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Abstract

We apply a functional principal component analysis on momentum-
sorted cross section return controlled by Fama-French three factors in
Chinese “A” share market. We find that the momentum e�ect is not
as weak as evidenced in existing literature, in precondition of rich
risk patterns explored. On the basis of extracted risk patterns, we
construct two functional momentum factors. Firstly, an elaborate
version of conventional momentum factor. Secondly, an extreme mi-
nus mediocre risk factor which is explained by the disposition e�ect.
Additionally, we conduct static and dynamic eigenfunction portfolio
using risk pattens. Our finding shows the static portfolio outper-
forms conventional contrarian strategy, and can be further reinforced
by adjusting positions as long as achieving the prediction in functional
scores.

Keywords: Momentum, Functional principal component analysis,
Chinese “A” share stock return, Eigenfunction portfolio
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1. Introduction

To model cross sectional equity return, Fama and French (1992) and Carhart
(1997) developed well-known factors of market premium, size, value and mo-
mentum. Despite, numerous empirical studies being carried out using these
models world-wide1, arguments that the variation in cross sectional return
cannot be fully explained by these four factors have been on the rise. Theo-
retically, these four factors should be able to obtain insignificant risk-adjusted
return in both of developed and emerging stock markets. Interestingly, while
all the other three factors explain cross section stock returns in China, mo-
mentum factor presents insignificant interpretation in Chinese stock market
(Wong et al. (2006), Wu (2011), Cheung et al. (2014) and Cakici et al. (2015),
amongst others). The possible arguments for the failure of momentum fac-
tor in Chinese market are extreme high market volatility and explosion of
systematic risk.

In the domestic “A” share market2, the investor is mainly consisted by
households rather than institutions in developed markets, for instant in the
U.S market. Given the composition of “A” share market, it is obviously
that risk is higher compared with U.S. market. The standard deviation of
Shanghai stock composite index is as high as 973.17 during 2005 to 2015,
compared with 336.65 for S&P 500 in U.S. Is this really making investors
stop to invest in such a risky market? The answer apparently is ‘No’. The
striking interesting role of Chinese government explains this phenomenon.
For the purpose of keeping economic growth, Chinese regulators target to
increase wage level and therefore boost domestic demands. However, a crash
in stock market would directly reduce total wealth of households, which goes
against policy target. As a result, Chinese government have to bail the
market out during financial crises. Thus, investors’ expectation is largely
formulated by government commitment, and the stock market becomes very
volatile and liquid. Although, this might be beneficial to household investors,
it is probably not helpful for building a healthy financial system in the future.

Another possible reason for insignificant momentum factor in China is
the explosion of systematic risk. Market anomalies can vanish or totally
reverse during a specific period in the stock market, especially during sys-

1See Blitz et al. (2011), Fama and French (2015), Gandhi and Lustig (2015), amongst
others.

2Chinese A share market is dominated in Chinese Yuan/CNY, and is mainly accessible
for local investors.
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tematic risk exploding period. For instant, the crash of momentum strategy
has been a concern of the U.S. hedge fund industry for many years (Grundy
and Martin (2001), De Groot et al. (2012), Daniel et al. (2012), Daniel and
Moskowitz (2013), amongst others.). The hedge fund industry plays a rel-
ative safety assurance role for investors, by taking advantage of a market
neutral strategy, but a crash would lead to disruptions in the market, which
could lead investors into a vicious circle. Thus, this situation might happen
in China and momentum strategy may crash frequently. The hedge fund is
still an emerging industry in China, strong herding behavior exists in equity
market neutral strategies3. Due to high idiosyncratic risk, the market neutral
strategies earns significant profits since 2013. The common practice of alpha
harvesting, however quickly produced an over-crowded industry that finally
crashed in late 2014. More severely, this crash does not only concentrate on
momentum anomaly, but for all market anomalies because of high contagion
e�ect. It is clear to see that Chinese market is di�cult to predict and is full of
noises. Therefore, instead of excessive reliance on the traditional four factors
mentioned above, the real challenge should be how to explore cross-sectional
risk patterns in such a volatile market.

This study explores firm specific momentum-sorted cross section stock
returns in China. We collect entire “A” share monthly price data of the
period January 2005 to December 2015. Firstly, we find the results show
that firm specific size and value contain strong market anomalies informa-
tion in China, but momentum is relatively weak, and the value e�ect nearly
disappears after controlling for momentum. This is consistent with existing
literature. Secondly, as the main contribution, we find two functional momen-
tum factors to interpret the momentum-sorted cross section returns which
the Fama-French three factor and Carhart four factor models cannot fully
explain. Specifically, rich risk patterns can be extracted from residuals of the
Fama-French three factor model through using Functional principal compo-
nent analysis —FPCA, so that these two functional factors are orthogonal to
each other and uncorrelated with Fama-French three factors. The first func-
tional momentum factor is a more detailed version of momentum —winner
minus loser (also known as UMD, Up minus Down) factor; and the second
functional momentum factor is an “Extreme minus Mediocre –EMM” factor.
This further supports that “V” shaped disposition e�ect found by Ben-David
and Hirshleifer (2012) in existence within China. In the end, as a trading
application of functional momentum risk factors, we construct two versions

3Followed by public accessibility of CSI 300 (initialed from 2013) and CSI 500 (initialed
from 2015) future indexes, the short position of a market neutral strategy is able to be
approximated by short positions on futures.
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–static and dynamic eigenfunction portfolios, the static portfolio improves
the sharpe ratio of conventional contrarian strategy from 0.6 to 0.9. Further-
more, using loadings of risk patterns provided by FPCA, we extend the static
portfolio to the dynamic one. These loadings –functional scores represent the
direction and magnitude of risk patterns at each time point. Thus, the dy-
namic eigenfunction portfolio give a mechanism to capture tailed risk and
avoid unexpected loss during systematic risk exploding, in precondition that
these loadings can be predicted. However, we unfortunately fail to forecast
the loadings through neither self-dependence nor leading indicators, which
lead to a further research in the future.

The rest of paper is structured as follows. Firstly, the related literature is
reviewed. Secondly, we exploit market anomalies in the Chinese stock market
from two aspects: constructing portfolios based on firm specific information
and regressing cross-sectional return on market common factors. In section
4, we apply FPCA to exploit the residual from the Fama-French three factor
model and propose two functional momentum factors. The corresponding
explanations of these two factors are elaborated in the section 5. Section 6
displays the performances of static and dynamic eigenfunction portfolios, as
a trading implementation of functional momentum risk factors. A conclusion
is provided at the end, and the prediction of functional scores is worth for a
further investigation.

2. Literature review

The cross-sectional asset pricing is a study on verifying market anomaly
according to firm specific historical characteristics, including size, value, mo-
mentum and dividend payment, etc., (Fama and French (1996), Daniel and
Titman (1997), Fama and French (2015), etc.). Fama and French (2012)
test the size, value and momentum factors in international developed stock
markets –(North America, Europe, Japan and Asia Pacific), and the authors
assert that these factors exist everywhere, except for insignificant momentum
factor in Japan. Contrarily, Cheung et al. (2014) study emerging Chinese
stock market which actually plays the most important role in Asia Pacific re-
gion, and their finding suggests an insignificant momentum factor, whilst size
and value factors remain significant between 2002 and 2013 (also see Wong
et al. (2006) and Cakici et al. (2015)). Thus, emerging Chinese domestic “A”
share market behave di�erently with other developed market in Asia Pacific
area. According to “Bloomberg Business”, Chinese stock market has reached
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10 trillion USD market capitalization in 2015, which is equivalent to Japanese
stock market, and the fact that the failure of momentum in domestic “A”
shares motivates many researches4. To study momentum e�ect in China, it
is noteworthy to start with constructing momentum related portfolios.

Generally, there are two well-known strategies to build portfolios with
firm specific momentum information, momentum strategy–winner minus loser
(Jegadeesh and Titman, 1993) and contrarian strategy–loser minus winner
(Bondt and Thaler, 1985). Applications of momentum and contrarian strate-
gies has been richly discussed in literature5. Kang et al. (2002) investigate
Chinese “A” shares between 1993 and 2000, and they find that momentum
strategy is not profitable in China in short-term, while contrarian strategy
does make profit(also see Wu (2011)). This is di�erent from the situation
happened in U.S. market. The preliminary research of momentum strat-
egy can be traced back to Levy (1967), who suggests that following stock
prices momentum can make unusual profits in U.S. market. But this market
anomaly draws less attentions until Jegadeesh and Titman (1993). When
investors long past winner stocks and short past loser stocks —WML e�ect
in the short-run, would lead to abnormal returns (Jegadeesh and Titman,
1993). Meanwhile in the long-run, Bondt and Thaler (1985) find that winner
stocks underperform losers so that investors should long past losers and short
past winners —LMW e�ect. The source of these market anomalies in U.S.
market has been systematically determined, and this can help to understand
the opposite performance occurred in China.

Theoretical explanations for a profitable momentum or contrarian strat-
egy mainly rely on behavior finance or investors’ psychology. Investors have
di�erent behavior in short-term and long-term. Barberis et al. (1998) pro-
pose an investor sentiment model and their finding suggests people always
underreact to the information they receive in the short-run, but overreact to
the information in the long-run. This can be one of the reasons explaining
why cross-sectional return is always behaved as contrarian beyond 12 months.
Similarly, Chan et al. (1995) and Jegadeesh and Titman (2001) state that
stock returns can always be predicted by past returns and earnings, as people
in equity market have a nature of sluggishness in the short-term, while the
mean reversion mechanism would lead to a contrarian e�ect in the long run.

4See Kang et al. (2002), Wong et al. (2006), Naughton et al. (2008), Wu (2011), Cheema
and Nartea (2014), Cheung et al. (2014), amongst others

5See Gri�n et al. (2003), De Groot et al. (2012), Cheema and Nartea (2014) for mo-
mentum; Chang et al. (1995), Baytas and Cakici (1999), Balvers et al. (2000) and Wu
(2011) for contrarian.
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Furthermore, some literature argue that momentum or contrarian profits are
stemmed from other reasons6. For instant, regarding to contrarian e�ect,
investors’ sentiment is not the only explanation, Lo and MacKinlay (1990)
highlight that lead-lag e�ect cause a profitable contrarian strategy due to the
positive cross-serial correlation among small and big firms. Borrowing these
explanations, Kang et al. (2002) confirm the existence of both overreaction
and lead-lag e�ect in Chinese stock market, but in short-run, resulting a
short-term profitable contrarain strategy. High level of uncertainty makes
investors in this market more sensitive to recent news, which leads to the
insignificant momentum-wml factor in Chinese market.

On the other hand, the failure of market anomaly in cross section asset
pricing cannot be simply attributed to investors’ behavior, the tailed risk
of risk factors is also important to study. For example, it is inevitable to
notice that momentum e�ect cannot bring an evergreen strategy, even in
developed market, since it crashes occasionally. Gri�n et al. (2003) find
net negative returns occur occasionally with applying price and earnings
momentum strategies in international stock markets. Grundy and Martin
(2001) claim momentum strategy always experiences negative market beta
during down-ward market. This indicates the crash of momentum strategy is
due to market systematic risk. Also, Daniel and Moskowitz (2013) document
historical momentum crashes in U.S. from 1927 to 2010, and the results show
crashes almost only happen during financial crisis or bear market. Thus,
the failure of momentum factor in Chinese stock market can be caused by
frequent explosions of systematic risk, which is not a surprise in such a volatile
market. Meanwhile, measuring and predicting systematic risk can improve
the profit of momentum strategy through adjusting portfolio position. As one
possible solution, Daniel et al. (2012) adopt two-state hidden Markov model
to classify market states, thereby heavily loss can be avoided in momentum
strategy. Aiming to solve the same problem, our paper use the loading of
extracted risk patterns —functional score as an indicator to measure tailed
risk on momentum-related strategies.

In this paper, we exploit momentum-sorted cross sectional returns in
Chinese “A” shares, aiming to find significant momentum-related risk fac-
tors, in addition to construct portfolios based on risk patterns exploited. In
the term of methodology, Gandhi and Lustig (2015) use a similar method
with ours, they apply principal component analysis –PCA on size-sorted
cross section U.S. bank returns, and the orthogonal nature of principal com-

6See Chordia and Shivakumar (2002), Lo and MacKinlay (1990), amongst others.
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ponents suggests a size e�ect in highly leveraged bank shares. Di�erent with
their work, we adopt functional principal component analysis —FPCA on 12
months momentum-sorted cross-sectional returns controlled by Fama-French
three factors. The beauty of FPCA is it provides an intrinsic framework to
decompose variability of stock return. FPCA extracts a set of basis function
that maximally explains variation of objectives –functional curves (Ramsay,
2006). Meanwhile, it can be beneficial from dimensionality reduction and
feasibility of missing data, as a result, less computations meet in functional
data analysis –FDA. As a technique mainly applied in mechanic engineering,
seldom applications have been done in finance. Kokoszka et al. (2014) apply
FDA in U.S. high-frequency intra-day data and discuss the property of func-
tional scores. In another paper, Kokoszka et al. (2014) propose functional
dynamic factor model to model intra-day curve with functional risk factors.
But they have not tried to apply FDA into cross-sectional data. Our paper,
as another attempt, contributes the literature of applied FDA in cross sec-
tion stock returns. We contribute a new methodology to study cross section
risk patterns in a high volatile market. Lastly, as a contribution to behav-
ior finance, beside the di�erent behavior between past winner and losers,
we also empirically highlight that di�erent behavior between past extremes
and mediocre shares, verifying that “V” shaped disposition e�ect existed in
China as well.

3. Market anomalies in China

Existing literature (Wu (2011), Cheung et al. (2014) and Cakici et al. (2015),
etc.) document that momentum e�ect is very weak in China, with the ac-
companying strong size e�ect. In this section, in order to confirm this state-
ment with our data set, we run equally weighted portfolios according to
firm specific information: market capitalization, B/M ratio and 12 months
momentum. If these portfolios obtained significant abnormal return, the cor-
responding common risk factors should be significant in this market. Hence,
three factor (Fama and French, 1992) and four factor (Carhart, 1997) mod-
els are applied to re-assess these common risk factors in Chinese “A” share
market.
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3.1 The data set

3.1. The data set

The reform in Chinese stock markets always aims to build a more open,
more liberalized and more powerful supervised financial environment. In the
end of 2005, Chinese government approved the “Eleventh Five-Year Plan”,
which represents the economic return started to undergo a shift from exten-
sive growth to intensive growth. In stock market, hundreds of companies
launched stock splits in 2005, and the authority started a new wave of IPO
in 2006. Hence, we study monthly adjusted price data of entire Chinese “A”
share data set from the beginning of 20057 to the end of 2015. Meanwhile,
the last decade experiences a standard business cycle: booms, financial cri-
sis, recession, oscillation and recovery. In total, there are 836 listed shares
in January 2005, which increased to 2755 listed shares in December 2015.
Similar with other asset pricing studies in U.S. markets, we exclude financial
shares and new listed shares who cannot provide 12 month momentum infor-
mation. To study U.S. market, it always need to filter very small shares to
get rid of bias from very small valued shares in U.S. market. Our study, how-
ever, do not exclude small listed stocks because there is no particularly small
capitalized shares in Chinese stock markets under Chinese strict financial
regulations. We use log return transformation on raw price data.

Rt = log( Pt

Pt≠1
) (1)

Meantime, to construct common risk factors ((Fama and French, 1992),
(Carhart, 1997)), we collect Shanghai stock exchange composite index as the
market index rm

t , 3 months treasure bill rate (January 2005 –October 2006)
and SHIBOR 8 (November 2006 –December 2015) as the risk free rate rf

t .
The market risk premium factor gives as rmrf = rm ≠ rf . To construct size
and value factors, we collect total market capitalization and book to market
ratio for each stock. And the firm specific momentum factor is calculated

7Because firm specific momentum information is calculated from past returns, it is
necessary to collect monthly adjusted price data between January 2000 and December
2015, for computing short-term and long-term 48 months momentum factors for January
2005.

8SHIBOR: Shanghai interbank o�ered rate, initiated from November 2006, and initiated
to public from January 2007.
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3.2 Firm specific information

according to previous K month past returns through following formula,

Momi,t =
t≠2ÿ

j=t≠K

Ri,j (2)

where i denotes stock i. Similarly, the long run K month momentum factor
formulated as,

Momi,t =
t≠12ÿ

j=t≠K

Ri,j (3)

Following Fama and French (1992) and Carhart (1997), one period lag sorting
is applied that cross section returns are sorted into decile at t in ascending
order according to firm specific information from t≠1. Lastly, equal weighted
small minus big —SMB factor is obtained using the first decile to minus the
last decile, high minus low —HML and winner minus loser —WML common
factors using the last decile to minus the first decile. In this paper, we use
12 month firm specific momentum factor to construct standard WML factor.
All the data is collected from WIND database.

3.2. Firm specific information

To construct single factor portfolio on the basis of firm specific size, value
and momentum information, we set the holding period J varying from 3
months to 24 months. Cross-sectional returns are sorted into ten deciles in
ascending order. The size, value and momentum strategy follow the rule of
small minus big, high minus low and winner minus loser. At each time t, we
launch a portfolio and hold it for J month, where J equals to 3, 6, 9, 12 and
24. Table 1 displays the average monthly returns, and it presents that size
and value portfolios outperform to momentum portfolios. To be specific, size
portfolio is significantly profitable regardless of holding for a short or long
periods, and value portfolio is significantly profitable if holding period was
longer than 9 months. This result definitely makes sense in China, especially
in the term of size. Instead of based on registration like U.S. market, the IPO
system in China is based on examination and approval by China Securities
Regulatory Commission —CSRC. Thus, it results an oversupply to Chinese
IPO system. More importantly, once a company is approved to be listed, it
always has a highly probability to be taken over or merged and acquired, sim-
ply because the new approval by CSRC provides a suitable object to invest.
Therefore, new listed small companies always own higher risk premiums, re-
sulting size e�ect is very strong in Chinese market. On the other hand, the

12



3.2 Firm specific information

momentum strategy cannot produce significant profitable portfolios in Chi-
nese stock market, which is consistent with existing literature. The reason
of this result can be attributed to that Chinese “A” share is too volatile and
investors behavior is hardly to captured.

[Insert Table 1 Here]

To study the interaction between these factors, we conduct double sorted
portfolio through controlling firm specific momentum. Controlling momen-
tum into quintile, the Table 2 presents that size e�ect is significant but value
e�ect is not. In detail, the panel A shows that smb e�ect provides positive
significant portfolio return, and this e�ect is stronger in the loser quintile
compared with the winner quintile. Meanwhile, the panel B demonstrates a
surprise result that significant value e�ect nearly vanishes when momentum
is controlled although it still brings positive returns. The only one significant
under 95% level is occurred in the winner quintile. This result reveals that
the value –hml e�ect in China is a result of the di�erence between past return
performances.

Moreover, as a robust confirmation of momentum–WML strategy in
Chinese stock market, we also sort cross section returns by momentum af-
ter controlling size and value factors. Table 3 presents the results of double
sorted portfolios. In panel A, the cross-sectional returns were firstly sorted by
size in quintile, and then further sorted by momentum in quintile, obtaining
a 5 ◊ 5 portfolio strategy. The WML strategy is unprofitable in all size quin-
tiles because losers outperformed winners in any size quintile. However, only
the portfolio average return in small quintile is significant under 5% level,
which indicates that WML e�ect is stronger in small companies. In panel B,
momentum quintiles portfolios are constructed after controlled value. The
WML strategy is statistically unprofitable in first three value quintiles, statis-
tically significant at 10%, 5% and 10% level, respectively. Hence, the WML
e�ect in low value quintiles is stronger than the one in high value quintiles.
On the other hand, the size and value anomalies exist as usual after control-
ling momentum. Therefore, the WML e�ect does exist in China, but only
significantly exists in small size and low value shares. Besides, the loss of
momentum-WML strategy points out a profitable contrarian-LMW strategy.

[Insert Table 2 Here]

[Insert Table 3 Here]
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3.3 Market common factor

To assess the performance of momentum and contrarian strategies, our
work follow (Jegadeesh and Titman, 1993) to construct relative strength
portfolios. We sort cross-sectional returns in ascending order by firm specific
past return with di�erent looking back periods K, where K could be short-
term 3, 6, 9, 12 months, or long-term 60 months. And five types of holding
periods, 3, 6, 9, 12 and 24 months, are considered. Thus, there are 50 portfo-
lios in total, where 25 for the momentum strategy and 25 for the contrarian
strategy. By rolling portfolios with di�erent holding periods, we compute
average monthly returns in Table 4. Table 4 shows consistent results with
existed works(Kang et al. (2002), Wu (2011), etc.). Momentum strategy
does not make any profit under any formation period and holding period;
while, contrarian strategies earned positive profits in all scenarios although
with insignificant t-statistics. According to Kang et al. (2002), this is due to
the short-run over-reaction e�ect in Chinese stock market. Once again, firm
specific past return weakly explains risk patterns for cross section returns.
The fact of high volatile Chinese stock market causes investors’ behavior not
just stick on distinguishing the di�erence between winners and losers, but
also other behavior patterns.

[Insert Table 4 Here]

3.3. Market common factor

The conventional common risk factors have been studied in developed mar-
kets (Fama and French (1992), Carhart (1997), etc). It is worth to evaluate
whether these common risk factors still work in Chinese markets with our
data set. Because the di�erence between past winner and past loser is distinct
enough, in this paper, we concentrate on explaining momentum-sorted port-
folio returns. Two standard factor models will be applied to explain cross-
sectional portfolio returns: Fama-French three factor model and Carhart four
factor model. According to Fama and French (1992), three factor model is
constructed as,

ri
t ≠ rf

t = –i + —i
1rmrft + —i

2smbt + —i
3hmlt + ‘i

t (4)

where ri
t denotes ith decile portfolio monthly return and rf

t denotes risk free
rate. Meanwhile, we run Carhart four factor model (Carhart, 1997),

ri
t ≠ rf

t = –i + —i
1rmrft + —i

2smbt + —i
3hmlt + —i

4wmlt + ‘i
t (5)
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3.3 Market common factor

Theoretically, a good explanatory factor model should produce insignifi-
cant risk adjusted return –the intercept –, hence we apply GRS test (Gibbons
et al., 1989) to jointly test the significance of intercepts in 10 portfolio re-
gressions. The null hypothesis is H0 : –i = 0 ’i œ [1 : 10], the more
insignificant of GRS statistics, the better factor model will be implied. Table
5 lists regression and test results.

[Insert Table 5 Here]

The panel A shows that rmrf and smb factors are almost significant to
explain all decile portfolio excess returns, while hml factor is insignificantly
to explain these returns. This result does not contain too much surprise,
because it is basically consistent with Table 2, where the size strategy is
profitable and the value strategy becomes unprofitable after controlling mo-
mentum. Moreover, cross-sectionally, we find that 3 factor model has better
explanatory ability in upper deciles, which indicates three factor model is
more e�cient to explain shares with better past performances. This can be
also supported by intercept terms, only 9th and 10th decile portfolios give
insignificant risk-adjusted returns. Meanwhile, none of three factors can ex-
plain wml portfolio excess return. This result is consistent with Fama and
French (1993), thereby requiring the Carhart four factor model. In the panel
B, adding momentum-wml factor, the Carhart four factor model explains ten
decile portfolio with R2 approximately 0.75, which is roughly equivalent with
R2 obtained in panel A. Regarding to the first three factors–rmrf, smb and
hml, it provides similar results with panel A. Thus, the key variable investi-
gated here is wml, which is significant in the last two deciles but insignificant
in other deciles. Like panel A, Carhart four factor model is also more e�-
cient to interpret excess return on better performed portfolio, where R2 in
upper deciles are greater than counterparts in lower deciles. In the term of
wml portfolios, only wml factor can significantly explain wml portfolio, with
R2 0.84. Furthermore, Even though three factor and four factor models can
obtain a relatively high R2 statistics, there are still some risk patterns cannot
be explained as the P values of GRS test are 0.0233 and 0.0226 for Fama-
French and Carhart model, which cannot reject the null under 5% level but
reject under 1% level. Therefore, to explore the risk patterns in residuals
would be a possible solution to further explain cross-sectional returns.

15



4. The functional momentum risk factor

In last section, we regress momentum-sorted cross-sectional returns on Fama-
French three factor and Carhart four factor model, and results express both
of these two models cannot fully explain the cross-sectional portfolio excess
returns, and the wml and hml factors are significantly weak in these factor
models. This results that the risk-adjusted return in each factor model is still
significant, thereby implying more risks need to be explained. Therefore, in
this section, we apply functional principal component analysis –FPCA to
exploit variation patterns of residuals from Fama-French three factor model,
and then construct functional momentum risk factors on the basis of ex-
tracted risk patterns.

4.1. Exploiting variations in residuals

Residuals from Fama-French three factor models represents the cross-sectional
portfolio returns for controlling rmrf, smb and hml. The variation of residu-
als should be the cross-sectional risk that Fama-French three factors cannot
explain, which is worth to analyze whether meaningful risk patterns exist
within residuals. That is to say, if these residuals behave regularly with spe-
cific rankings, this sorting algorithm o�ers meaningful potential risk patterns.
Meanwhile, because the residuals are stemmed from momentum-sorted port-
folio return, these risk patterns should be connected with investors’ behavior
on firm specific momentum information.

In consideration of these risk patterns, we adopt a functional approach
aiming to decompose the total variation of residuals. One barrier to apply
FPCA is cross-sectional portfolio returns cannot be smoothed into functional
objects if cross-sectional returns are grouped into deciles, because the num-
ber of knots (or breakpoints) is not enough for smoothing (Ramsay, 2006).
Hence, we sort cross section returns into 100 groups and set 11 knots. Still,
the sorting follows the ascending order, where the 1st group contains all loser
shares, and the 100th group includes all winner shares. In each percentage,
we regress portfolio excess return on Fama-French three factors, and store
the residuals. Our sample spans over January 2005 to December 2015, which
gives a 132 by 100 residual matrix. In order to emphasize variation mea-
sure and reduce noise, we demean and standardize residual matrix, similar
method applied in Blitz et al. (2011). Then, using fda package in R, we
smooth cross section non-cyclical residual series to functional objects by a
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4.1 Exploiting variations in residuals

cubic B-Spline smoother at each time month t. To be specific, at each time
point t, we set 11 knots in cross-sectional 100 residuals, and then adopt 13
cubic B-Spline to smooth these knots to a functional curve. Since the data
across over 132 months, we get 132 functional curves eventually. The left
panel of Figure 1 displays these functional objects.

[Insert Figure 1 Here]

Decomposing the total variation of this functional system based on
FPCA, we find a set of eigenfunctions (13 in our case9) with nonzero func-
tional eigenvalues, formulated as � = {Âi|⁄i ”= 0}, where Âi is eigenfunction
i and ⁄i is eigenvalue on ith eigenfunction. Similar with the principal com-
ponent analysis–PCA in multivariate data analysis, the sum of functional
eigenvalues represents the total variation of this system, thus, the propor-
tion explained by each eigenfunction i is given as ⁄iq13

i=1 ⁄i
. Because of the

property of orthogonality, there is no overlapping explained by each eigen-
function. One advantage of eigenfunction is it provides a more visualized
variation pattern to uncover potential risk compared with PCA. Moreover,
FPCA also give functional scores as loadings for each eigenfunction at each
time period, where the sign and value interpret the direction and magnitude
of corresponding eigenfunctions at each time period. If the sign of loading
at t is positive, it indicates risk pattern at this month patterned as forward;
If the sign of loading is negative, the picture turns to the contrary way. The
right panel in Figure 1 illustrates main eigenfunctions exploited by FPCA.
The first four eigenfunctions —efs explain approximate 87.2% of the to-
tal variation. We may concentrate the first two eigenfunctions because the
third and fourth eigenfunction only take into account approximately 10%
variation and patterned as noise. Specifically, the first eigenfunction –ef1
explains 64% variation, and it shows an upward trend, which is consistent
with momentum-sorted ascending order. This patten may implies the di�er-
ence between past winners and past losers, which is similar but not exactly
same with the wml e�ect, because it provides a non-linear function to de-
scribe such di�erence. The second eigenfunction –ef2, plotted as a quadratic
—V/U shape curve, takes into account 13.3% of total variation. This risk
pattern suggests di�erent investor behavior on extreme and mediocre stocks
10. Lastly, in order to show the patten of these eigenfunctions are convinced,

9The number of eigenfunctions depends on the number of knots in B-spline smoother.
10This V shape risk pattern also significantly exists in cases that cross-sectional returns

are sorted by momentum factor with other looking back periods, e.g. 3 months, 6 months,
9 months; while the pattern becomes weak when it comes to long-run past return, e.g. 60
months with 1 year gap.
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4.2 The functional momentum risk factor

we compute confidence intervals of main eigenfunctions through bootstrap
with 2000 replications, which is a standard empirical way to study property
of eigenfunctions (Hall and Hosseini-Nasab, 2006). Figure 2 illustrates the
95% confidence intervals of main eigenfunctions. The patterns are consistent
with our result obtained above, and bootstrapping results provide consistent
proportional variations as well –64.2% for ef1 and 13.4% for ef2. Therefore,
the discussions on risk patterns above are reliable and provide meaningful
frames to build new risk factors in next subsection.

[Insert Figure 2 Here]

4.2. The functional momentum risk factor

In this section, we construct functional risk factors given as cross section
momentum-sorted portfolio returns weighted by the value of eigenfunctions.
As discussed in last sub-section, the third and fourth eigenfunction are pat-
terned as noises, it is di�cult to use them to construct common risk factor.
Information coe�cient can help to measure the correlation between eigen-
functions and cross-sectional portfolio returns at each time t, which gives
132 cross-sectional correlation coe�cients for each eigenfunction. Moreover,
we take absolute value of correlations to evaluate the strength of correla-
tion, because the direction of eigenfunctions does not a�ect the magnitude
of correlation. Figure 3 plots cross-sectional information coe�cients on ef1,
ef2, ef3 and ef4. Over the whole sample period, the information coe�cient
on ef1 is the highest in average, which is visually higher than information
coe�cients on ef2. Compared with the first two, ef3 and ef4 are flatter
and close to zero, combined with little variation proportions contributed,
it is convinced that these two eigenfunctions are not suitable to construct
functional risk factors.

[Insert Figure 3 Here]

Hence, we build the first functional momentum risk factor by ret ◊ ef1Õ,
denotes as FPC1, and ret ◊ ef2Õ, denotes as FPC2. As a standard test on
common risk factors, we apply Fama-MacBeth regression (Fama and Mac-
Beth, 1973) with FPC1 and FPC2, and Table 6 documents regression results.
By running cross-sectional regressions on portfolio risk exposures which ob-
tained from individual time series regression, the result indicates FPC1 has
significant risk premium on momentum-sorted portfolio returns at 1% signifi-
cant level. This factor is even stronger in January, which means the existence
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4.2 The functional momentum risk factor

of January e�ect. Thus, the di�erence behavior on past winners and past
losers fairly exists, and it can significantly explain cross-sectional risk pre-
mium. Compared with FPC1, FPC2 has less significant risk premium at
10% level, but surprisingly, FPC2 is insignificant during January. It indi-
cates that in January, cross-sectional risk patterns are main dominated by
the di�erence between winner and losers instead of the di�erence between
extreme and mediocre. The last column shows two factors regression, and
both of FPC1 and FPC2 are significant under 1% and 5% level. Due to the
fact of orthogonality, the risk premium coe�cients on FPC1 and FPC2 do
not change, and adjusted R square simply equals to a linear combination
of single factor regressions, which means combining FPC1 and FPC2 can
definitely improve the explanation of cross-sectional risk patterns. Both of
FPC1 and FPC2 factors can be used as common risk factors for Chinese
stock market.

[Insert Table 6 Here]

In order to confirm the role of FPC1 and FPC2 in Chinese “A” share, we
re-regress decile momentum-sorted portfolio returns 11 on Fama-French three
factor, as well as adding functional momentum factors. Table 7 represents
estimation results. Compared with Table 5, functional risk factors improves
the explanatory power on cross-sectional portfolio returns, supported by less
significant risk-adjusted return and higher value of adjusted R2. To be par-
ticular, in panel A, rmrf, smb and FPC1 factors are highly significant with
adjusted R2 above 0.8. The significance of FPC1 improves the explanatory
ability, confirming this factor is a non-ignorable factor in China. Another
remarkable fact is coe�cients on FPC1 are opposite signed from loser group
to winner group. It indicates di�erent behaviors existed in lower deciles
and upper deciles, which is exactly same with the risk patten indicated by
FPC1. While, in middle panel, even though adjusted R2 did not increase too
much compared with Fama-French or Carhart factor models, FPC2 performs
significantly in loser and winner deciles. This makes sense because the risk
premium explained by FPC2 is mainly stemmed from extreme stocks. Unlike
coe�cients of FPC1 in panel A, the sign of coe�cients on FPC2 are same
in loser and winner deciles, both are positive. It reveals extreme stocks have
di�erent investor behavior with mediocre stocks to some extent, and this is
also same with the risk patten implied by FPC2. Benefited from othogonal-
ity, FPC1 and FPC2 factors reinforce interpretation ability of Fama-French

11Here we sort cross section returns into decile, simply because it is unnecessary to
display 100 regression results, and easier to compare with results form previous four factor
models.
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three factor model without any overlapping, supported by higher adjusted
R2 and the P value of GRS test in panel C equals to 0.0159, which out-
perform Fama-French and Carhart models in Table 5. Therefore, based on
all discussions in this section, the risk factor FPC1 and FPC2 do exist in
Chinese stock market.

[Insert Table 7 Here]

5. Explanations on functional momentum risk factors

For further understanding the economic meaning of functional momentum
factors, we explain them in detail in this section. The FPC factors are con-
structed by momentum-sorted cross-sectional return, they interpret di�erent
investment preferences on stocks’ past performances. The first eigenfunction
mainly retains a pattern of monotonicity, indicating the di�erent behaviors
between losers and winners. The conventional momentum (winner minus
loser) or contrarian (loser minus winner) strategy can be seen as a completed
linear version of FPC1. Thus, it is reasonable to use explanations on mo-
mentum strategy to explain FPC1. While, the asymmetric “V” shape in the
second eigenfunction indicates di�erent behaviors between extreme stocks
and mediocre ones. This risk pattern is due to the fact of disposition e�ect
of Chinese investors. Beside, in order to investigate the relationship between
FPC factors and market state, we also borrow the concept of “up and down”
market states12 defined in Cooper et al. (2004), and seek any connection.
Unfortunately, we do not find any remarkable relationship among them.

5.1. What is FPC1?

The FPC1 factor is actually an elaborated form of wml factor. According to
FPCA, the first eigenfunction is the main variation pattern of cross-sectional
momentum-sorted portfolio returns for controlling Fama-French three fac-
tors. Corresponding weights give to sorted portfolio returns through selling
shares with relatively poor performances and buying shares with relatively
good performances. Hence, the wml factor, as an extreme spread portfolio,

12In Cooper et al. (2004), they define an UP market can be identified with positive three
years market return, while the negative for a DOWN market. In this paper, we set the
looking back period as 6 months and 12 months because Chinese stock market is more
volatile.
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5.1 What is FPC1?

can be seen as a simple approximation of FPC1. This also can be confirmed
by the last column in Table 7, FPC1 is the only significant explanatory
variable in panel A and panel C, and it almost fully explains wml portfolio
return with 0.95 adjusted R2. From significant FPC1 factor and insignificant
wml factor, we can see that, in high volatile stock market, investment be-
havior on momentum-sorted portfolio is not as regular as developed markets.
Momentum-related risk factor becomes significant to interpret cross-sectional
return once enough risk is captured. Thus, what really makes FPC1 factor
exists in China? From Table 4, we know that momentum –wml strategy
earned negative profit during last decades, while contrarian –lmw strategy
profits positively. Thus, we can deduce that FPC1 profits negatively, and if
we reverse the weight of FPC1, the contrarain–FPC1�strategy is profitable,
which will be empirically proved by Table 9 in next section. Here, we aim
to investigate the reason of a profitable FPC1�and a non-profitable FPC1.
As the detailed version of momentum and contrarian strategy, the profitabil-
ity of FPC1 and FPC2 can be explained from the perspective of these two
conventional strategy13.

Bondt and Thaler (1985) show that the loser portfolio outperforms to
the winner portfolio in long run leading to a contrarain strategy because
of the long-term overreaction in U.S. stock markets14, and the overreaction
e�ect exists if the autocorrelation coe�cient in portfolio returns are negative.
This results that investors always conduct contrarian or reversal strategy
in the long-run and momentum strategy in the short-run. Moreover, the
overreaction is not the only source for contrarian e�ect, where cross e�ect
also causes such an e�ect (Lo and MacKinlay, 1990). The cross e�ect asserts
that a higher return for stock i at period t generally implies a higher return
for stock j at period t + 1. A standard case is the lead-lag structure, it
says that big capitalized stocks may lead small capitalized stocks, or in the
opposite way. Hence, positive cross-serial correlations is the evidence for the
cross e�ect.

We empirically test the overreaction and cross e�ect with our data set.
Table 8 documents the self-cross autocorrelation results. To test overreaction
and cross e�ect, we rank entire A shares according to their market capitaliza-
tion, and equally weighted sort them into quintiles, notate as S1 –S5. In panel
A, we calculate first four lags of autocorrelation coe�cients for these portfo-

13Kang et al. (2002) study the profitability of contrarain strategy in Chinese “A” share
from 1993 to 2000.

14It is worth to mention that the short-term underreaction explains the profitability of
short-term momentum strategy in U.S. market (Barberis et al., 1998)
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5.2 What is FPC2?

lios, and 3 out of 20 correlation coe�cients are positive, which points out that
overreaction e�ect exists in China, but in the short-run. In panel B, we com-
pute cross-autocorrelations with lag 1 and 2. The cross-autocorrelations are
mainly negative, which suggests that lead-lag structure generally contributes
more on FPC1 or momentum strategy, rather than on FPC1�or contrarian
strategy in U.S. market, and this result is against with Lo and MacKinlay
(1990). However, there is an exceptional case in lag 1 table. The cross auto-
correlation from S1 to S5 is 0.2131, and then it becomes to ≠0.0490 from S5
to S1. This means that the lead-lag structure does cause FPC1�or contrarian
e�ect if we only consider smallest and biggest stocks. Once more, di�erent
with U.S. market, smallest firms lead biggest firms in China, and this result
is consistent with Kang et al. (2002). Therefore, the profitability of FPC1�or
contrarian strategy in China is mainly stemmed from overreaction in short
run, in addition some contributions from cross e�ect between smallest firms
and biggest firms. As the final result, these make a significant FPC1 factor
in Chinese market.

[Insert Table 8 Here]

5.2. What is FPC2?

Compared with FPC1, the second FPC factor is more interesting. Because
the second eigenfunction implies the di�erence investment behavior between
extreme stocks and mediocre stocks, along with the property of asymmetry
—refer to Figure 1 and Figure 2. This risk pattern can be explained by
the disposition e�ect in investors’ behavior. The disposition e�ect, identi-
fied by Shefrin and Statman (1985), asserts that investors are always willing
to sell winner stocks too early and to ride loser stocks too long, which is
an expression of prospect theory in investment. Recently, Ben-David and
Hirshleifer (2012) argued that the selling/buying function of traditional dis-
position e�ect should be a “V or U” shaped toward to past returns, and
this statement is further supported by An (2015) with more than 70 thou-
sands accounts in U.S. market. Ben-David and Hirshleifer (2012) explains
that such “V” shaped trading function is a result of the overconfidence in
investors. Many speculative investors hold too much confidence on their
own information source, and this results they are more likely to trade those
stocks with big news. Apparently, mediocre stocks have low probabilities
to have any big news, but stocks become to extreme performed ones always
due to some big news. Hence, with the faith that they know better than
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the market, speculative investors are more inclined to trade extreme per-
formed stocks, leading more risks to extreme shares. Mediocre stocks, on the
contrary, absorb less attention, which gains higher liquidity premium, and
therefore incurs the spread between extreme and mediocre stocks. Regard
to the asymmetry in “V” shaped risk pattern, investors are more willing to
trade winner extreme shares because they have achieved the profit they ex-
pected, while the counterpart in loser extreme shares have not been realized.
An (2015) provides another possible reason for the asymmetry in “V” shaped
trading activity, which is investors are inclining to re-examine the positions
or to update their beliefs on stocks with higher profits. In this paper, we
empirically prove that asymmetric “V” shaped trading activities also exist in
Chinese stock market, and it significantly explains the risk pattern in cross
section momentum-sorted stock returns.

[Insert Figure 4 Here]

6. The eigenfunction portfolio

Since the total variation pattern in cross-sectional return has been decom-
posed into finite K number of eigenfunctions –(ef1 = Â1; ef2 = Â2; ef3 =
Â3, etc), the cross section momentum-sorted return curve at t can be ex-
pressed as,

r(t) = µt +
Kÿ

i=1
›i,tÂ

ú
i (t) + Át (6)

where r(t) is a cross-sectional functional return object, µt is the functional
mean and K = 13 in this study. We define the eigenfuntion portfolio —EFP
as a portfolio policy allocates capital across return object according to the
risk pattern revealed by eigenfunction, thus the return on this portfolio rp

t

is essentially the inner product of portfolio weights w(t) and cross-sectional
return r(t).

rp
t = Èw(t), r(t)Í (7)

The EFP can assign weights perfectly concordant with one of eigenfunc-
tions. Remind that cross-sectionally, we sorted return into 100 groups based
on firm-specific momentum, and the value of efi on each group i can be ob-
tained from FPCA, hence, we can then simply calculate weights wi for group
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i as,

wi = efiq100
i=1 |efi|

(8)

Substituting Equation 6 into Equation 8, and then the portfolio return
is expressed as,

rp
t = Èw(t), µt +

Kÿ

i=1
›i,tÂi + Á(t)Í

= Èw(t), µtÍ + Èw(t),
Kÿ

i=1
›i,tÂiÍ + Èw(t), Á(t)Í

(9)

According to equation above, the EFP return is contributed by three
parts. The first part is stemmed from the inner product between portfolio
weights and functional mean, which implies a realization of positive return
as long as the trend of eigenfunctions describes the pattern of cross-sectional
functional mean. We call this part �static eigenfunction portfolio �return.
The second part, Èw(t), qK

i=1 ›iÂiÍ, realizes only if we can capture functional
scores ›i at time t. The sign and magnitude of functional loadings repre-
sent the direction and strength of corresponding eigenfunctions at each time
period: signs decide the direction of this eigenfunction realizes forward or
reverse; and magnitudes decide how strong of risk pattern indicated by this
eigenfunction at time (t). We call this part �dynamic eigenfunction portfolio
�return, because it contains varying risk uncertainties in each month. Lastly,
the error term Á(t) is uncorrelated with eigenfunctions according to Equation
6, i.e. EÈÂi, Á(t)Í = 0.

In this section, we assess the performance of EFPs weighted by first
and second eigenfunction —ef1 and ef2. The portfolio weights either be
static or be dynamically adjusted. In static portfolio, once weights have
been decided, this weights will be applied until the end. However, for an
eigenfunction�risk pattern, it is di�cult to maintain it exists at each single
month, and once it violates from determined weights, static portfolio has
to be confronted with a certain loss. For instance, any contrarian strategy
cannot guarantee to be ever profitable, and occasionally momentum strategy
makes profit in short-term in China while contrarian does not. Wu (2011) has
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6.1 Static eigenfunction portfolio

shown that a mixing portfolio between momentum and contrarian strategy
highly outperforms pure contrarian strategy in Chinese stock market. In
other words, the unexpected loss in static portfolio can be avoided as long
as the loading of eigenfunctions —functional scores in next time period can
be predicted.

6.1. Static eigenfunction portfolio

To conduct static eigenfunction portfolio, according to firm specific momen-
tum, we sort cross-sectional returns into 100 groups. Then, portfolio weights
on these 100 groups are fixed given as standardized value of eigenfunctions
–ef1 and ef2. We assess the portfolio performance of both forward and
reverse directions of these eigenfunctions. In order to compare with conven-
tional momentum/contrarian strategies, the conventional winner minus loser
and loser minus winner portfolios are also implemented. Last but not the
least, because ef1 and ef2 are naturally orthogonal, we apply mean variance
optimization to mix them, using 3 months length rolling window to avoid
using any future information. In total, there are seven types of strategies.

The portfolio performances are tested from January 2005 to December
2015. Table 9 presents statistics of monthly average return, sharpe ratio and
maximum drawdown for these portfolios 15. The first eigenfunction strategies
show similar performances with conventional strategies, where momentum is
similar with ef1 and contrarian is similar with ≠ef1; and once more, re-
sults support that contrarian or ≠ef1 strategy is profitable in China. This
result is consistent with the explanation in section 5.1. The ≠ef1 strategy
outperforms to conventional contrarian strategy because it interprets more
elaborate risk pattern, which the sharpe ratio increase to 0.76 from 0.69.
Regard to the second eigenfunction strategy, ef2 is unprofitable while ≠ef2
is profitable, and ≠ef2 underperform ≠ef1 because it explains less propor-
tion of total risk. Based on the explanation in section 5.2, investors are
more likely to trade extreme stocks, which represents that the liquidity on
extreme stocks is higher than liquidity on mediocre stocks, thereby giving
liquidity risk premiums to mediocre stocks. Lastly, through mean-variance
optimization, the mixing portfolio of ≠ef1 and ≠ef2 presents slightly lower
average monthly return 0.03, compared with ≠ef1 strategy who earns 0.06
per month. However, because more risk are explained by combining ≠ef1

15The comparable results are robust when 3 months, 6 months and 9 months momentum
factors considered.
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6.2 Dynamic eigenfunction portfolio

and ≠ef2, the mixing strategy obtains lowest maximum drawdown and the
highest sharpe ratio among these seven portfolio strategies. The cumulative
return of these portfolios are plotted in Figure 5, and monthly performance
panels shows that January e�ect fairly exists in all positive profitable strate-
gies.

[Insert Table 9 Here]

[Insert Figure 5 Here]

6.2. Dynamic eigenfunction portfolio

The static eigenfunction portfolio would undergo a loss or low profitabil-
ity when the real risk pattern in some periods are not consistent with the
weight set initially, for example, momentum crashes in U.S. market and the
crash of alpha strategy in November 2014 in Chinese hedge fund industry.
The changing on cross-sectional risk pattern cause some of market anoma-
lies no longer exist or even become the contrary. Hence, managers should
dynamically adjust weights on static portfolio if dynamic risk pattern can
be predicted. Under the eigenfuntion strategy framework, functional scores
is an ideal index to measure the direction and strength of risk patterns, sta-
tistically verified by Table 10. Once functional score ›i,t+1 can be predicted,
we can maximum EFP return via realizing the part of E

qK
j=1ÈÂi, ›i,t+1ÂjÍ in

Equation 14, as a result of timely adjustment on trading positions to avoid
accidental loss from systematic risk. Specifically, we can adjust the position
or levers of EFP according to the sign and magnitude of ›̂i,t+1. The sign of
›̂i,t+1 decides we should give EFP as weights efi or ≠efi. The high value of
›̂i,t+1 implies that the risk pattern suggested by efi will be strong at period of
t+1, leading to an increase to buy-in position. On the contrary, the position
should be reduced if the value of ›̂i,t+1 is close to from zero.

[Insert Table 10 Here]

To forecast a time series in finance, it is either to use its own past
information to predict itself if such self-dependent exists, or finding some
related leading indicators to forecast. Fortunately, we are not the only one to
try to predict functional loadings on eigenfunctions. The weak dependence of
functional scores can be tested by adopting Kokoszka and Reimherr (2013)’s
approach. They test a null hypothesis that a functional score series is not
a weakly auto-correlated sequence, and provide a limiting distribution for a
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functional score related statistics,

·(k) = (N ≠ 1)≠ 1
2

N≠1ÿ

i≠1
I

(k)
N,nIk

N,n+1
dæ N(0, 1) (10)

where I
(k)
N,n = sign(›̂). Once we can reject the null hypothesis, functional

loadings can be self-predicted via adopting an AR(p) process, which reads,

›̂i,t+1 =
pÿ

j=0
“̂i›i,t≠j (11)

According to Equation 10, statistics ·(k) should follow standard normal dis-
tribution. Hence, we can simply compare the statistics with ±1.96 under 95%
significant level. No accident, such elegant property is di�cult to be valid
in real world, also fails in Kokoszka and Reimherr (2013). Our results show
statistics on ef1 equals to -0.87 and -0.70 for ef2, which means functional
scores on ef1 and ef2 are not serial-correlated.

Apart from self-dependence, functional scores can be correlated with
some leading indicators associated with economic meaning. Similar work
has been done by Daniel and Moskowitz (2013), they find that the sign of
index return in past one year has predictability on the strength of momentum
strategy. Thus, inspired by their work, it is practicable if we can find some
variables ‰i as a leading indicator for functional scores.

›̂i,t+1 = –̂ + —̂ · ‰i,t (12)

Chordia and Shivakumar (2002) find that several macroeconomic vari-
ables have interpretation ability for cross-sectional returns. In this paper,
we apply three of these macroeconomic variables as potential leading indica-
tors, expressed as DP –dividend payment, Y3B –yield on 3 months treasury
bill and SSL –spread between 3 months short-term and 10 years long-tern
treasury bill. Besides, market index is another potential leading indicator to
explore, thereby we calculating rolling time-varying four moments of market
index with six months window length. Table 11 displays results of regression
model 12 on these potential variables. Unfortunately, the majority of these
variables are failed to forecast functional scores. Although DP, market index
mean and standard deviation series obtain significant —, it is still inaccurate
to predict functional scores because of extreme low value of R2.
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[Insert Table 11 Here]

7. Conclusion

The momentum e�ect is significantly weak in China, and this can be due to
the fact that Chinese stock market is highly volatile and frequent system-
atic risk. Instead of concentrating on explanations of this phenomenon, this
paper exploits cross section risk patterns in Chinese stock market. Hence,
compared with conventional four common risk factors –rmrf, smb, hml and
wml, the rich risk patterns can better interpret cross-sectional stock return.
Before we exploit cross-sectional returns, we first re-assess market anoma-
lies in China on the basis of size, value and momentum information. The
results show that size e�ect is strong while momentum is not, which is con-
sistent with existing literature. It indeed implies conventional wml factor
does not work in China and more risks need to be captured for interpret-
ing Chinese stock cross-sectional return. As the main part, we then apply
functional principal component analysis to extract risk patterns from cross
section momentum-sorted portfolio returns after controlling for Fama-French
three factors. Among 13 types of eigenfunctions, the first and second eigen-
funtion point out meaningful risk patterns, thereby building two functional
principal component risk factors —FPC1 and FPC2. The FPC1 factor is an
elaborate version of the wml factor which explains more risk in cross section
portfolio return, and FPC2 factor describes the di�erence between extreme
and mediocre shares. Adding FPC1 and FPC2 to Fama-French three fac-
tor model, we obtain high value of adjusted R2 and less jointly significant
risk adjusted return. Meanwhile, as a standard method to test the existence
of common risk factor, the Fama-MacBeth regression shows that FPC1 and
FPC2 factors do exist in China. The existence of these two factors can be ex-
plained by following reasons: the FPC1 is caused by short-term overreaction
and cross lead-lag e�ect; the FPC2 exists because of the “V” shaped dispo-
sition e�ect in behavior finance. Lastly, as an empirical trading application
of exploited rick patterns, we construct an eigenfunction portfolio with two
versions: static and dynamic. The static portfolio outperforms conventional
momentum or contrarain portfolios. This is because a greater risk propor-
tion from total cross-sectional variation is explained by eigenfuntions. The
dynamic eigenfunction portfolio provides a mechanism for adjusting trad-
ing positions by predicting the loadings of eigenfunction –functional scores.
This can avoid unexpected loss from static portfolios. However, it is di�cult
to accurately predict functional scores through neither self-dependence nor
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macroeconomic leading indicators, and this can lead to a further research in
the future.

Appendix A. The inference of eigenfunction portfolio

A.1. Static eigenfunction portfolio

Since predicting functional scores is an intractable issue, it is better to discuss
the property of static portfolio first. Consider a static basis portfolio is
constructed through the risk pattern suggested by eigenfunction „i. Hence,
its weights should be defined as a function of this eigenfunction, one case is
equation 8, and then we have,

wi = kÂi = sign(EÈÂi, µtÍ)Â (13)

If
s

Âids = 0, it ensures that our portfolio is a market-neutral strategy.
Letting rt = µt + qK

j=1Èrt, ÂjÍÂj + Á(t) and µt ”= 0, its expected return is,

Eri
t = EÈkÂi, µt +

Kÿ

j=1
›iÂj + Á(t)Í

= k(EÈÂi, µtÍ + E
Kÿ

j=1
ÈÂi, ›iÂjÍ + EÈÂi, Á(t)Í)

= k(EÈÂi, µtÍ + E›i)
= kEÈÂi, µtÍ = |EÈÂi, µtÍ| = ◊i

(14)

Because functional scores in static version cannot be predicted, here we use
a general assumption that expected functional score is zero. We can confirm
that the portfolio with respect to some eigenfunction delivers strictly positive
return in precondition that the eigenfunction describes the functional mean.
Further more, the risk associated with it is

V ar(ri
t) = V ar(ÈkÂi, riÍ) = ⁄i (15)

Sharpe ratio should be

SRi
S = (◊i ≠ rf )

⁄i
(16)
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A.2 dynamic eigenfunction portfolio

where ◊i is projection of eigenfunction on functional mean and rf is risk-free
ratio.

Furthermore, due to the fact that eigenfunctions are orthogonal intrin-
sically, it is reasonable to adopt optimal portfolio theory (e.g. mean-variance
theory) to construct the best mixed static portfolio according to first and sec-
ond eigenfunctions simultaneously. By Equation 14, FMP return expresses
as,

Erb
t = (|EÈÂ1, µtÍ|, ..., |EÈÂK , µtÍ|)

Õ ≠ “1 (17)

A.2. dynamic eigenfunction portfolio

In dynamic eigenfunction portfolio, we assume that functional scores can be
predicted as ›̂t. Thus, instead of letting E(›i,t) = 0, Equation 14 can be
re-estimated as,

Eri
t = EÈkÂi, µt +

Kÿ

j=1
›iÂj + Á(t)Í

= k(EÈÂi, µtÍ + E
Kÿ

j=1
ÈÂi, ›iÂjÍ + EÈÂi, Á(t)Í)

= k(EÈÂi, µtÍ + E(›̂i,tÈ„i, „iÍ))
= kEÈÂi, µtÍ + E(›̂i,t)

= |EÈÂi, µtÍ| + E(›̂i,t) = “i

(18)

To dynamically adjust the direction of eigenfunction „i, it is reasonable
to keep E( ˆ›i, t) strictly positive, resulting “i is greater than ◊i. Hence, the
sharpe ratio SRi

D is superior to SRi
S, where SRi

D formulated as below.

SRi
D = (“i ≠ rf )

⁄i
(19)
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Appendix B. Tables

Table 1: Single factor portfolios performances
The table shows the average monthly profitability of SMB, HML, and WML portfolio
from Jan. 2005 to Dec. 2015 with di�erent holding periods. Each column represents
di�erent holding periods varied from 3 to 24 months. The value in brackets are t-
statistic through the average return divided by the Newey-West robust standard errors.

3 6 9 12 24

size-(smb) 0.0137
(3.45)

0.0135
(3.32)

0.0134
(3.34)

0.0131
(3.21)

0.0134
(2.97)

value-(hml) 0.0067
(0.63)

0.0070
(1.59)

0.0069
(1.95)

0.0070
(1.83)

0.0070
(2.51)

momentum-(wml) -0.0049
(-1.41)

-0.0047
(-0.83)

-0.0046
(-0.67)

-0.0046
(-0.80)

-0.0048
(-0.96)

Table 3: Double sorted portfolio (control size and value)
The table presents the average monthly return of 5 ◊ 5 double sorted portfolios. In
panel A, the cross-sectional returns are firstly sorted by firm specific market capital-
ization in ascending order into quintiles from small to big, and then further sorted by
momentum also in ascending order into quintiles. The last row displays the average
monthly return of winner minus loser portfolio for each size quintile. In right panel B,
similarly, the cross-sectional returns are firstly sorted by firm specific B/M ratio into
quintiles, and then to be sorted by momentum into quintiles. The holding periods for
each portfolio are entire sample from Jan. 2005 to Dec. 2015. The value in brackets
are Newey-West robust t-statistics.

Panel A: Size Panel B: Value
Small 2 3 4 Big Low 2 3 4 High

Momentum

Loser 0.0307
(2.80)

0.0292
(2.53)

0.0315
(2.75)

0.0327
(2.95)

0.0196
(1.76)

0.0151
(1.39)

0.0163
(1.45)

0.0126
(1.29)

0.0059
(0.58)

0.0036
(0.33)

2 0.0292
(2.53)

0.0327
(2.95)

0.0188
(1.63)

0.0174
(1.54)

0.0120
(1.12)

0.0163
(1.45)

0.0059
(0.58)

0.0143
(1.26)

0.0139
(1.25)

0.0050
(0.46)

3 0.0315
(2.75)

0.0188
(1.63)

0.0181
(1.55)

0.0166
(1.44)

0.0081
(0.74)

0.0126
(1.29)

0.0143
(1.26)

0.0101
(0.92)

0.0175
(1.58)

0.0117
(1.08)

4 0.0327
(2.95)

0.0174
(1.54)

0.0166
(1.44)

0.0122
(1.08)

0.0058
(0.54)

0.0059
(0.58)

0.0139
(1.25)

0.0175
(1.58)

0.0174
(1.56)

0.0138
(1.21)

Winner 0.0196
(1.76)

0.0120
(1.12)

0.0081
(0.74)

0.0058
(0.54)

0.0029
(0.26)

0.0036
(0.33)

0.0050
(0.46)

0.0117
(1.08)

0.0138
(1.21)

0.0174
(1.54)

WML -0.0056
(-2.38)

-0.0034
(-1.80)

-0.0038
(-1.87)

-0.0032
(-1.57)

-0.0023
(-0.77)

-0.0057
(-1.67)

-0.0047
(-1.99)

-0.0029
(-1.72)

-0.0018
(-1.09)

-0.0012
(-0.66)
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Table 2: Double sorted portfolio (control momentum)
The table exhibits the average monthly return of 5◊5 double sorted portfolios. Firstly,
the cross-sectional returns are sorted by firm specific momentum in ascending order
obtaining 5 quintiles from loser to winner. Secondly, they are further sorted to quintiles
by size–market capitalization in panel A, and by value –B/M ratio in panel B. The last
row in panel A and B present the average monthly return of small minus big and high
minus low portfolios. The holding periods for each portfolio are entire sample from
Jan. 2005 to Dec. 2015. The value in brackets are Newey-West robust t-statistics.

Momentum
Loser 2 3 4 Winner

Panel A

Small 0.0319
(2.86)

0.0199
(1.74)

0.0151
(1.32)

0.0132
(1.15)

0.0097
(0.83)

2 0.0199
(1.74)

0.0132
(1.15)

0.0319
(2.74)

0.0159
(1.41)

0.0077
(0.71)

Size 3 0.0151
(1.32)

0.0319
(2.74)

0.0159
(1.35)

0.0211
(1.87)

0.0103
(0.95)

4 0.0132
(1.15)

0.0159
(1.41)

0.0211
(1.87)

0.0246
(2.20)

0.0060
(0.55)

Big 0.0097
(0.83)

0.0077
(0.71)

0.0103
(0.95)

0.0060
(0.55)

0.0020
(0.18)

SMB 0.0111
(3.87)

0.0121
(5.54)

0.0120
(4.72)

0.0093
(3.92)

0.0060
(1.91)

Panel B

Low 0.0158
(1.42)

0.0156
(1.37)

0.0184
(1.65)

0.0199
(1.71)

0.0200
(1.75)

2 0.0156
(1.37)

0.0199
(1.71)

0.0143
(1.25)

0.0227
(2.03)

0.0208
(1.80)

Value 3 0.0184
(1.65)

0.0143
(1.25)

0.0210
(1.80)

0.0173
(1.55)

0.0202
(1.82)

4 0.0199
(1.71)

0.0227
(2.03)

0.0173
(1.55)

0.0105
(1.05)

0.0170
(1.45)

High 0.0200
(1.75)

0.0208
(1.80)

0.0202
(1.82)

0.0170
(1.45)

0.0136
(1.30)

HML 0.0021
(1.02)

0.0032
(1.88)

0.0026
(1.57)

0.0032
(1.93)

0.0065
(2.70)
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Table 4: Relative strength portfolio with momentum and contrarian
strategies

The table shows average monthly returns of relative strength portfolio with momentum
and contrarian strategies. Each row stands for formation periods on K, the first four
rows considered the short-run past return; and the last row considered the long-run
past return. Each column represents di�erent holding periods varied from 3 to 24
months. We refer the method from (Jegadeesh and Titman, 1993) to construct these
equal weighted portfolios with over-lapping holding periods. The value in brackets are
Newey-West robust t-statistics.

Momentum Contrarian
3 6 9 12 24 3 6 9 12 24

3 months -0.0036
(-0.57)

-0.0033
(-0.55)

-0.0033
(-0.68)

-0.0035
(-0.67)

-0.0040
(-0.84)

0.0035
(0.36)

0.0031
(0.55)

0.0032
(0.64)

0.0034
(0.62)

0.0037
(0.82)

6 months -0.0038
(-0.54)

-0.0039
(0.81)

-0.0039
(-1.59)

-0.0041
(-0.92)

-0.0046
(-0.86)

0.0038
(0.73)

0.0038
(0.54)

0.0038
(0.83)

0.0040
(0.83)

0.0045
(0.82)

9 months -0.0042
(-0.11)

-0.0041
(-0.92)

-0.0040
(-0.82)

-0.0039
(-0.82)

-0.0042
(-0.82)

0.0041
(0.22)

0.0040
(0.57)

0.0038
(0.62)

0.0038
(0.80)

0.0040
(0.77)

12 months -0.0049
(-0.83)

-0.0047
(-0.84)

-0.0046
(-0.70)

-0.0046
(-0.80)

-0.0047
(-0.97)

0.0046
(1.24)

0.0044
(0.93)

0.0043
(0.67)

0.0042
(0.75)

0.0044
(0.91)

60 months -0.0009
(-0.08)

-0.0012
(-0.27)

-0.0015
(-0.33)

-0.0017
(-0.41)

-0.0020
(-0.64)

0.0011
(0.54)

0.0014
(0.06)

0.0017
(0.17)

0.0020
(0.27)

0.0022
(0.49)

Table 5: Factor models on momentum-sorted portfolio cross section
return

The table shows estimation results of OLS regressing on momentum-sorted equal-
weighted portfolio excess return toward to common risk factors. The columns represent
portfolio excess returns, from the first decile —loser to the last decile —winner, and
we also consider winner minus loser portfolio return. In panel A, Fama French three
risk factors (Fama and French, 1992) are adopted; and in panel B, an extra wml factor
is added as Carhart four factor model (Carhart, 1997). The last two columns show the
F statistics and P values of GRS test (Gibbons et al., 1989). *, ** and *** indicate
statistical significant level at 10%, 5% and 1% level, respectively.

Loser 2 3 4 5 6 7 8 9 Winner WML F(GRS) p(GRS)
Panel A: Fama-French model

– 0.01úú 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01úú 0.00 0.00 0.00
rmrf -0.27 -0.27 ≠0.32ú ≠0.32ú ≠0.33ú ≠0.33úúú ≠0.41úúú ≠0.38úúú ≠0.41úúú ≠0.46úúú -0.09
smb ≠1.25úúú ≠1.25úúú ≠1.31úúú ≠1.29úúú ≠1.28úúú ≠1.28úúú ≠1.35úúú ≠1.33úúú ≠1.31úúú ≠1.33úúú -0.04 2.18 0.0233
hml -0.04 0.02 0.05 0.08 0.12 0.11 0.17 0.20ú 0.24ú 0.21 0.13

AdjR2 0.72 0.75 0.78 0.77 0.79 0.80 0.80 0.83 0.82 0.73 0.02
Panel B: Carhart model

– 0.01úú 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01úú 0.00 0.00 0.00ú

rmrf -0.28 -0.28 ≠0.33ú ≠0.32ú ≠0.33ú ≠0.33úúú ≠0.41úúú ≠0.38úúú ≠0.40úúú ≠0.45úúú -0.09
smb ≠1.28úúú ≠1.26úúú ≠1.31úúú ≠1.28úúú ≠1.27úúú ≠1.28úúú ≠1.35úúú ≠1.32úúú ≠1.28úúú ≠1.27úúú 0.00 2.19 0.0226
hml 0.13 0.09 0.09 0.05 0.09 0.08 0.13 0.11 0.02 -0.21 ≠0.17ú

wml ≠0.21ú -0.09 -0.05 0.03 0.04 0.04 0.06 0.10 0.27úúú 0.51úúú 0.36úúú

AdjR2 0.73 0.76 0.78 0.77 0.79 0.81 0.81 0.84 0.84 0.77 0.84
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Table 6: Fama-MacBeth Regression with FPC1 and FPC2 factors
To assess how functional principal component factors describe momentum-sorted value
weighted portfolio returns, we apply Fama-MacBeth regression on FPC1 and FPC2.
The first step is to obtain factor risk exposures on each portfolio through running time
series regression between risk factor and individual portfolio returns. Then, the risk
premium coe�cients are obtained from the second step by regressing cross-sectional
portfolio return on risk exposures from month to month. Because we are aiming to
confirm the existence of significant risk premium instead of assess positive or negative
signs, we take absolute value of risk premium coe�cients. The value in brackets are
t-statistics.

Jan.2005-Dec.2015 Jan.2005-Dec.2015 Jan.2005-Dec.2015
Entire Jan Dec Feb-Nov Entire Jan Dec Feb-Nov Entire Jan Dec Feb-Nov

FPC1 0.15
(4.41)

0.18
(5.81)

0.15
(4.25)

0.15
(4.69)

0.15
(4.87)

0.18
(6.13)

0.15
(4.70)

0.16
(5.40)

FPC2 0.07
(1.65)

0.06
(1.43)

0.07
(1.65)

0.08
(1.82)

0.07
(2.17)

0.06
(2.09)

0.07
(2.13)

0.08
(2.66)

AdjR2 0.21 0.30 0.21 0.21 0.06 0.04 0.06 0.07 0.28 0.34 0.28 0.29

Table 7: Factor models with FPCs on momentum-sorted portfolio
cross section return

The table exhibits estimation results of OLS regressing momentum-sorted portfolio
excess return toward on Fama-French risk factors, in addition with functional mo-
mentum factors FPC1 and FPC2. The columns represent portfolio excess returns,
from the first decile —loser to the last decile —winner, as well as winner minus loser
portfolio return. In panel A, there are four factors, Fama French three risk factors and
FPC1; in panel B, the FPC1 is replaced by the FPC2; and in panel C, both FPC1 and
FPC2 are considered, forming as a five factor model. The last two columns present
the F statistics and P values of GRS test (Gibbons et al., 1989). *, ** and *** indicate
statistical significant level at 10%, 5% and 1% level, respectively.

Loser 2 3 4 5 6 7 8 9 Winner WML F(GRS) p(GRS)
Panel A: Fama-French with FPC1

– 0.00 0.01ú 0.01úú 0.01úú 0.01úú 0.01úú 0.01 0.01ú 0.01 0.01 0.00ú

rmrf ≠0.39úúú ≠0.37úúú ≠0.41úúú ≠0.39úúú ≠0.39úúú ≠0.37úúú ≠0.44úúú ≠0.39úúú ≠0.37úúú ≠0.38úúú 0.00
smb ≠1.30úúú ≠1.29úúú ≠1.34úúú ≠1.32úúú ≠1.30úúú ≠1.30úúú ≠1.36úúú ≠1.33úúú ≠1.29úúú ≠1.30úúú 0.00 2.48 0.0170
hml 0.12 0.15 0.16 0.18 0.20 0.17 0.21 0.21 0.19 0.10 -0.01

FPC1 ≠0.19úúú ≠0.16úúú ≠0.14úúú ≠0.12úúú ≠0.10úúú ≠0.07úúú ≠0.05ú -0.01 0.07úúú 0.13úúú 0.16úúú

AdjR2 0.83 0.83 0.83 0.81 0.82 0.82 0.81 0.83 0.84 0.79 0.95
Panel B: Fama-French with FPC2

– 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01úúú 0.01ú 0.01ú 0.00 0.00 0.00
rmrf -0.31 -0.28 ≠0.33ú ≠0.31ú ≠0.33ú ≠0.32úú ≠0.40úúú ≠0.37úúú ≠0.40úúú ≠0.50úúú -0.10
smb ≠1.30úúú ≠1.26úúú ≠1.31úúú ≠1.28úúú ≠1.27úúú ≠1.26úúú ≠1.34úúú ≠1.31úúú ≠1.30úúú ≠1.38úúú ≠0.04úúú 2.21 0.0217
hml 0.02 0.03 0.06 0.07 0.11 0.09 0.15 0.17 0.22 0.29 0.13

FPC2 0.17úúú 0.04 0.02 -0.03 -0.03 -0.06 -0.06 -0.07 -0.05 0.21úúú 0.02
AdjR2 0.74 0.75 0.77 0.77 0.78 0.80 0.80 0.83 0.82 0.76 0.02

Panel C: Fama-French with FPCs
– 0.00 0.01ú 0.01ú 0.01ú 0.01ú 0.01ú 0.01 0.01 0.01 0.01ú 0.00ú

rmrf ≠0.42úúú ≠0.38úúú ≠0.41úúú ≠0.38úúú ≠0.39úúú ≠0.36úúú ≠0.43úúú ≠0.38úúú ≠0.36úúú ≠0.42úúú 0.00
smb ≠1.34úúú ≠1.30úúú ≠1.35úúú ≠1.31úúú ≠1.30úúú ≠1.28úúú ≠1.35úúú ≠1.31úúú ≠1.28úúú ≠1.35úúú 0.00
hml 0.18 0.16 0.17 0.17 0.20 0.15 0.19 0.18 0.17 0.18 0.00 2.52 0.0159

FPC1 ≠0.19úúú ≠0.16úúú ≠0.14úúú ≠0.12úúú ≠0.10úúú ≠0.07úúú ≠0.05ú -0.01 0.07úúú 0.13úúú 0.16úúú

FPC2 0.17úúú 0.04 0.02 -0.03 -0.02 -0.06 -0.06 -0.07 -0.05 0.21úúú 0.02úúú

AdjR2 0.85 0.83 0.83 0.81 0.82 0.82 0.81 0.83 0.84 0.82 0.95
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Table 8: Own and cross serial correlations
This table displays own and cross-serial correlations within size-sorted portfolio returns
with contrarian strategy. Each column represents size quintile from smallest size group
to biggest one, denoted as S1 - S5. In panel A, the autocorrelation is looked back four
periods on each quintile portfolio return. In panel B, we examine the cross-serial
correlations with two lags periods. Notice that the sample included stock without any
missing data from Jan.2005 to Dec.2015, there are 1269 stocks in total.

Panel A: Own-serial correlation
S1 S2 S3 S4 S5

lag1 0.0215 0.0480 -0.0718 -0.0568 -0.1076
lag2 -0.0823 -0.1462 -0.1199 -0.0176 -0.1442
lag2 -0.0161 -0.2109 -0.0137 -0.0488 0.0259
lag4 -0.0865 -0.0602 -0.0293 -0.0168 -0.0531

Panel B: Cross-serial correlation
Lag1 S1 S2 S3 S4 S5
S1 0.0943 0.0313 -0.0017 0.0244 0.2131
S2 -0.0413 0.0820 -0.1166 0.0838 0.0349
S3 -0.0443 -0.0457 0.0080 -0.0649 -0.0102
S4 -0.0568 0.0079 -0.0811 0.0286 -0.0671
S5 -0.0490 0.0071 0.1256 0.0100 -0.0789

Lag2 S1 S2 S3 S4 S5
S1 -0.1985 -0.0736 0.0959 0.0523 -0.0208
S2 0.1109 -0.1109 -0.0684 -0.1701 -0.2025
S3 -0.0125 0.1296 -0.0742 -0.0016 0.0396
S4 0.0046 -0.0377 -0.1364 0.0071 -0.1057
S5 0.0142 -0.0297 -0.1216 -0.0939 -0.1032

Table 9: The statistics of static portfolios
The table shows the average monthly return, sharpe ratio and maximum drawdown
statistics for 7 types of portfolio strategies. The first two columns are conventional
strategies –wml and lmw. The following five columns represent portfolios weighted by
the first or second eigenfunctions, or mixing two of them for optimization.

Conventional strategy Eigenfunction strategy
Momentum Contrarian ef1 -ef1 ef2 -ef2 mixing

return -0.0508 0.0508 -0.0602 0.0602 -0.0172 0.0172 0.0318
sharpe ratio -0.6988 0.6988 -0.7561 0.7561 -0.4546 0.4546 0.8912

maximum drawdown -0.6751 -0.1389 -0.7804 -0.1311 -0.2358 -0.0961 -0.0429
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Table 10: The fitting of functional scores on EFP return
The table presents results that regressing static eigenfunction function portfolio re-
turns on the loadings of each eigenfunction. ≠ef1 and ≠ef2 represent static portfolio
returns weighted by ≠ef1 and ≠ef2, and their functional loadings are fs1 and fs2.

fs1 fs2
– ≠0.0405úúú – ≠0.0091úúú

≠ef1 — 1.0369úúú ≠ef2 — 1.0895úúú

R2 0.94 R2 0.92

Table 11: Leading indicator tests on functional scores
This table shows estimation results of regressions between a functional score and kinds
of potential leading indicators. We consider three macroeconomic variables (Chordia
and Shivakumar, 2002), DP –dividend payment, Y3B –yield on 3 months treasury bill
and SSL –spread between 3 months short-term and 10 years long-tern treasury bill;
as well as four moments of market index. We compute time-varying moment series
through rolling market index with 6 months window. As a forecast regression model,
we regress functional scores on first lag of potential leading indicators. It is notable
that fs1 is functional scores for the first eigenfunction, and fs2 is functional scores for
the second eigenfunction. *, ** and *** indicates statistical significant level at 10%,
5% and 1% level, respectively.

Macroeconomic Variables
– — R2

DP fs1 -0.0686 0.038ú 0.02
fs2 0.0097 -0.0053 0.002

Y3B fs1 -0.0536 0.0222 0.01
fs2 0.0063 -0.0026 0.00

SSL fs1 0.0303 -0.0242 0.01
fs2 -0.0001 0.0001 0.00

Market index

Mean fs1 0.10úú ≠0.001úú 0.05
fs2 -0.0063 0.0001 0.00

Standard Deviation fs1 0.051úú ≠0.001úúú 0.05
fs2 -0.0039 0.0000 0.00

Skewness fs1 0.0031 -0.0185 0.00
fs2 0.0016 -0.0093 0.00

Kurtosis fs1 -0.0868 0.044 0.02
fs2 -0.0042 0.0021 0.00
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Appendix C. Figures

Figure 1: The functional residual curves and decomposed eigenfunc-
tions
In order to explore variation patterns of residuals in three factor model, cross-sectional
residuals have to be smoothed to functional curves before adopting functional principal
component analysis. Therefore, we apply 13 cubic B-spline smoother to smooth the 132
by 100 residual matrix, and get 132 functional curves. In right panel, the FPCA extracts
13 eigenfunctions, where the first four take into account 87.2% from the total variation,
plotted in the figure. The first eigenfunction is colored in black, explaining 64%; the second
eigenfunction is colored in red, interpreting 13.3% variation; the third eigenfunction is
colored in green, taking account 5.9%; and the fourth one is colored in blue, only taking
account 4% from total variation.

Figure 2: Confidence intervals of first four functional eigenfunctions
Refer to Hall and Hosseini-Nasab (2006), the best way to investigate numerical properties
of FPCA�s eigenfunctions is to use bootstrapping. Bootstrapping cross-sectional residual
functional curves with 2000 times, we construct 95 % confidence intervals for the first four
functional eigenfunctions. In average, the first eigenfucntion takes into account 64.2%,
followed with 13.4% of the second eigenfunction, and last two eigenfunctions explain 6.0%
and 4.0%, respectively.
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Figure 3: The Information Coe�cients
The first and second eigenfunctions suggest upward-trend and quadratic risk patterns on
cross-sectional momentum sorted portfolio returns. The information coe�cients between
eigenfunction and cross-sectional portfolio returns are computed from month to month.
In total, we get 132 information coe�cients from Jan. 2005 to Dec. 2015. In order to
assess the strength of correlation, we set the domain of correlation coe�cients is between
0 and 1 by taking absolute of correlation coe�cients.

Figure 4: The V shaped selling activity toward to profit
The figure is cited from (Ben-David and Hirshleifer, 2012), they find the V shaped selling
behavior in response to the profit. They find investors are inclining to trade those shares
with extreme performances.
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Figure 5: The performance of static portfolio strategies
Following four figures show cumulative portfolio returns and monthly average return for
di�erent static portfolios. The figure at the top left corner shows performances of ef1
and ≠ef1 portfolios, and the counterparts for ef2 are plotted at top right corner. The
sub-figure at left bottom corner shows performances of conventional winner minus loser
and loser minus winner portfolio. The last sub-figure displays the performance of a mixing
portfolio between ≠ef1 and ≠ef2.
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