year t− 2 to the fiscal year ending in calendar year t− 1.

3.3 Timing alignment

To match the observed stock returns rSit+1 with the returns rMit+1 predicted from our model, we

follow Liu et al. (2009) and align the inputs with the observed stock returns in Figure 2. The

only difference is that we need to incorporate the KMV procedure into the timing alignment.

To calculate the model-predicted returns, rMit+1, we need to obtain the operating cash flow

rate, rXit+1, and estimate the expected stock-cash flow sensitivity, ϵit+1 . First, to calculate

rXit+1, we use the operating income Xit reported at the end of year t and year t + 1 because

operating incomes are realized over the course of a year. Therefore, rXit+1 largely matches

with rSit+1 as in Liu et al. (2009). It is important to note that rXit+1 is not the ranking variable

so that we do not need to lag it. Instead, we test the instantaneous and contemporaneous

no-arbitrage relationship between cash flows and stocks. Our results are qualitatively the

same even if we lag rXit+1 by three months.

Second, to estimate ϵit+1, we use the KMV procedure to obtain the expected µi and σi.

The stock price Sit for calculating the equity value is at the end of June of year t and the

stock return volatility σS
it is the annualized standard deviation of daily returns of the stock

portfolios from the beginning of July of year t − 1 to the end of June of year t. All the

accounting variables used for the KMV procedure, including Xit and Cit, are at the end of

year t.

In the Fama–French portfolio approach, the set of firms in a portfolio formed in year t

is fixed from July of year t to June of year t + 1 for each portfolio. The stock composition

changes only at the end of June of year t+ 1 when the portfolios are rebalanced. Hence, we

keep the same set of firms in the portfolio in the formation year t until the rebalancing year
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t+ 1.

4 Empirical Results

We start with verifying pricing errors in traditional models and presenting summary statistics

for our model inputs. Then, we adapt IS-GMM to perform a structural estimation. We

use the counterfactual parameter value to examine the importance of bargaining power

and conduct comparative statics analysis to identify crucial factors. Lastly, we attempt

to examine the stock-cash flow sensitivity over the business cycle.

4.1 Pricing errors from alternative models

We first confirm the well-known pricing errors in our data. Table 1 reports the averages

of annualized monthly returns in percentages for equal-weighted quintile portfolios and for

the high-minus-low (H–L) and small-minus-big (S–B) hedge portfolios. The pricing errors,

such as eC from the CAPM, eFF from the Fama–French three-factor model, and eq from the

q-factor model, are estimated by regressing the time series of portfolio returns on the market

factor, the three Fama–French factors, and the four q-factors.

Market leverage portfolio: Panel A shows that stocks with a high market leverage earn

13.23% per year more than stocks with low leverage. The pricing error of the H–L portfolio

for the CAPM is 12.59% (t = 4.21) and decreases to 3.32% (t = 1.56) for the Fama–French

model. The m.a.e. is 8.93% per year for the CAPM and decreases to 3.62% for the Fama–

French model. These two decreases in pricing errors are consistent with the conclusion of

Fama and French (1992) that the book-to-market factor is able to explain the cross-sectional

returns of the market leverage portfolios. Similarly, the pricing error of the H–L portfolio

and m.a.e. decrease to 1.88% (t = 0.54) and 1.88%, respectively, for the q-factor model.

BE/ME portfolios : The average returns in Panel B monotonically increase with the book-

to-market ratio from 12.99% to 27.44% per year. After controlling for the market factor, the

H–L portfolio earns 15.31% (t = 5.95) per year and the m.a.e. is 8.79%. The performance of

the Fama–French model improves because the pricing error of the H–L portfolio decreases to

7.65% (t = 3.87) and the m.a.e. declines to 3.83%. The q-factor model shows a comparable

performance to the Fama–French model. The pricing error of the H–L portfolio is 7.33% (t

= 2.46) and the m.a.e. drops to 2.19%.

Asset growth portfolios : As shown in Panel C, high-growth firms earn 12.26% lower stock

returns per year than low-growth firms.12 This finding cannot be explained by the standard

12The difference is smaller than the difference of 20% per year documented by Cooper et al. (2008) because
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CAPM, the Fama–French model and the q-theory of investment. The errors of the H–L

portfolio from the CAPM, the Fama–French model and the q-factor model are −11.91%

(t = −6.29), −10.50% (t = −4.87) and −8.67% (t = −3.25), respectively. The m.a.e.’s for

asset growth portfolios are the greatest among all three sets of testing portfolios. The m.a.e.

is 9.17% for the CAPM, 4.24% for the Fama–French model, and 2.90% for the q-factor model.

The largest deviation, 10.90%, for the q-factor model is due to the low-growth portfolio.

Overall, we confirm the well-documented pricing errors from the alternative models in

our data sample. The newly proposed q-factor model generally performs better than the

traditional CAPM and the Fama–French model.

4.2 Summary statistics of model inputs and portfolio characteris-

tics

In Table 2 we summarize main inputs and portfolio characteristics for the three sets of

quintile portfolios. It reports the time series averages of earnings–price ratios, Xit/Sit, and

interest coverage ratios, Xit/Cit. The latter measures the financial health of the firms and

provides preliminary information about the financial leverage effect in the stock-cash flow

sensitivity, as shown in the second component of equation (7).

Market leverage portfolios : Unlike the monotonically increasing stock returns across the

market leverage portfolios, both the times series average of cash flow rates rXit+1 and their

correlations with the stock returns rSit+1 are slightly U-shaped. Additionally, while Xit/Sit

increases from 0.09 to 0.23, Xit/Cit dramatically declines from 21.00 to 2.12, implying that

high-leverage firms have difficulties covering their interest expenses. The stock volatility σS
it

is slightly U-shaped as well.

BE/ME portfolios : Similar to the market leverage portfolios, both rXit+1 and corr(rXit+1, r
S
it+1)

are slightly U-shaped. The unconditional correlation coefficient, corr(rXit+1, r
S
it+1), of the sec-

ond quintile portfolio is negative, but its magnitude is small and statistically insignificant.

The weak unconditional correlation between the cash flows rate and stock returns is not

against the model, because our model connect cash flows rate with stock returns via the con-

ditional, time-varying stock-cash flow sensitivity. The magnitude of the increase in Xit/Sit

across the BE/ME portfolios is comparable to that across the market leverage portfolios too.

Xit/Cit for the BE/ME portfolios declines from 9.77 to 3.14 and the decrease is considerably

smaller than that in the market leverage portfolios.

Asset growth portfolios : The decrease in the earnings-price ratios across the asset growth

portfolios is the opposite to the increases in the BE/ME portfolios, because low-growth

our sample requires positive debt and has other restrictions as well.
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firms are more likely to be value firms with larger equity-in-place. The spread in the interest

coverage ratios between the low-growth firms and the high-growth firms is only 1.67, the

smallest difference among the three sets of portfolios.

Taken together, the cash flow rates changes with the ranking variables in the same di-

rection as the average stock returns for all three sets of portfolios. The magnitude of the

changes in the average cash flow rates is considerably smaller than that in the average stock

returns, and the stock volatility is slightly U-shaped. Moreover, the spread in the interest

coverage ratios is the greatest for the market leverage portfolios; it is the smallest for the

asset growth portfolios.

4.3 Model estimation

Within the IS-GMM framework, we first estimate two parameters, dividend–net income ratio

θ and shareholder bargaining power η for the three sets of portfolios separately. Then, we

impose stricter condition and jointly estimate all the three sets of portfolios, because they

are internally consistent. Firms with high book-to-market equity have accumulated more

debt and therefore have more leverage; they have also exercised their growth options and

exhibit lower growth rates.

Panel A of Table 3 reports the parameter estimates and χ2 statistics for model fitness

when we match the predicted returns with the observed returns, as in equation (13). As

shown in Panel A, the estimates of dividend-net income ratio θ are 0.75, 0.63, and 0.80 for

market leverage, book-to-market equity, and asset growth portfolios, respectively. Given an

average price–earning ratio of 15 from the data, the estimated dividend–net income estimates

suggest a dividend payout ratio of 0.04 to 0.06, consistent with the data. Their respective

t-statistics indicate that the estimates are statistically significant at a 95% confidence level.

This estimated value of η is 0.57, 0.44 and 0.00, for market leverage, book-to-market equity,

and asset growth portfolios, respectively. Finally, when we pool all the three sets of portfolios

together, the estimates of θ and η in the last column are 0.74 and 0.58, respectively. The

estimate of 0.58 for η is close to the value of 0.5 chosen by Morellec et al. (2012) and the 0.6

assumed in Favara et al. (2011) in a Nash-bargaining game.

The χ2 statistic, which tests whether all the model errors are jointly zero, gives an overall

evaluation of model performance. For the sample of individual set of portfolios, the degrees

of freedom (d.f.) are three because the number of moments (or portfolios) is five and the

number of parameters is two. For the sample of all the three sets of portfolios, the d.f. is 13

because the number of moments (or portfolios) is 15 and the number of parameters is still

two. The p-values of the χ2 tests indicate that the model cannot be rejected for all three
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sets of testing portfolios, with a modest performance for the set of asset growth portfolios.

Panels B and C present the implied risk-neutral growth rate µi, and risk premium λi,

respectively. The results on the left hand side of these two panels are from the estimation

using individual set of portfolios, and those on the right hand side are using all the three

sets of portfolios jointly. Because these two sets of results are almost identical, we discuss

the estimates using the individual set of portfolios.

The risk-neutral rate µi does not contain information on the riskiness of the underlying

operating cash flows, and is negatively correlated with the stocks returns according to equa-

tion (5). Note that the risk-neutral rate is not the risk-free rate, and can be different across

assets. As shown in Panel B, all the µi’s are all small and close to zero, consistent with the

results obtained by Glover (2015). µi decreases by 1.08%, 1.16%, and 0.04% per year for

the leverage, BE/ME and asset growth portfolios, respectively. These small spreads indicate

that the large cross-sectional differences in stock returns are unlikely driven by the small

differences in these risk-neutral rates.

To gain some insight into default-related risk premium as shown in Corollary 1, we use

E(rXit ) to approximate µ̂i and calculate the risk premium λi = E(rXit )−mui. Panel C shows

that the default-related risk premium of underlying cash flow increases in financial leverage

and BE/ME, but declines in asset growth rate, suggesting that the underlying assets of firms

with high leverage, BE/ME and low asset growth have greater exposure to default risk. Note

that although this risk premium of the underlying assets is moving the same direction as

stock returns along the ranking variable, their spread is only about 3%, which is not big

enough to explain the large spread in stock returns for the three sets of stock portfolios.

Panel D reports the implied cash flow volatility σi. For the leverage portfolios, it declines

significantly from 25.58% to 17.20%, confirming our conventional wisdom that firms with

low operating risk have better access to debt markets and therefore have greater financial

leverage. The same declining pattern applies to the BE/ME portfolios, because value firms

accumulate debt during their expansion. However, the implied volatility increases slightly

by 3.41% for asset growth portfolios.

Overall, our contingent claims model performs well for all the individual set of portfolios,

with the modest performance for the set of asset growth portfolios. The relatively weak

statistical significance could be attributed to our small data sample. Additionally, it is well-

known that the consistent one-stage IS-GMM estimation gives relatively weaker statistical

performance, compared to the efficient two-stage IS-GMM estimation shown in the Internet

Appendix that delivers much higher t-statistics for the parameter estimates.

Because the estimates of θ, η, µi and σi using individual sets of portfolios are almost

identical to those using all the three sets of portfolios, we opt to report the results using the
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parameter values estimated from the sample consisting of all the three sets of portfolios for

the rest of the main text. Our unreported results using individual sets are slightly better.

4.4 Pricing errors from our contingent claims model

Using the joint estimates of θ, η, µi, and σi for the sample of three sets of portfolios in

Table 3, we construct the model predicted returns rMit+1 as in equation (16) and calculate

the expected pricing error eMi as in equation (17) for each individual portfolio. Panel A of

Table 4 reports the pricing errors from our model and compares the errors with those from

the alternative models. Although we evaluate the traditional models with standard ordinary

least squares (OLS) regression, we can compare the models because OLS is essentially the

same as one-stage GMM with an identity-weighting matrix in our structural estimation.

However, we are not able to compare the models.

Market leverage portfolios : The first row shows that the pricing errors vary from −1.54%

to 1.07% per year. Additionally, the pricing error of the H–L portfolio is 1.61% (t = 1.01),

which is not statistically significant. This error is smaller than 12.59% from the CAPM,

3.32% from the Fama–French model, and 1.88% from the q-factor model in Table 1. Figure 3

visually illustrates the model fitness and pricing errors. We plot the average predicted returns

against their realized returns for the contingent claims model, the CAPM, and the Fama–

French model. If a model fits the data perfectly, all the predicted returns should lie on the

45-degree line. As shown in the scatter plot in Panel A, the predicted average returns from

the contingent claims model reside on the 45-degree line. In contrast, the predicted returns

from the CAPM in Panel B are almost flat. Panel C shows that none of the predicted returns

from the Fama–French model lie on the 45-degree line. Although the predicted returns from

the q-factor model in Panel D show some improvement, the q-factor model has difficulty in

capturing the deviation of the high-leverage portfolio.

BE/ME portfolios : From the third row of Table 4, the H–L portfolio has a pricing error

of 1.79% per year, which is smaller than 15.31% in the CAPM, 7.65% in the Fama–French

model, and 7.33% in the q-factor model. This error from our model is mostly due to the

large deviation of −2.37% for the growth portfolio. The small error of −0.58% in the value

portfolio implies that our model is able to capture the default risk associated with value

firms. The m.a.e. is 1.21% per year, much lower than 8.79% from the CAPM, 3.83% from

the Fama–French model, and 2.19% from the q-factor model. Figure 4 provides a visual

confirmation. As shown in Panel A, the largest deviation from the 45-degree line is the

growth portfolio. In Panel B, the predicted returns from the CAPM are almost horizontal.

The Fama–French model in Panel C and the q-factor model in Panel D perform better, but
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they are not able to predict the returns of the value portfolio.

Asset growth portfolios : The difference in the pricing errors between the high- and low-

growth portfolios is −5.97% per year, which is much less than −11.91% from the CAPM,

−10.50% from the Fama–French model, and −8.67% from the q-factor model in Table 1.

Panel A of Figure 5 shows that the average predicted returns generally align with the realized

returns. The predicted returns for the low- and high-asset growth portfolios are slightly out

of line. In sharp contrast, the predicted returns from the CAPM and the Fama–French

model are almost flat. Although the q-factor model improves significantly, it fails to predict

the average stock return of the low-growth rate portfolio.

In summary, our model outperforms the alternative models for the default-risk related

portfolios.13 Our model performs best for the market leverage portfolios and the BE/ME

portfolios, and predicts the expected returns of value firms well. Although the model per-

forms modestly for the asset growth portfolios, it delivers a much better fit than the CAPM,

the Fama–French three-factor model, and the q-factor model.

4.5 Cross-sectional properties of default probabilities and stock-

cash flow sensitivities from our fitted model

The sensitivity ϵit+1 from our method is a structural estimate instead of a reduced-form

estimate from rolling regressions in other studies. Given the optimal estimates of θ and η,

we obtain the implied risk-neutral rate µi and cash flow volatility σi by solving equations (14)

and (15) for each portfolio. Then, we calculate the risk-neutral probability πit = (Xit/XiB)ωi
and the stock-cash flow sensitivity ϵit+1 according to equation (7).14

The means of the risk-neural default probability are reported in Panels B of Table 4. For

the leverage portfolios, the default probability increases by 36.62%from 10.62% for the lowest

leverage portfolio to 47.24% for the highest leverage portfolio. For the BE/ME portfolios,

13Note that the pricing errors in the q-factor model are for the sample period of 1972 to 2010 because of the
limited quarterly data for constructing the factors. Without re-estimating our contingent claims model for
this specific period and using the estimates from Table 3, the H–L portfolio’s pricing errors (m.a.e.) from our
model are –0.19% (1.34%) for the market leverage portfolios, 3.20% (1.21%) for the BE/ME portfolios, and
–5.63% (1.78%) for the asset growth portfolios, respectively, for the same period of 1972 to 2010. Overall,
they are still smaller than those from the q-factor model in Table 1.

14The reasons we consider the risk-neutral probability are as follows. First, it is the risk-neutral default
probability, instead of the objective probability, that determines the stock-cash flow sensitivity. Similar
to Almeida and Philippon (2007) that use the risk-adjusted default probability for calculating expected
distress costs, we use the risk-neutral default probability for the expected value of the put option of going
bankrupt, the third component of the sensitivity; Second, the physical default probability and the risk-
neutral probability are monotonically associated (Garlappi and Yan, 2011). Third, we do not back out the
objective expected rate of cash flows, µ̂i, in our IS-GMM estimation and the instantaneous realized cash flow
rate rXit observed from the data is not the expected one and is noisy.
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the increase in πit is 23.05%. For the asset growth portfolios, the difference in πit between

the low- and high-asset growth portfolios is only 5.13%, the smallest among the three sets of

portfolios. Overall, the magnitude is consistent with the findings by Almeida and Philippon

(2007) that the risk-neutral probabilities ranges from 1.65% for AAA bonds to 62.48% for

B bonds with a 10-year maturity.15

Panels C of Table 4 reports the means of the stock-cash flow sensitivity. For the leverage

portfolios, firms with more debt have a higher stock-cash flow sensitivity, as shown in the

increasing means of ϵit along the market leverage. For the BE/ME portfolios, the pattern

and magnitude of ϵit are very similar to those for the leverage portfolios. These similarities

are a manifestation of the portfolio characteristics in Table 1. Because investment and debt

financing are positively correlated, firms with relatively more book assets and fewer growth

opportunities have higher financial leverages, which in turn result in high default probability

and stock-cash flow sensitivity. For the asset growth portfolios, the difference in the stock-

cash flow sensitivity is 0.14, only about one fifth of 0.57 in the leverage portfolios.

When comparing the default probability and stock-cash flow sensitivity across different

sets of portfolios, we have two main observations. First, while the spread in default prob-

ability between the high and low quintile portfolios is the largest in leverage portfolios, it

is the smallest in asset growth firms. Second, the spread in the sensitivity is sizable in the

market leverage portfolios and BE/ME portfolios but is much smaller in the asset growth

portfolios. Through a comparative statics analysis in Section 4.7, we further show that the

cross-sectional spread in the sensitivities is the key to understanding the value, leverage and

asset growth premiums.

4.6 Importance of bargaining power

Before examining the crucial role of the stock-cash flow sensitivity in stock returns, we

investigate the model specification first because the sensitivity is largely determined by the

two policy parameters. For the dividend-net income ratio, most of the capital structure

models assume firms distribute all the residuals back to equity holders as dividends, i.e.,

θ = 1. This is not necessarily true because it is likely that firms might use the residuals

of operating cash flows to make investments. For the parameter of bargaining power, it is

commonly assumed in the capital structure literature there is no renegotiation and equity

holders simply walk away and receive nothing at bankruptcy, i.e., η = 0. However, empirical

studies, including Gilson et al. (1990), Franks and Torous (1989), and Asquith et al. (1994),

find that equity holders recover a considerable fraction of assets at bankruptcy.

15We follow the literature and model a perpetual bond. Therefore, we compare the expected default
probability of our perpetual bond to those of 10-year bonds reported by Almeida and Philippon (2007).
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To demonstrate the importance of bargaining power in modeling the stock-cash flow sen-

sitivity, we use the counterfactual parameter value and examine the changes in pricing errors,

default probabilities and sensitivities. Specifically, we set the bargaining power parameter

η = 0, while keeping the estimates of all the other parameters from the fitted model in

Table 3. We repeat the same procedure for the dividend-net income ratio and the results

in the Internet Appendix show that the change of θ has only small effects on the stock-cash

flow sensitivity.

Panel A of Table 5 reports the expected errors. Compared with those in Table 4, the

m.a.e. increases from 0.80 to 2.13 for the set of leverage portfolios, and from 1.21 to 2.92

for the set of BE/ME portfolios. The significant increase in the m.a.e. is largely due to

the mispricing for the high-leverage portfolio and the value portfolio. However, the m.a.e.

decrease slightly from 2.09 to 1.90 for the asset growth portfolio, because we set η = 0, which

is the same as the optimal estimate for the individual set of asset growth portfolios in the

third column of Panel A in Table 3.

Without debt renegotiation, equity holders receive nothing at bankruptcy and have incen-

tives to delay bankruptcy, which results in a low endogenous default probability. Compared

with their counterparts in Table 4, the risk-neutral default probabilities and their difference

between the high- and low quintile portfolios in Panel B are smaller, particularly for the

high-leverage portfolio and the value portfolio.

The stock-cash flow sensitivities in Panel C increase overall. This is consistent with the

implication from Panel B of Figure 1 that equity holders expose greater downside risk when

they have no bargaining power, i.e., η = 0, to recover anything at bankruptcy. Particularly,

the stock-cash flow sensitivity increases to 2.12 from 1.63 (in Panel C of Table 4) for high-

leverage firms and increases to 1.85 from 1.54 for value firms, when their default probabilities

are very high. This sharp contrast demonstrates that, for firms with high default probabili-

ties, equity holders’ bargaining power can effectively reduce the equity risk, proxied by the

sensitivity of stock to cash flows.

In summary, by using the counterfactual parameter value to remove bargaining power,

a realistic feature in our model, we demonstrate that bargain power can effectively protect

equity holders from downside risk when the likelihood to default is very high.

4.7 Pricing errors from comparative statics analysis

Given the reasonably good performance of our contingent claims model, we follow Liu et al.

(2009) and perform a comparative statics analysis to identify the most important factor in

the model. We first set an input to its cross-sectional average for each year. We then use
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the joint parameter estimates from the sample of all the three sets of portfolios in Table 3

to recalculate the expected stock return according to equations (5) and (7), while keeping

all other inputs unchanged. A large increase in the expected pricing errors or m.a.e. implies

that this certain input is important in explaining the cross-sectional stock returns.

Aside from the state variable, operating cash flows Xit, the main inputs in our model

include historical stock return volatility σS
it, coupon Cit and equity value Sit. We set them

to their cross-sectional average each year, and need to use the new inputs and the parameter

estimates to recalculate µi and σi before we construct ϵit+1 and rMit+1. For Cit and Sit,

rather than fixing them to their cross-sectional averages, we set Sit = Xit/(X̃it/Sit) and

Cit = Xit/(X̃it/Cit), where X̃it/Sit and X̃it/Cit are the cross-sectional averages of earnings–

price and interest coverage ratios, respectively.Then, we use its average and the parameter

estimates from Table 3 to recalculate rMit+1, while keeping all the other model inputs the

same.

Recall the stock return is the product of the risk premium λi and ϵit+1. To evaluate

the their importance, we use their cross-sectional averages directly from the benchmark

estimation without recalculating µi and σi. We use E(rXit ) to approximate µ̂i. Because λi =

E(rXit )−µi is constant for each portfolio, the cross-sectional average, λ̃i, is the constant across

all the portfolio and over time. Because both λi and ϵit+1 do not need to invoke recalculations

of µi and σi, this exercise provides a direct comparison between the contributions of λi and

ϵit+1 to the cross-sectional variation of predicted stock returns. Table 6 reports the results.

Market leverage portfolios : In Panel A, the stock-cash flow sensitivity is the most impor-

tant determinant, followed by the earnings–price ratio and risk premium λi. By removing

the cross-sectional variation of ϵit+1, the pricing error of the H–L portfolio jumps to 10.35%

per year from 1.61% per year in the benchmark model.16 The m.a.e. increases from 0.80%

to 3.57%. The effects from the cash flow rates, interest coverage ratios, and stock volatility

are much smaller.

BE/ME portfolios : Similar to the market leverage portfolios, the stock-cash flow sensi-

tivity dominates other model inputs. The lack of cross-sectional variation in ϵit+1 increases

the m.a.e. to 2.90% from 1.21% in the benchmark model. The effects of the risk premium

and the earnings–price ratio are very similar, with the risk premium slightly better. The

lowest impact is observed when the cross-sectional average of stock volatility is an input.

Asset growth portfolios : Consistent with the modest performance of our model for the

asset growth portfolios shown in Table 3 and 4, the effects of eliminating the cross-sectional

variations of model inputs are relatively small in Table 6. The pricing error of the H–L

16Admittedly, the CAPM has only one degree of freedom, while our model has two parameters to fit the
45-degree line.
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portfolio in absolute value increases from 5.97% in the benchmark model to 10.63% after

fixing the cross-sectional variation in λi. This increment is greater than the one resulting

from the elimination of the cross-sectional variation in ϵit+1. Although the pricing error of

the H–L portfolio suggests that λi is slightly more important than ϵit+1, the m.a.e. that

evaluates the overall performance across all the quintile portfolios indicates the opposite

inference. After fixing ϵit+1 to its cross-sectional average, the m.a.e. increases from 2.09%

in the benchmark model to 3.25%, which is greater than 2.57% due to fixing rXit+1 to its

cross-sectional average.

Overall, the cross-sectional variation in the stock-cash flow sensitivity is the most impor-

tant determinant for alleviating the pricing errors for the market leverage, BE/ME market

and asset growth portfolios, followed by the risk premium and the earnings–price ratio.

Moreover, the cross-sectional variation of the historical stock volatility has the least impact

on the expected pricing errors among all the inputs we consider.17

4.8 Stock-cash flow sensitivities over the business cycle

Having demonstrated the importance of the stock-cash flow sensitivity in the cross-section,

we proceed to investigate its economic information content over the business cycle. More

important, we use the counterfractual parameter value to demonstrate how the bargaining

power can help equity holders to alleviate their downside risk.

4.8.1 Default probabilities and stock-cash flow sensitivities

We inspect default probability first and then the sensitivity, as the sensitivity is partially

determined by the risk-neutral default probability.

We plot the time series of the risk-neutral probability of default and the stock-cash flow

sensitivity in Figures 7 and 8, respectively. We use NBER recessions to classify the cycles.

Panel A of Figure 7 shows that high-leverage firms have greater default probabilities than

low-leverage firms, particularly during recessions. The highest default probability for the

high-leverage portfolio is about 29% in the 1980 recession. In Panel B, BE/ME portfolios

exhibit the same pattern as those of market leverage portfolios, with the two spikes of default

probability for the value portfolio occurring in 1975 and 1991. This likely similarity arises

because value firms accumulate debt during their investment expansions. However, as shown

in Panel C, the difference in default probabilities between low- and high-growth firms is much

smaller compared with that in Panels A and B.

17This implies that including stochastic volatility as the second state variable does not necessarily improve
the model’s performance.
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The stock-cash flow sensitivity, ϵit, is partially determined by the risk-neutral default

probability. Figure 8 shows the times series of the stock-cash flow sensitivity over the business

cycle and Table 7 provides the average of the sensitivities ϵit during expansions and recessions,

respectively. Consistent with the default probability in Figure 7, Panels A and B show that

high-leverage and value firms are considerably more sensitive to cash flows than low-leverage

and growth firms, particularly during NBER recessions. As shown in Panel C, low-growth

firms are more sensitive to the business cycles. Similar to the observations in Figure 7 for

the cross-sectional spread in default probabilities, Figure 8 shows that the spread in the

stock-cash flow sensitivities between the high- and low-growth firms is not as significant as

that in the market leverage and BE/ME portfolios.

4.8.2 Increases in stock-cash flow sensitivity when equity holders have no bar-

gaining power

We have shown that bargaining power allows equity holders to alleviate their exposure to

the cash flow risk cross-sectionally in Section 4.6. Next, we proceed to examie whether

equity holders benefit more from their bargaining power in recessions than in expansions.

We calculate the difference in the stock-cash flow sensitivity, ζit = ϵNoBP
it − ϵit, and obtain

their averages during the expansions and recessions, respectively, for each portfolio.

Three observations emerge from Panel B of Table 7. First, the difference in the sensitiv-

ities ζit is very trivial for the low leverage portfolio, growth portfolio and high growth rate

portfolio in both expansions and recessions, and there is no much difference in ζit between

expansions and recessions for these portfolios. The negligible difference in the sensitivity

indicates that bargaining power is not important for equity holders of healthy firms. Second,

for the high-leverage portfolio with a high default probability, the average of ζit is 0.36 in

expansions and 0.89 in recession and for the value portfolio, the sensitivity is 0.22 in expan-

sions and 0.63 in recessions. These sharp contrasts in ζit between expansions and recessions

demonstrate that the bargain power is important for equity holders of firms with a high

default probability, particularly in recessions. Third, for the asset growth portfolios, the

difference in the average of ζit between expansions and recessions is trivial across all the

five asset growth rate portfolios, because the default probabilities of all the asset growth

portfolios are small.

In summary, stocks are more sensitive to their underlying operating cash flows during

recessions when default probabilities are high than they are during expansions when default

probabilities are low. The large spreads in the counter-cyclical stock-cash flow sensitivities

help explain the high-leverage premium, the value premium, and the asset growth premium.

Lastly, equity holders’ bargaining power helps alleviate their downside risk, particularly in
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recessions.

5 Conclusion

We develop an agency-based contingent claims model for cross-sectional stock returns. The

state variable is operating cash flows and the two policy parameters are related to dividend

payout and strategic default policies. We adapt IS-GMM to test the model for equal-weighted

stock portfolios formed on market leverage, book-to-market equity, and asset growth rate.

Our contingent claims model outperforms the CAPM, the Fama–French three-factor model,

and the q-factor model in explaining the cross-sectional variation in stock returns.

The success of our model can be attributed to its ability to capture the sensitivities of

stocks to their underlying operating cash flows. The stock-cash flow sensitivity is affected by

dividend payout policy and shareholder bargaining power. Our counterfactual study shows

that the bargaining power can significantly alleviate equity holders’ exposure to downside

risk, particularly in recessions.

The stock return predicted from our model is the product of the default-related risk pre-

mium and the stock-cash flow sensitivity. Our comparative static analysis shows that the

cross-sectional variation in the sensitivities is more important than that in the default-related

risk premiums. We find that the default probabilities and the stock-cash flow sensitivities

of value stocks, high-leverage stocks, and low-asset growth stocks are greater than those

of growth stocks, low-leverage stocks, and high-asset growth stocks, particularly during re-

cessions. It is the large spread in the stock-cash flow sensitivities that helps explain the

cross-sectional spreads in stock returns for the market leverage, book-to-market and asset

growth portfolios.

Our work demonstrates that a simple agency-based model successfully explains the cross-

sectional variation in stock returns for three sets of stock portfolios related to default risk.

Admittedly, we do not intend to use this model to explain all the asset pricing anomalies.

Instead, our objective is to show that the right choice of the model is important to understand

certain anomalies. However, because our model deliberately abstracts from investments

and financing, we are not able to directly compare our default risk-based model with the

investment-based model. It is fruitful to embed our agency-based model into an investment-

based framework, which allows a more direct comparison across different model within a

framework. We leave this exercise to future studies.
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Figure 1: Stock-cash flow sensitivity
This figure plots the stock-cash flow sensitivity ϵi against dividend–net income ratio θ (in
Panel A) and shareholder bargaining power η (in Panel B). Parameters are r = 3.6%, τeff
= 15%, µi = 0, σi = 0.25, α = 0.30, and κ = 0. Xi is normalized to one.
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t t+ 1 t+ 2

December/January December/January December/January

June/July June/July June/July

rS
it+1

rX
it+1

rM
it+1 = ϵit+1(rXit+1 − µi)

σS
it

ϵit+1

Sit, Xit, Cit Xit+1

Figure 2: Timing alignment
This figure shows the timing alignment between model inputs and observed stock returns.
rXit+1 is the rate of operating cash flows and rSit+1 is the return of a stock portfolio from July
of year t to June of year t+1. Sit is the equity value at the end of June of year t, Xit is the
operating cash flows, and Cit is the interest expenses at the end of year t. Stock volatility
σS
it is the annualized standard deviation of the daily returns of stock portfolios from the

beginning of July of year t− 1 to the end of June of year t. ϵit+1 is the expected stock-cash
flow sensitivity given the information up to the end of June of each year t.
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Figure 3: Market leverage portfolios: average predicted stock returns versus av-
erage realized returns
This figure plots the time series averages of predicted returns from the contingent claims
model, the CAPM, the Fama–French model, and the investment-based q-factor model against
the average realized returns. In the contingent claims model, the predicted returns are calcu-
lated based on equation (16) using the parameter estimates from the last column of Table 3.
High leverage denotes the high leverage quintile and low leverage denotes the low leverage
quintile.
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Figure 4: BE/ME portfolios: average predicted stock returns versus average re-
alized returns
This figure plots the time series averages of predicted returns from the contingent claims
model, the CAPM, the Fama–French model, and the investment-based q-factor model against
the average realized returns. In the contingent claims model, the predicted returns are calcu-
lated based on equation (16) using the parameter estimates from the last column of Table 3.
Value denotes the high BE/ME quintile and growth denotes the low BE/ME quintile.
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Figure 5: Asset growth portfolios: average predicted stock returns versus average
realized returns
This figure plots the time series averages of predicted returns from the contingent claims
model, the CAPM, the Fama–French model, and the investment-based q-factor model against
the average realized returns. In the contingent claims model, the predicted returns are
calculated based on equation (16) using the parameter estimates from the last column of
Table 3. High growth denotes the high-asset growth quintile and low growth denotes the
low-asset growth quintile.
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Figure 6: All three sets of portfolios: average predicted stock returns versus av-
erage realized returns
Each panel of this figure plots the time series averages of predicted returns from the contin-
gent claims model, the CAPM, the Fama–French model, and the investment-based q-factor
model against the average realized returns. In the contingent claims model, the predicted
returns are calculated based on equation (16) using the parameter estimates from the last
column of Table 3.
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Figure 7: Time series of risk-neutral default probability
This figure plots time series of default probability, πit, against years for the market leverage
portfolios (Panel A), the book-to-market portfolios (Panel B), and the asset growth portfolios
(Panel C). The shaded areas are for NBER recessions. The thick, solid lines are for the cross-
sectional averages of default probabilities across all the quintile portfolios. The line with dots
(–.) is for the first quintile portfolio, the line with circles (-o) for the third quintile portfolio,
and the line with stars (-*) for the fifth quintile portfolio.
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Figure 8: Time series of stock-cash flow sensitivity
This figure plots time series of stock-cash flow sensitivity, ϵit, against years for the market
leverage portfolios (Panel A), the book-to-market portfolios (Panel B), and the asset growth
portfolios (Panel C). The shaded areas are for NBER recessions. The stock-cash flow sensi-
tivity is calculated based on equation (7) using the parameter estimates from Table 3. The
thick, solid lines are for the cross-sectional averages of the stock-cash flow sensitivity across
all the quintile portfolios. The line with dots (–.) is for the first quintile portfolio, the line
with circles (-o) for the third quintile portfolio, and the line with stars (-*) for the fifth
quintile portfolio.
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Figure 9: Increases in stock-cash flow sensitivity when equity holders have no
bargaining power
This figure plots time series of the increase in stock-cash flow sensitivity, ζit = ϵNoBP

it − ϵit,
against years for the market leverage portfolios (Panel A), the book-to-market portfolios
(Panel B), and the asset growth portfolios (Panel C). ϵNoBP

it is calculated by setting bargaining
power η = 0. The shaded areas are for NBER recessions. The stock-cash flow sensitivity
is calculated based on equation (7) using the parameter estimates from Table 3. The thick,
solid lines are for the cross-sectional averages of the stock-cash flow sensitivity across all the
quintile portfolios. The line with dots (–.) is for the first quintile portfolio, the line with
circles (-o) for the third quintile portfolio, and the line with stars (-*) for the fifth quintile
portfolio.
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Table 1: Pricing errors of testing portfolio returns from alternative models
This table reports the annualized average stock return, rsit+1, the pricing error from the
CAPM regression, eCi , the pricing error from the Fama-French (FF) three-factor regression,
eFF
i , and the pricing error from the q-factor regression, eqi , for each quintile portfolio. rsit+1,
eCi , and eFF

i are reported in percent. The H–L portfolio is long in the high portfolio and
short in the low portfolio. The t-statistics for the pricing errors are reported in parentheses.
m.a.e. is the mean absolute error in annual percent for each set of testing portfolios.

Panel A. Market Leverage Portfolios
Low 2 3 4 High H–L m.a.e.

rSit+1 13.61 15.91 17.53 20.43 26.84 13.23
eCi 3.54 6.29 8.17 10.54 16.13 12.59 8.93
(t) (1.76) (3.34) (3.85) (4.09) (4.66) (4.21)
eFF
i 3.07 2.59 2.77 3.28 6.39 3.32 3.62
(t) (1.89) (1.90) (2.25) (2.15) (3.40) (1.56)
eqi 2.50 0.45 0.20 −0.50 5.76 1.88 1.88
(t) 1.01 0.30 0.15 −0.34 2.13 0.54

Panel B. BE/ME Portfolios

rSit+1 12.99 15.06 17.84 20.15 27.44 14.45
eCi 2.41 5.35 8.07 10.42 17.72 15.31 8.79
(t) (1.16) (2.85) (3.65) (4.20) (5.71) (5.95)
eFF
i 1.76 1.45 2.83 3.70 9.41 7.65 3.83
(t) (1.16) (1.15) (2.07) (2.58) (5.03) (3.87)
eqi 0.06 −0.57 0.70 0.02 9.57 7.33 2.19
(t) 0.02 −0.43 0.47 0.02 3.89 2.46

Panel C. Asset Growth Portfolios

rSit+1 26.13 20.40 17.60 17.07 13.87 −12.26
eCi 15.63 11.01 8.27 7.20 3.72 −11.91 9.17
(t) (5.44) (4.71) (4.22) (3.65) (1.75) (−6.29)
eFF
i 10.26 4.54 3.36 2.83 −0.24 −10.50 4.24
(t) (5.15) (3.23) (2.42) (2.13) (−0.18) (−4.87)
eqi 10.90 1.09 0.01 −0.84 −1.66 −8.67 2.90
(t) 4.56 0.84 0.01 −0.59 −1.01 −3.25
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Table 2: Summary statistics of portfolio characteristics
This table presents summary statistics for the characteristics of portfolios formed on market
leverage, book-to-market equity, and asset growth rate. rXit+1 is the time series average of
cash flow rates in annual percent from time t to time t+1 after portfolios are formed at time
t; corr(rXit+1, r

S
it+1) is the time series correlation coefficient between rXit+1 and rSit+1; and σS

it is
the time series average of annualized daily volatility of stock portfolio in percent calculated
from one-year daily stock returns before the portfolio formation. Xit/Sit is the time series
average of earnings–price ratios and Xit/Cit is the time series average of interest coverage
ratios.

Panel A. Market Leverage Portfolios
Low 2 3 4 High H–L

rXit+1 10.36 8.44 9.41 9.35 12.41 2.05
corr(rXit+1,r

S
it+1) 0.21 0.11 0.08 0.10 0.21 0.01

Xit/Sit 0.09 0.12 0.15 0.17 0.23 0.14
Xit/Cit 21.00 8.74 5.62 3.71 2.12 −18.88

σS
it 26.99 24.79 24.79 25.42 28.24 1.24

Panel B. BE/ME Portfolios

rXit+1 9.92 8.57 8.69 11.12 13.43 3.52
corr(rXit+1,r

S
it+1) 0.16 −0.02 0.04 0.20 0.21 0.05

Xit/Sit 0.09 0.13 0.15 0.17 0.20 0.11
Xit/Cit 9.77 6.42 5.08 4.16 3.14 −6.63

σS
it 28.83 25.98 25.26 25.24 26.91 −1.92

Panel C. Asset Growth Portfolios

rXit+1 12.80 11.61 7.70 8.37 9.84 −2.96
corr(rXit+1,r

S
it+1) 0.20 0.14 0.03 0.11 0.03 −0.17

Xit/Sit 0.14 0.14 0.13 0.12 0.11 −0.03
Xit/Cit 3.87 5.21 6.40 7.15 5.54 1.67

σS
it 27.94 23.75 23.16 24.35 28.28 0.34
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Table 3: Parameter estimates and model fitness
This table reports the parameter estimates from one-stage IS-GMM with an identity-
weighting matrix for the data over the 1965 to 2010 period. The first moment condition
E[rsit+1 − rMit+1] = 0 is tested for all the quintile portfolios, in which E[.] is the sample mean
of the series in parentheses. Panel A reports the dividend–net income ratio, θ, and the
shareholder bargaining power, η. Panels B, C and D report the risk-neutral rate, µi, implied
risk premium λi, and volatility σi, of cash flows, respectively. Their associated t-statistics
are reported in parentheses. The χ2-statistics are reported with the associated degrees of
freedom (d.f.) and p-values. We first estimate the parameters for the three sets of port-
folios, individually. Then, we pool all the three sets of portfolios and jointly estimate the
parameters.

Panel A. Estimates of Parameter
Leverage BE/ME Asset Growth All

θ 0.75 0.63 0.80 0.74
(2.21) (2.04) (2.30) (2.28)

η 0.57 0.44 0.00 0.58
(2.27) (1.22) (0.00) (2.32)

χ2 2.23 2.41 7.42 9.05
d.f. 3.00 3.00 3.00 13.00
p-value 0.53 0.49 0.06 0.77

Panel B. Implied Risk-Neutral Rate µi(%)
Leverage BE/ME Asset Growth Leverage BE/ME Asset Growth

Low −0.63 −0.02 −1.09 −0.60 −0.62 −0.98
2 −1.57 −1.04 −1.85 −1.55 −1.76 −1.67
3 −1.94 −1.30 −2.01 −1.91 −2.03 −1.78
4 −1.94 −1.21 −1.68 −1.92 −1.90 −1.43
High −1.71 −1.18 −1.13 −1.71 −1.86 −0.92

Panel C. Implied Risk Premium λi(%)
Leverage BE/ME Asset Growth Leverage BE/ME Asset Growth

Low 10.99 9.94 13.89 10.96 10.54 13.78
2 10.02 9.60 13.46 9.99 10.33 13.28
3 11.34 9.99 9.71 11.32 10.72 9.48
4 11.30 12.33 10.06 11.28 13.02 9.81
High 14.12 14.62 10.96 14.12 15.29 10.76

Panel D. Implied Volatility σi(%)
Leverage BE/ME Asset Growth Leverage BE/ME Asset Growth

Low 25.58 26.10 19.00 25.59 25.78 20.47
2 21.28 21.61 17.36 21.30 21.25 18.17
3 19.35 19.63 17.94 19.38 19.29 18.53
4 17.91 18.31 19.77 17.95 18.03 20.25
High 17.20 17.42 22.41 17.32 17.52 23.08
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Table 4: Pricing errors, default probability and stock-cash flow sensitivity from
fitted models
This table presents the expected pricing errors in percent in Panel A, risk-neutral default
probability in Panel B, and stock-cash flow sensitivity in Panel C for each quintile portfolio
from the fitted model. The model is estimated using one-stage IS-GMM with an identity-
weighting matrix. We construct the predicted returns, risk-neutral default probabilities and
stock-cash flow sensitivities using the parameter estimates from the sample of all the three
sets of portfolios in Table 3. The expected return errors are defined as eMi = E[rsit+1−rMit+1], in
which E[.] is the sample mean of the series in parentheses. The H denotes the highest quintile
portfolio and the L denotes the lowest quintile portfolio. The H–L portfolio is long in the
high portfolio and short in the low portfolio. The heteroscedasticity- and autocorrelation-
consistent t-statistics for the model errors are reported in parentheses. m.a.e. is the mean
absolute error for each set of testing portfolios.

Panel A. Expected pricing error
Low 2 3 4 High H–L m.a.e.

Market Leverage −1.54 0.77 −0.55 1.07 0.07 1.61 0.80
(−1.26) (1.03) (−0.52) (0.78) (0.06) (1.01)

BE/ME −2.37 −1.06 0.33 −1.69 −0.58 1.79 1.21
(−1.73) (−1.24) (0.29) (−1.11) (−0.48) (1.42)

Asset Growth 3.33 −0.50 2.22 1.74 −2.64 −5.97 2.09
(1.56) (−0.41) (2.51) (1.75) (−1.36) (−2.95)

Panel B. Risk-neutral default probability (in %)
Low 2 3 4 High H–L

Market Leverage 10.62 18.57 25.49 32.09 47.24 36.62
BE/ME 17.58 23.82 27.93 31.06 40.63 23.05
Asset Growth 28.41 24.29 21.66 19.48 23.28 −5.13

Panel C. Stock-cash flow sensitivity
Low 2 3 4 High H–L

Market Leverage 1.05 1.16 1.28 1.42 1.63 0.57
BE/ME 1.12 1.22 1.31 1.40 1.54 0.42
Asset Growth 1.36 1.31 1.25 1.20 1.23 −0.14
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Table 5: Pricing errors, default probability and stock-cash flow sensitivity from
the model without bargaining power

This table presents the expected pricing errors in percent in Panel A, risk-neutral default
probability in Panel B, and stock-cash flow sensitivity in Panel C for each quintile portfolio.
We construct the predicted returns, risk-neutral default probabilities and stock-cash flow
sensitivities using the parameter estimates from the sample of all the three sets of portfolios
in Table 3, except that we set the shareholders’ bargaining power η = 0. The expected
return errors are defined as eMi = E[rsit+1 − rMit+1], in which E[.] is the sample mean of the
series in parentheses. The H denotes the highest quintile portfolio and the L denotes the
lowest quintile portfolio. The H–L portfolio is long in the high portfolio and short in the low
portfolio. The heteroscedasticity- and autocorrelation-consistent t-statistics for the model
errors are reported in parentheses. m.a.e. is the mean absolute error for each set of testing
portfolios.

Panel A. Expected pricing error
Low 2 3 4 High H–L m.a.e.

Market Leverage −1.55 0.66 −0.97 0.12 −7.34 −5.78 2.13
(−0.67) (0.27) (−0.24) (0.03) (−2.72) (−3.66)

BE/ME −2.44 −1.28 −0.12 −2.96 −7.78 −5.34 2.92
(−0.69) (−0.56) (−0.03) (−0.90) (−4.64) (−3.17)

Asset Growth 2.02 −1.08 1.99 1.58 −2.84 −4.86 1.90
(0.79) (−0.64) (0.79) (0.80) (−0.86) (−2.13)

Panel B. Risk-neutral default probability (in %)
Low 2 3 4 High H–L

Market Leverage 9.73 16.76 22.82 28.34 41.09 31.36
BE/ME 16.13 21.59 25.07 27.43 35.63 19.49
Asset Growth 25.01 21.31 19.15 17.35 21.02 −3.99

Panel C. Stock-cash flow sensitivity
Low 2 3 4 High H–L

Market Leverage 1.06 1.18 1.32 1.51 2.12 1.06
BE/ME 1.13 1.25 1.36 1.50 1.85 0.73
Asset Growth 1.44 1.35 1.28 1.22 1.25 −0.19
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Table 6: Expected pricing errors from comparative statics analysis
This table reports the pricing errors from a comparative statics analysis. For σS

it, ϵit+1, and
λi, we set them to their cross-sectional averages each year for each quintile portfolio. For Cit

and Sit, instead of fixing them to their cross-sectional averages, we set Sit = Xit/(X̃it/Sit)

and Cit = Xit/(X̃it/Cit) and recalculate µi and σi using the parameters estimates from the

sample of all the three sets of portfolios in Table 3, where X̃it/Sit and X̃it/Cit are the cross-
sectional earnings–price ratio and interest coverage ratio, respectively. Then, we reconstruct
the theoretical return rMit , while keeping all the other parameters unchanged. We report the
expected return errors, defined as eri = E[rsit+1−rMit+1], and the mean absolute errors (m.a.e.)
for each quintile portfolio and for the high-minus-low (H–L) hedging portfolios. The H–L
portfolio is long in the high portfolio and short in the low portfolio.

Panel A. Market Leverage Portfolios
Low 2 3 4 High H–L m.a.e.

Xit/X̃it/Sit −7.47 −1.63 −1.76 1.21 2.05 9.52 2.82

Xit/X̃it/Cit −1.99 0.76 −0.13 1.78 1.98 3.98 1.33

σ̃S
it −1.54 0.78 −0.52 1.09 0.04 1.58 0.79

ϵ̃it+1 −3.45 1.27 1.55 4.68 6.90 10.35 3.57

λ̃i −2.28 −1.24 −0.96 0.35 4.26 6.54 1.82

Panel B. BE/ME Portfolios

Xit/X̃it/Sit −7.30 −2.76 −0.18 −2.24 0.80 8.10 2.65

Xit/X̃it/Cit −2.74 −1.15 0.55 −1.08 1.68 4.42 1.44

σ̃S
it −2.40 −1.06 0.36 −1.63 −0.59 1.81 1.21

ϵ̃it+1 −3.46 0.27 2.93 1.89 5.94 9.40 2.90

λ̃i −3.63 −2.78 −1.01 0.25 5.95 9.59 2.73

Panel C. Asset Growth Portfolios

Xit/X̃it/Sit 0.76 −3.14 1.39 −0.38 −6.09 −6.85 2.35

Xit/X̃it/Cit 4.83 −0.30 2.13 1.57 −2.72 −7.55 2.31

σ̃S
it 3.14 −0.43 2.27 1.76 −2.70 −5.84 2.06

ϵ̃it+1 5.80 1.61 3.90 2.49 −2.46 −8.27 3.25

λ̃i 6.64 1.57 −0.55 −0.54 −3.99 −10.63 2.66
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Table 7: The stock-cash flow sensitivities over the business cycle
This table presents the average of the stock-cash flow sensitivities, ϵit, during expansions
and recession in Panel A. It further reports the increases in the stock-cash flow sensitivity,
ζit = ϵNoBP

it − ϵit, due to the lack of the bargaining power in Panel B. We construct the
stock-cash flow sensitivities, ϵit, using the parameter estimates from the sample of all the
three sets of portfolios in Table 3. Keeping the same parameter values as for ϵit, we construct
ϵNoBP
it by setting the parameter of bargaining power η = 0.

Panel A. Stock-cash flow sensistivity from fitted model, ϵit
Leverage BE/ME Asset Growth

Expansion Recession Expansion Recession Expansion Recession
Low 1.05 1.07 1.11 1.14 1.35 1.42
2 1.15 1.19 1.21 1.25 1.30 1.34
3 1.26 1.34 1.30 1.35 1.23 1.30
4 1.39 1.49 1.37 1.48 1.19 1.25
High 1.61 1.68 1.50 1.64 1.22 1.26

Panel B. Increase in stock-cash flow sensistivity, ζit = ϵNoBP
it − ϵit

Expansion Recession Expansion Recession Expansion Recession
Low 0.00 0.00 0.01 0.01 0.07 0.10
2 0.01 0.02 0.02 0.03 0.04 0.06
3 0.03 0.06 0.04 0.06 0.02 0.04
4 0.08 0.14 0.08 0.15 0.02 0.03
High 0.36 0.89 0.22 0.63 0.02 0.03

47



Appendix

A Proofs

A.1 Proof of Proposition 1

Define a new Brownian motion:

Wit = Ŵit +

∫ t

0

θ(s)ds, (A1)

where θ = λi/σi is the price of risk. Girsanov’s theorem states that, under a risk-neutral

measure, the operating income Xit is governed by

dXit

Xit
= µidt+ σidWit. (A2)

For the rest of the proof, we drop the subscripts i and t for ease of notation.

Ito’s lemma implies that the equity value E satisfies

dE

E
=

1

E

(
∂E

∂t
+ µ̂x

∂E

∂X
+

σ

2
X2 ∂

2E

∂X2

)
dt+

1

E
Xσ

∂E

∂X
Ŵ. (A3)

The standard non-arbitrage argument gives us the following partial differential equation

(PDE):
∂E

∂t
+ µX

∂E

∂X
+

σ2

2
X2 ∂

2E

∂X2
− rE +D = 0. (A4)

Plugging equation (A4) back into equation (A3), we obtain

dE

E
=

1

E

[
(µ̂− µ)X

∂E

∂X
+ rE −D

]
dt+

1

E
Xσ

∂E

∂X
dŴ . (A5)

Simple algebraic manipulation yields

dE +Ddt

E
− rdt =

1

E

[
(µ̂− µ)X

∂E

∂X

]
dt+

1

E
Xσ

∂E

∂X
dŴ , (A6)

and
dE +Ddt

E
− rdt =

X

E

∂E

∂X
(µ̂dt+ σdŴ − µdt). (A7)

Hence, the relation between the stock return and the cash flow rate is established as
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follows:
dE +Ddt

E
− rdt =

X

E

∂E

∂X

(
∂X

X
− µdt

)
= ϵ

(
∂X

X
− µdt

)
. (A8)

Adding back the subscripts of i and t, we obtain

rMit = rdt+ ϵit(r
X
it − µidt), (A9)

which is equation (5).

Taking conditional expectation for the second moment of equation (A7), we can easily

obtain the instantaneous return volatility as follows:

σM
it = ϵitσi. (A10)

Next, we provide the derivation of equity value E(X) and its sensitivity to cash flows X.

The general solution for equity value E(X) to equation (A4) is

E(X) =

(
X

r − µ
−

c

r

)
θ(1− τeff ) + g1X

ω + g2X
ω′

, (A11)

where ω and ω′ are the roots of the following quadratic equation:

1

2
σ2ω(ω − 1) + µω − r = 0. (A12)

The two roots are

ω =
1

2
−

µ

σ2
−

√(
µ

σ2
−

1

2

)2

+ 2
r

σ2
< 0, (A13)

and

ω′ =
1

2
−

µ

σ2
+

√(
µ

σ2
−

1

2

)2

+ 2
r

σ2
> 1. (A14)

The standard no-bubble condition, limX→∞E(X)/X < ∞, implies g2 = 0. The value-

matching condition in equation (3) gives

g1 =

[(
1

XB

)ω (c

r
θ +

XB

r − µ
(η(α− κ)− θ

)]
(1− τeff ). (A15)

Hence, before bankruptcy X > XB, equity value is

E =

[(
X

r − µ
−

c

r

)
θ +

(
c

r
θ +

XB

r − µ
(η(α− κ)− θ)

)(
X

XB

)ω]
(1− τeff ). (A16)
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The smooth pasting condition in equation (4) gives the optimal bankruptcy threshold

XB =
θω(C/r)

(ω − 1)

r − µ

θ − η(α− κ)
. (A17)

It is easy to show that XB decreases with θ. The more dividend equity holders receive,

the greater incentive they have to keep the firm alive. Hence, they delay bankruptcy if the

dividend–net income ratio is high. Moreover, XB increases with η. Intuitively, if equity

holders have greater bargaining power, they are willing to file for bankruptcy earlier because

they are able to extract more rent from debt holders through debt renegotiation.

The sensitivity of stocks to operating cash flows X is

ϵ =
X∂E

E∂X

=
1

E

[
θX

r − µ
(1− τeff ) + g1ωX

ω

]

=
1

E

[
E +

c

r
θ(1− τeff )− g1X

ω + g1ωX
ω
]

=1 +
c/r

E
θ(1− τeff ) +

(ω − 1)

E
g1X

ω

=1 +
c/r

E
θ(1− τeff )−

(1− ω)

E

[
c

r
θ +

XB

r − µ
(η(α− κ)− θ)

]
(1− τeff )

(
X

XB

)ω

.

(A18)

Adding back the subscripts of i and t, we have have the time-varying stock-cash flow

sensitivity ϵit as in equation (7) for each firm i. !

A.2 Proof of Corollary 1

By directly applying the property of hitting time distribution of a geometric Brownian motion

according to equation (11) of p.14 on Harrison (1985), we obtain the cumulative physical

default probability π̂ for the firm issuing a perpetual bond, i.e. T → ∞.

π̂it = (
Xit

XiB
)−2(µ̂i−0.5σ2

i
)/σ2

i . (A19)

When µi → r, we obtain ωi → −2r/σ2
i from equation (A13). Therefore,

πit = (
Xit

XiB
)ωi → (

Xit

XiB
)−2r/σ2

i . (A20)
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By taking logarithm of π̂it and πit, we can easily obtain

λi = µ̂i − r =

(
log(πit)− log(π̂it)

log(Xit)− log(XiB)
+ 1

)
σ2
i

2
. (A21)

B GMM

Let D = ∂gT/∂b and S be a consistent estimate of the variance-covariance matrix of the

sample error gT . We use a standard Bartlett kernel with a window length of five to estimate

S.

The estimate of b, denoted b̃, is asymptotically normal-distributed as follows:

b̃ ∼ N(b,
1

T
(D′WD)−1D′WSWD(D′WD)−1). (A1)

If W = S−1, the GMM estimator is optimal or efficient in the sense that the variance is as

small as possible.

To make statistical inferences for the pricing errors of individual portfolios or groups of

pricing errors, we construct the variance-covariance matrix for the pricing errors gT

var(gT ) =
1

T
[I−D(D′WD)−1D′W]S[I−D(D′WD)−1D′W]′. (A2)

To test whether all the pricing errors are jointly zero, we perform a χ2 test as follows:

g′

Tvar(gT )
+gT ∼ χ2(d.f. = #ofmoments−#ofparameters), (A3)

where the superscript + denotes pesudo-inversion.
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Internet Appendix

A Time series correlations between observed and model

predicted returns and volatilities

Equations (5) and (6) implies that predicted stock returns and volatilities equal their ob-

served counterparts literally at every data point. However, as pointed by Cochrane (1991),

there is no such choice of parameters for which the predicted and observed returns are exactly

equal at every data point in the investment-based asset pricing model. In this contingent

claims model, we have matched the first moment of stock returns as in equation (13) and

use the second moment of stock returns to back out the implied cash flow volatility as in

equation (15). Next, we impose much stricter tests and examine the time series correlation

between observed returns and volatilities and their predicted counterparts.

Panel A of Table A2 reports the contemporaneous time-series correlation coefficients

between observed and predicted stock returns and their associated p-values. For the leverage

quintile portfolios, the time series correlation coefficients are positive and range from 0.07

to 0.21. Their high p-values indicate that the correlation coefficients are not statistically

significant, possibly due to the small sample (i.e., 46 observations for each quintile portfolio).

However, when we pool all the observations of the five quintile portfolios together, the

correlation between observed and model-predicted returns becomes 0.17, which is statistically

significant at the 1% level. Similar observations apply to the BE/ME and asset growth

portfolios.

Panel B reports the contemporaneous correlation coefficients between observed and pre-

dicted stock return volatilities. For the set of leverage portfolios, the correlation coefficients

for each quintile portfolio are all positive but not statistically significant. The exception is

the lowest quintile portfolio with a correlation coefficient of 0.32, which is significant at the

3% level. Moreover, by pooling the observations of all the five quintile portfolios to increase

the sample size, we obtain a correlation coefficient of 0.21, which is statistically significant

as well. The correlation coefficients for the book-to-market and asset growth portfolios are

0.20 and 0.23, respectively, and both of them are statistically significant.

In short, we find positive and significant contemporaneous correlations between observed

returns and volatilities and their predicted counterparts. Admittedly, the contemporaneous

correlation is not very high because there is no such choice of parameters for which the

predicted and observed returns are exactly equal at every data point (Cochrane, 1991).
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B Two-Stage IS-GMM

As Cochrane (1996) points out, while two-stage efficient IS-GMM pays more attention to

statistical efficiency, one-stage consistent IS-GMM focuses on economic structure. The es-

timates from efficient IS-GMM could be misleading if the estimated covariance matrix of

the sample moment is poorly measured. Table A3 reports the parameter estimates from a

two-stage IS-GMM estimation using an inverse variance-covariance weighting matrix. The

estimates of θ are greater than those from the one-stage IS-GMM estimation. The t-statistics

become much greater because two-stage IS-GMM is more efficient in terms of the smaller

variance. The results in Panels B and C are close to those in Table 3. Table A4 presents

the pricing errors. The model performs well for all the three sets of testing portfolios. The

results are very similar to those generated from the one-stage IS-GMM estimation.

C Quarterly Frequency
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Table A1: Pricing errors, default probability and stock-cash flow sensitivity from
models with fixed payout policy

This table presents the expected pricing errors in percent in Panel A, risk-neutral default
probability in Panel B, and stock-cash flow sensitivity in Panel C for each quintile portfolio
from the model without renegotiation. We construct the predicted returns, risk-neutral
default probabilities and stock-cash flow sensitivities using the parameter estimates from the
sample of all the three sets of portfolios in Table 3, except that we set the dividend-net
income ratio θ = 1. The expected return errors are defined as eMi = E[rsit+1− rMit+1], in which
E[.] is the sample mean of the series in parentheses. The H denotes the highest quintile
portfolio and the L denotes the lowest quintile portfolio. The H–L portfolio is long in the
high portfolio and short in the low portfolio. The heteroscedasticity- and autocorrelation-
consistent t-statistics for the model errors are reported in parentheses. m.a.e. is the mean
absolute error for each set of testing portfolios.

Panel A. Expected pricing error
Low 2 3 4 High H–L m.a.e.

Market Leverage −1.54 0.74 −0.68 0.79 −1.76 −0.22 1.10
(−0.56) (0.32) (−0.31) (0.49) (−0.96) (−0.15)

BE/ME −2.39 −1.13 0.20 −2.06 −2.33 0.06 1.62
(−0.85) (−0.52) (0.10) (−0.86) (−1.20) (0.05)

Asset Growth 2.95 −0.68 2.15 1.69 −2.70 −5.65 2.04
(1.30) (−0.56) (1.06) (0.76) (−0.87) (−2.19)

Panel B. Default Probability (in %)
Low 2 3 4 High H–L

Market Leverage 10.37 18.06 24.74 31.02 45.48 35.10
BE/ME 17.18 23.19 27.13 30.03 39.20 22.02
Asset Growth 27.44 23.44 20.94 18.88 22.64 −4.80

Panel C. Stock-cash flow sensitivity
Low 2 3 4 High H–L

Market Leverage 1.06 1.17 1.29 1.44 1.75 0.70
BE/ME 1.12 1.23 1.32 1.43 1.62 0.50
Asset Growth 1.39 1.32 1.26 1.21 1.23 −0.16
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Table A2: Time Series Correlations
This table reports the contemporaneous time-series correlations between observed stock re-
turns rSit and predicted returns rMit in Panel A and the correlations between observed stock
return volatility σS

it and predicted volatilities σM
it in Panel B. Their associated p-values are re-

ported in parentheses. We construct the predicted returns rMit using the parameter estimates
from the sample of all the three sets of portfolios in Table 3. We first assess the correlations
at the individual quintile portfolio level, and report them at the first five columns. The H
denotes the highest quintile portfolio and the L denotes the lowest quintile portfolio. The
All denotes all the five quintile portfolios of each set.

Panel A. corr(rSit, r
M
it )

Low 2 3 4 High All
Leverage 0.21 0.11 0.07 0.12 0.20 0.17

(0.17) (0.48) (0.63) (0.44) (0.19) (0.01)
BE/ME 0.16 −0.03 0.03 0.21 0.21 0.17

(0.30) (0.85) (0.85) (0.16) (0.15) (0.01)
Asset Growth 0.18 0.13 0.04 0.11 0.03 0.14

(0.23) (0.39) (0.78) (0.46) (0.84) (0.04)

Panel B. corr(σS
it,σ

M
it )

Leverage 0.32 0.28 0.11 0.08 0.24 0.21
(0.03) (0.06) (0.47) (0.62) (0.11) (0.00)

BE/ME 0.05 0.12 0.03 0.06 0.32 0.20
(0.72) (0.42) (0.85) (0.71) (0.03) (0.00)

Asset Growth 0.13 −0.01 0.23 0.15 −0.02 0.23
(0.38) (0.96) (0.12) (0.33) (0.87) (0.00)
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Table A3: Parameter Estimates and Model Fitness from Two-Stage IS-GMM
This table reports the parameter estimates from two-stage IS-GMM with an inverse variance-
covariance weighting matrix. The first moment condition E[rsit+1− rMit+1] = 0 is tested across
all quintile portfolios, in which E[.] is the sample mean of the series in brackets. θ is the
dividend–net income ratio and η is the shareholder bargaining power. Their associated t-
statistics are reported in brackets. The χ2-statistics are reported with the associated degrees
of freedom (d.f.) and p-values.

Panel A. Estimates of Parameter
Leverage BE/ME Asset Growth All

θ 0.98 0.70 0.86 0.76
(3.15) (3.51) (3.03) (5.96)

η 0.64 0.41 0.58 0.60
(3.17) (1.31) (0.57) (6.92)

χ2 2.25 2.41 7.39 9.05
d.f. 3.00 3.00 3.00 13.00
p-value 0.52 0.49 0.06 0.77

Panel B. Implied Risk-Neutral Rate µ(%)
Leverage BE/ME Asset Growth Leverage BE/ME Asset Growth

Low −1.87 −0.40 −1.48 −0.70 −0.72 −1.07
2 −2.96 −1.49 −2.28 −1.66 −1.87 −1.78
3 −3.29 −1.74 −2.43 −2.02 −2.14 −1.89
4 −3.16 −1.61 −2.07 −2.03 −2.01 −1.54
High −2.64 −1.51 −1.47 −1.81 −1.96 −1.02

Panel C. Implied Volatility σ(%)
Leverage BE/ME Asset Growth Leverage BE/ME Asset Growth

Low 25.26 25.86 19.85 25.56 25.74 20.41
2 20.70 21.29 17.74 21.25 21.20 18.11
3 18.64 19.25 18.17 19.33 19.23 18.49
4 17.08 17.84 19.89 17.91 17.99 20.20
High 16.24 16.74 22.61 17.35 17.52 23.02
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Table A4: Expected Pricing Errors from Fitted Models from Two-Stage IS-GMM
The table presents the pricing errors for each quintile portfolio from two-stage IS-GMM
estimation with an inverse variance-covariance weighting matrix. The expected return errors
are defined eMi = E[rsit+1−rMit+1], in which E[.] is the sample mean of the series in parentheses.
Panel A reports the dividend–net income ratio, θ, and the shareholder bargaining power, η.
Panels B and C report the risk-neutral rate, µi, and volatility σi, of cash flows, respectively.
Their associated t-statistics are reported in parentheses. The χ2-statistics are reported with
the associated degrees of freedom (d.f.) and p-values. We first estimate the parameters for
the three sets of portfolios, individually. Then, we pool all the three sets of portfolios and
jointly estimate the parameters.

Low 2 3 4 High H–L m.a.e.
Market Leverage −1.65 0.61 −0.74 0.88 −0.05 1.61 0.79

(−0.61) (0.24) (−0.20) (0.27) (−0.01) (1.13)
BE/ME −2.50 −1.23 0.15 −1.89 −0.71 1.79 1.29

(−0.85) (−0.45) (0.04) (−0.58) (−0.15) (1.81)
Asset Growth 3.15 −0.69 2.06 1.59 −2.79 −5.94 2.05

(0.77) (−0.23) (0.72) (0.59) (−0.77) (−2.82)
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Table A5: Summary statistics of portfolio characteristics for quarterly data
This table presents summary statistics for the characteristics of portfolios formed on market
leverage, book-to-market equity, and asset growth rate. rXit+1 is the time series average of
cash flow rates in annual percent from time t to time t+1 after portfolios are formed at time
t; corr(rXit+1, r

S
it+1) is the time series correlation coefficient between rXit+1 and rSit+1; and σS

it is
the time series average of annualized daily volatility of stock portfolio in percent calculated
from one-year daily stock returns before the portfolio formation. Xit/Sit is the time series
average of earnings–price ratios and Xit/Cit is the time series average of interest coverage
ratios.

Panel A. Market Leverage Portfolios
Low 2 3 4 High H–L

rXit+1 13.45 9.21 9.45 5.55 9.48 −3.97
corr(rXit+1,r

S
it+1) 0.08 −0.03 0.10 0.01 0.13 0.05

Xit/Sit 0.02 0.03 0.04 0.04 0.06 0.04
Xit/Cit 23.60 8.94 5.46 3.52 1.92 −21.68

σS
it 25.24 22.31 22.08 22.10 23.91 −1.33

Panel B. BE/ME Portfolios

rXit+1 9.88 8.54 8.70 11.13 11.87 1.99
corr(rXit+1,r

S
it+1) −0.01 0.01 0.05 0.13 0.17 0.18

Xit/Sit 0.02 0.03 0.04 0.04 0.05 0.03
Xit/Cit 8.26 5.92 4.79 3.81 2.58 −5.68

σS
it 25.86 23.62 22.82 22.59 22.48 −3.38

Panel C. Asset Growth Portfolios

rXit+1 13.65 11.69 7.66 8.98 7.43 −6.21
corr(rXit+1,r

S
it+1) 0.15 0.09 0.07 −0.03 0.00 −0.15

Xit/Sit 0.03 0.04 0.03 0.03 0.03 −0.00
Xit/Cit 3.29 4.80 5.94 6.94 5.13 1.84

σS
it 23.83 22.06 21.70 22.48 25.18 1.35
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Table A6: Parameter estimates and model fitness for quarterly data
This table reports the parameter estimates from one-stage IS-GMM with an identity-
weighting matrix for the data over the 1965 to 2010 period. The first moment condition
E[rsit+1 − rMit+1] = 0 is tested for all the quintile portfolios, in which E[.] is the sample mean
of the series in parentheses. We report the dividend–net income ratio, θ, and the share-
holder bargaining power, η. The χ2-statistics are reported with the associated degrees of
freedom (d.f.) and p-values. We first estimate the parameters for the three sets of port-
folios, individually. Then, we pool all the three sets of portfolios and jointly estimate the
parameters.

Panel A. Estimates of Parameter
Leverage BE/ME Asset Growth All

θ 0.93 0.67 0.81 0.79
(2.25) (1.84) (2.10) (2.09)

η 0.70 0.57 0.79 0.63
(1.94) (1.26) (1.01) (1.86)

χ2 2.60 1.33 2.69 11.24
d.f. 3.00 3.00 3.00 13.00
p-value 0.46 0.72 0.44 0.59

Table A7: Expected pricing errors from fitted models for quarterly data
This table presents the pricing errors in percent for each quintile portfolio from one-stage
IS-GMM with an identity-weighting matrix. We construct the predicted returns using the
parameter estimates from the sample of all the three sets of portfolios in Table 3. The
expected return errors are defined as eMi = E[rsit+1 − rMit+1], in which E[.] is the sample mean
of the series in parentheses. The H denotes the highest quintile portfolio and the L denotes
the lowest quintile portfolio. The H–L portfolio is long in the high portfolio and short in
the low portfolio. The heteroscedasticity- and autocorrelation-consistent t-statistics for the
model errors are reported in parentheses. m.a.e. is the mean absolute error for each set of
testing portfolios.

Low 2 3 4 High H–L m.a.e.
Market Leverage −1.83 1.45 −0.01 4.69 1.19 3.01 1.83

(−0.80) (0.84) (−0.01) (1.77) (0.55) (1.08)
BE/ME −1.08 −0.46 0.28 −3.31 −0.81 0.27 1.19

(−0.50) (−0.33) (0.14) (−1.17) (−0.38) (0.12)
Asset Growth −0.10 −3.08 2.24 0.35 0.99 1.10 1.35

(−0.03) (−1.31) (1.06) (0.21) (0.35) (0.28)
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