Statistical and empirical properties of Factor Model Quantile Simulation (FMQS)

Yang Han (Technische Universität München)

3rd Young Finance Scholars Conference

9 June 2016

Simulation of Stock Returns through FMQS

Quantile Regression on Factor Model and Simulation of Market Returns

Outline of FMQS Methodology (1/6)

Adjustment of the historical Data

Outline of FMQS Methodology (2/6)

Quantile Regression estimates the Parameters of the Factor Model

Inversion Sampling

Outline of FMQS Methodology (3/6)

Market Return Simulation through a Stochastic Volatility Jump Diffusion Model

Outline of FMQS Methodology (4/6)

Quantiles can be calculated using the previous Results

Outline of FMQS Methodology (5/6)

Through Interpolation we generate the Distribution from the Quantiles

Outline of FMQS Methodology (6/6)

Inversion Sampling can be used to sample from the calculated Distribution

Empirical Results

Parameter estimation for Quantile Regression and SVJD Model

Quantile Regression					
$R_i = \alpha_i + \beta_i R_M + \gamma_i R_M^2 + \varepsilon_i$					
	q	Quantiles	alpha	beta	gamma
0	0.1	-0.010812	-2.158028e-02	1.138099	-6.127396
1	0.2	-0.000578	-1.172315e-02	1.170988	-5.646079
2	0.3	0.004271	-6.708940e-03	1.118705	-2.067595
3	0.4	0.008439	-2.523657e-03	1.107437	-1.118226
4	0.5	0.010959	3.688283e-07	1.094858	0.099319
5	0.6	0.014461	3.262038e-03	1.091171	2.868163
6	0.7	0.019166	7.812528e-03	1.094618	4.069515
7	0.8	0.025386	1.370194e-02	1.113056	5.531105
8	0.9	0.036554	2.350128e-02	1.210358	9.495999

References

Summary of the most relevant References

- Carol Alexander. Market Models: A Guide to Financial Data Analysis. John Wiley & Sons, 2001.
- Carol Alexander. Market Risk Analysis, Quantitative Methods in Finance. Market Risk Analysis. John Wiley & Sons, 2008a.
- Carol Alexander. Market Risk Analysis, Practical Financial Econometrics. Market Risk Analysis. John Wiley & Sons, 2008b.
- Michael Johannes and Nicholas Polson. MCMC methods for continuous-time financial econometrics. In Yacine Aït-Sahalia and Lars Hansen, editors, *Handbook of Financial Econometrics*. Elsevier, 2002.
- Andreas Kaeck and Carol Alexander. Stochastic volatility jump-diffusions for european equity index dynamics. *European Financial Management*, 19(3):470–496, 2013.
- Roger Koenker and Gilbert Bassett Jr. Regression quantiles. *Econometrica: journal of the Econometric Society*, pages 33–50, 1978.

Thank you for your attention

Backup slides

Analytical results

Assuming a normal distributed market return

$$\operatorname{Cor}(R_1, R_2) = \frac{(\beta_1 + 2\gamma_1 \mu)(\beta_2 + 2\gamma_2 \mu)\sigma^2 + 2\gamma_1 \gamma_2 \sigma^4}{\sqrt{\sigma^4 ((\beta_1 + 2\gamma_1 \mu)^2 + 2\gamma_1^2 \sigma^2)((\beta_2 + 2\gamma_2 \mu)^2 + 2\gamma_2^2 \sigma^2)}}$$

Moments

Correlation

mean =
$$\alpha + \beta \mu + \gamma (\mu^2 + \sigma^2)$$

variance = $(\beta + 2\gamma \mu)^2 \sigma^2 + 2\gamma^2 \sigma^4$