Event-Driven Finance

Lecture 1: Introduction. The Market (Reality).

Mike Lipkin
Columbia University (IEOR)

What is event-driven finance?

A first, naïve, answer is this: Event-driven finance concerns the pricing of (derivative) securities concomitant to some temporal event.

This first answer is somewhat tautological. And in any case, events happen all the time. So why might we wish to introduce this new category of finance?

To answer this question we need to reexamine our preexisting ideas about derivatives pricing.

- In the course of doing so we shall see that standard approaches to pricing involve assumptions of equilibrium.
- These assumptions include the notion that many events may be averaged over; the events form a heat-bath in whose presence the expected stock behavior may be calculated.
- BUT what if we are not interested in the average behavior of a stock, but only its behavior in the temporal vicinity of ONE event.
- We should expect the pricing of the derivative securities to have a prominent time dependence- and it does.
- So the story is two-fold:

Events are typically discrete changes in some characteristic at a fixed time;

And event-driven finance means that we are interested in the time-dependent price of securities near that time.

- Let's look at some pictures:
- The following three plots show the volatility surface for the stock, FDC, at the close of trading, September 15, 2005, (upper surface)
- And below it, the lower surface shows the same stock 1 day later:

FDC impact

FDC impact

- Clearly some event had occurred to lower the implied volatilities across all expiries.
- This means that theoretical pricing of securities required a discrete change of input parameters.
- We will discuss what happened later, but you may be surprised to note that classical stochastic models do not include a parameter which directly encompasses this change.
- Some more pictures:
- Here is a graph of implied volatility for a period of four weeks in April, 2008 in the stock, AAPL
- For three of those weeks the implied volatility was steadily rising; after a crash, the volatility appears to flatten
- After that, a similar fitted plot in MSFT

- Here is the rising portion of a similar graph for MSFT in October 2004

- For the previous two images, it is clear that while there appears to be an event date, the impact of the event is spread out over several earlier weeks broadly.
- This is typical of a certain class of events which we shall revisit in Lecture 3; they are clearly anticipatory in that we see effects in the volatility surface in advance of the event.
- The following is a graph of implied volatilities for several strikes in the stock, DIGI, for three months in 1998.
- At a certain date (ca. May 14) the volatility surface pleats- the front month at-the-money implied volatility dropping below the volatility of the next higher strike on a relative basis.

- In Lecture 4 we will come back to this example and discuss what happens here in more detail. This is a complex event in that it has multiple parts.
- Looking carefully at the long-term volatility, one sees that it drops abruptly in the first week of June.
- This sudden drop in the long-term volatility is, in fact, what most people would identify as the event.
- But while the volatility pleating of mid-May is consistent with the June occurrence it is not pre-ordained by it- nor the reverse!
- Here is a plot of stock price for the stock JDEC for a month (February - March) in 2001.
- The Japanese candlesticks indicate a large drop in daily volatility for the stock after Feb 27, and the stock zeroes in on the price of $\$ 10$.

JDEC pin

JDEC in March 2001

- In case 1, an event on Sept 16 in FDC produced a discrete immediate response in the volatility surface.
- In case 2, an event at a later date caused an anticipatory change in the volatility surface over several weeks.
- In case 3, a complex event stretches over several months and has variable temporal effects on the volatility surface.
- In case 4, -contrast with case 2- the event in JDEC can be associated with the date, Feb 27, but the effect on the volatility surface and stock price stretches forward in time. We will discuss this case in detail next Lecture.
- Let's jump in with a real world problem:
－Suppose you are working at a desk and running a variant of Black－ Scholes，as sophisticated as you care to make it，and a hedge fund shows you 15000 contracts $\$ 0.15$ through your theoretical value：＂I can sell you 15000 VMW Apr 85 calls for $\$ 7.46$ ．＇
© MicroHedge［ACTIV］v91．4．0．576 MIKE．31E5－（Vmware Inc－VMW）VMW．L47
Fie Edt Vew Format Parameters AutoQuote Recak！Trade Risk Sheets Tools Help Logoff LIPKIN！

Series	cPos	$\mathrm{p}^{\text {Pos }}$	YnIVol	MYVol	cD1t	cNBB		cThv	clid	chat	cNBO		cpVol	pllt	$\mathrm{p}^{\mathrm{NBB}}$		pThy	$\mathrm{p}^{\text {Bid }}$		$\mathrm{p}^{\text {NB0 }}$	
2FEB115－0	0	0	46.71	47.67	0.030	0.05	0	0.13	0.05	0.20	0.20	0	47.72	－0．971	30.90	0	31.31	30.90	32.30	32.30	0
27EB120－0	0	0	48.40	51.33	0.016			0.06		0.20	0.20	0	47.72	－0．986	35.30	0	36.25	35.30	37.90	37.90	0
2APR40－0	0	0	66.95	68.36	0.986	42.90	0	43.98	42.90	44.80	44.80	0	68.33	－0．014	0.10	0	0.15	0.10	0.20	0.20	0
2APR424－0	0	0	63.25	64.60	0.983	40.50	0	41.51	40.50	41.90	41.90	0	64.57	－0．017	0.10	0	0.17	0.10	0.25	0.25	0
2APR．45－0	0	0	63.14	62.42	0.978	37.50	0	39.07	37.50	39.40	39.40	0	62.39	－0．022	0.15	0	0.22	0.15	0.30	0.30	0
2APR474－0	0	0	60.99	61.45	0.970	35.60	0	36.67	35.60	37.10	37.10	0	61.42	－0．030	0.25	0	0.32	0.25	0.40	0.40	0
2APR50－0	0	0	59.47	60.13	0.960	32.80	0	34.30	32.80	34.60	34.60	0	60.10	－0．040	0.40	0	0.45	0.40	0.50	0.50	0
2APR．55－0	0	0	56.62	57.08	0.936	28.60	0	29.60	28.60	29.90	29.90	0	57.05	－0．064	0.70	0	0.75	0.70	0.80	0.80	0
2APR60－0	0	0	53.83	54.61	0.900	24.90	0	25.10	24.90	25.20	25.20	0	54.57	－0．100	1.20	0	1.25	1.20	1.30	1.30	0
2APR65－0	0	0	51.73	52.15	0.852	20.60	0	20.83	20.60	21.00	21.00	0	52.11	－0．148	1.90	0	1.97	1.90	2.05	2.05	0
2Apri70－0	0	50	50.07	50.31	0.789	16.70	0	16.88	16.70	17.00	17.00	0	50.26	－0．211	2.95	0	3.02	2.95	3.10	3.10	0
2APR724－0	0	0	49.31	49.38	0.752	14.90	0	15.06	14.90	15.20	15.20	0	49.33	－0．248	3.60	0	3.69	3.60	3.80	3.80	0
2APR75－0	0	0	48.40	48.69	0.712	13.20	0	13．36	13.20	13.50	13.50	0	48.63	－0．288	4.40	0	4.49	4.40	4.60	4.60	0
2AアRワ7ヶ－0	0	0	47.43	47.66	0.670	11.60	0	11.73	11.60	11.80	11.80	0	47.76	－0．331	5.30	0	5.36	5.30	5.40	5.40	0
2APR80－0	0	0	46.64	47.12	0.625	10.10	0	10.22	10.10	10.30	10.30	0	46.94	－0．376	6.30	0	6.34	6.30	6.50	6.50	0
2A．PR824－0	0	0	45.98	46．40	0.578	8.80	0	8.87	8.80	9.00	9，00	0	46.28	－0．423	7.40	0	7.49	7.40	7.60	7.60	0
2APres－0	0	0	45.29	45.77	0.530	7.50	0	7.61	7.50	7.70	7.70	0	45.62	－0．470	8.70	0	8.74	8.70	8.90	8.90	0
2APR874－0	3	0	44.74	45.38	0.482	6.40	0	6.49	6.40	6.60	6.60	0	45.10	－0．519	10.10	0	10.11	10.10	10.30	10.30	0
2．APR90－0	0	0	44.11	44.74	0.435	5.40	0	5.49	5.40	5.60	5.60	0	44.50	－0．566	11.60	0	11.61	11.60	11.80	11.80	0
2APR924－0	0	0	43.76	44.09	0.388	4． 50	0	4.59	4． 50	4.70	4.70	0	43.86	－0．613	13.20	0	13.21	13.20	13.40	13.40	0
2APR95－0	${ }^{6}$	0	43.10	43.34	0.344	3.70	0	3.84	3． 70	3.90	3.90	0	43.55	－0．657	14.80	0	14.96	14.80	15.10	15.10	0
2APR974－0	0	0	42.99	43.26	0.302	3.10	0	3.18	3.10	3.30	3.30	0	43.16	－0．699	16.70	0	16.80	16.70	16.90	16.90	0
2APR100－0	0	0	42.21	42.65	0.263	2.55	0	2.61	2.55	2.65	2.65	0	42.70	－0．738	18.60	0	18.72	18.60	18.80	18.80	0
2APR105－0	0	0	41.70	41.93	0.193	1.65	0	1.71	1.65	1.75	1.75	0	41.97	－0．808	22.70	0	22.82	22.70	22.90	22.90	0
2ADP110－0	3	0	41.16	41.38	0.139	1.05	0	1.10	1.05	1.15	1.15	0	41.42	－0．863	26．90	0	27.22	26.90	28.20	28.20	0
2APR115－0	1	0	40.43	41.10	0.097	0.65	0	0.70	0.65	0.75	0.75	0	41.13	－0．905	31.50	0	31.03	31.50	32.80	32.80	0

- Here is another page of VMW

quotes:

EMC to maintain 80\% VMware stake

EMC Corp., which specializes in high-end computer storage systems, is based in Hopkinton. (Neal Hamberg/ Bloomberg News/ File 2004)
Bloomberg News / March 3, 2010

- Do you buy them?
- What considerations do we need make?
- What if the hedge fund wanted to sell 500 options only?
- Volatility/Vega
- Risk
- The above is an example of a volatility depression (spike). After the trade there will be a new volatility profile.
- What will that profile look like?
- Would it surprise you to know that there is no existing, accepted theory of the dynamics of pricing?
- What we are interested in having at our disposal is not a static (or thermodynamic) model which allows stochastic volatility, but a way of learning about the "response function" of a real market.
- In a sophisticated theory, the following kind of mathematical object would be calculable: $<\Delta \sigma\left(\mathrm{K}_{1}, \mathrm{t}_{1}\right) \Delta \sigma\left(\mathrm{K}_{2}, \mathrm{t}_{2}\right)>$.
- As you can imagine. If we do decide to buy the Apr 85 calls we will have greatly increased our Vega. From the discussion it is clear that in any case, prices will decline in other strikes and series.
- By how much?
- No one knows. There is (almost) a complete absence of theory.
- If the Apr 85 calls decline by 1.5 (implied) vol points,
- how many points will the Apr 90 calls come in by?
- The market there is $\$ 5.40-\$ 5.60$.
- Does it make sense to hit the bid? (What does hit mean?)
- The July 85 calls are $\$ 10.40-\$ 10.60$.
- Should you sell the calls at $\$ 10.40$ as a hedge?
- Is this better than the $\$ 5.40$ sale?
- What if there are earnings between April and July?
- Should you sell EMC volatility instead?!?
- Suppose that the hedge fund "informs" you that the calls will trade.
- Should you be leaning short?
- What does this say about the assumption that the stock process is independent of option trading?
- Is there a flaw in the Martingale assumption?
- Later (Lecture 2) we will see that option volume can affect stock prices.
- Here are some Real World examples:
- On September 16, 2005, a BA customer sold 150,000 FDC Jan 40 calls to market-makers, mostly within a two-hour window.
- The implied volatility of at-the-money options went from 23 to 19 in January and from 28 to 20 in November.
this was case 1 above
- On Tuesday, May 23, 2006, market-makers were told "133,000 RAD Jan ' $0821 / 2$ calls will trade at 2.35 vs. 4.38 stock. How much would you like to sell?"

$\mathrm{RAD}=\$ 4.38$
133,300 CONTRACTS TRADE 2.35
DO YOU SELL?

Fle Edt hew Formà Parameters AutoQuote Recakl Trade Risk Sheets Tools Help Logoff LIPKINI

Trade Date: 01/09/12 Nodel: Microhedge Type: Equity Exercise: American
Volatility: Using Volatility Skev Interest: 0.40 .40 .40 .4 1.0 0.4
Het VMW.: -13 I Delta: 338 Gama: 408 Theta: -742 Vega: 1523 Dho: 468 ThRdg: 850 OpenDos: -772 DayTrades: 0 Het: -772

Series	cPos	pPos	YMIVol	MVol	cD1t		NBB	cThv	clid	cı̂tsk		NB0	cpVol	pllt		PNBE	pThv	plid	pfak	pNB0	\wedge
2FPB115-0	0	0	46.71	47.67	0.030	0.05	0	0.13	0.05	0.20	0.20	0	47.72	-0.971	30.90	0	31.31	30.90	32.30	32.300	
2F8B120-0	0	0	48.40	51.33	0.016			0.06		0.20	0.20	0	47.72	-0.986	35.30	0	36.25	35.30	37.90	37.900	
2APR40-0	0	0	66.95	68.36	0.986	42.90	0	43.98	42.90	44.80	44.80	0	68.33	-0.014	0.10	0	0.15	0.10	0.20	0.200	
28PR424-0	0	0	63.25	64.60	0.983	40.50	0	41.51	40.50	41.90	41.90	0	64.57	-0.017	0.10	0	0.17	0.10	0.25	0.250	
2APD.45-0	0	0	63.14	62.42	0.978	37.50	0	39.07	37.50	39.40	39.40	0	62.39	-0.022	0.15	0	0.22	0.15	0.30	0.300	
2APRA74-0	0	0	60.99	61.45	0.970	35.60	0	36.67	35.60	37.10	37.10	0	61.42	-0.030	0.25	0	0.32	0.25	0.40	0.400	
2APR50-0	0	0	59.47	60.13	0.960	32.80	0	34.30	32.80	34.60	34.60	0	60.10	-0.040	0.40	0	0.45	0.40	0.50	0.500	
2ADPS5-0	0	0	56.62	57.08	0.936	28.60	0	29.60	28.60	29.90	29.90	0	57.05	-0.064	0.70	0	0.75	0.70	0.80	0.800	
2APR60-0	0	0	53.83	54.61	0.900	24.90	0	25.10	24.90	25.20	25.20	0	54.57	-0.100	1.20	0	1.25	1.20	1.30	1.300	
2APR65-0	0	0	51.73	52.15	0.852	20,60	0	20.83	20.60	21.00	21.00	0	52.11	-0.148	1.90	0	1.97	1.90	2.05	2.050	
2ADP70-0	0	50	50.07	50.31	0.789	16.70	0	16.88	16.70	17.00	17.00	0	50.26	-0.211	2.95	0	3.02	2.95	3.10	3.100	
2APR724-0	0	0	49.31	49.38	0.752	14.90	0	15.06	14.90	15.20	15.20	0	49.33	-0.248	3.60	0	3.69	3.60	3.80	3.800	
2APR75-0	0	0	48.40	48.69	0.712	13.20	0	13.36	13.20	13.50	13.50	0	48.63	-0.288	4.40	0	4.49	4.40	4.60	4.600	
2AD2774-0	0	0	47.43	47.66	0.670	11.60	0	11.73	11.60	11.80	11.80	0	47.76	-0.331	5.30	0	5.36	5.30	5.40	5.400	
2APR60-0	0	0	46.64	47.12	0.625	10.10	0	10.22	10.10	10.30	10.30	0	46.94	-0.376	6.30	0	6.34	6.30	6.50	6.500	
2APR824-0	0	0	45.98	46.40	0.578	8.80	0	8.87	8.80	9.00	9.00	0	46.28	-0.423	7.40	0	7.49	7.40	7.60	7.600	
2ADP85-0	0	0	45.29	45.77	0.530	7.50	0	2.61	7.50	7.70	7.70	0	45.62	-0.470	8.70	0	8.74	8.70	8.90	8.900	
2APR874-0	3	0	44.74	45.38	0.482	6.40	0	6.49	6.40	6.60	6.60	0	45.10	-0.519	10.10	0	10.11	10.10	10.30	10.300	
2.PR.90-0	0	0	44.11	44.74	0.435	5.40	0	5.49	5.40	5.60	5.60		44.50	-0,566	11.60	0	11.61	11.60	11.80	11.800	
2AP1924-0	0	0	43.76	44.09	0.388	4.50	0	4.59	4.50	4.70	4.70	0	43.86	-0.613	13.20	0	13.21	13.20	13.40	13.400	
2APR95-0	-6	0	43.10	43.34	0.344	3.70	0	3.84	3.70	3.90	3.90	0	43.55	-0.657	14.80	0	14.96	14.80	15.10	15.100	
2A.pR974-0	0	0	42.99	43.26	0.302	3.10	0	3.18	3.10	3.30	3.300		43.16	-0.699	16.70	0	16.80	16.70	16.90	16.900	
2SPR100-0	0	0	42.21	42.65	0.263	2.55	0	2.61	2.55	2.65	2.65		42.70	-0.738	18.60	0	18.72	18.60	18.80	18.800	
2APR105-0	0	0	41.70	41.93	0.193	1.65	0	1.71	1.65	1.75	1.75		41.97	-0.808	22.70	0	22.62	22.70	22.90	22.900	
2ADR110-0	3	0	41.16	41.38	0.139	1.05	0	1.10	1.05	1.15	1.15		41.42	-0.863	26.90	0	27.22	26.90	28.20	28.200	
2APS115-0	1	0	40.43	41.10	0.097	0.65	0	0.70	0.65	0.75	0.75		41.13	-0.905	31.50		31.88	31.50	32.80	32.800	

- Let's take the previous slide of VMW as a template.
- The standard approach to market pricing is calibration. All market models take input data from the actual prices out there. Suppose that the resultant model now "fits" the market, in the sense that no theoretical prices lie outside the bid-offer spreads.
- Does this mean that the market is correctly priced?
- Suppose that over the next week, buyers show up for all the VMW 87.5 line options (previous slide $\mathrm{S}_{0}=83.77$). As a result,
- what will happen to the normal skew?
- If the skew "inverts", does this mean that the prices are wrong?
- We will see, (Lecture 4), that under certain circumstances such as take-overs the skew can take a strange but characteristic shape.
- The main point is this: if all our (derivatives) prices are fit by calibrating an initial model- and then the prices no longer fit- we...
- cannot know if our model is now wrong
- or if profitable trading is now possible
- This is because events create a phase change in the system we are studying/trading
- Case 2: earnings dates in AAPL and MSFT
- Case 3: anticipation of, and then take-over of DSC (DIGI) by Alcatel
- Case 4: the expiration pinning of JDEC
- Let's try to summarize some of the ideas we have discussed.
- The size of a trade matters. The time scale for the relaxation of the market subsequent to a trade matters. A quant analyzing the thermodynamics of the market will not see many of the time scales needed to understand market dynamics.
- It is important to pay strict attention to time scales.
- Ex.: Optionmetrics IVY database - closing prices
- This time scale suffices to look at earnings, drug announcements, take-overs and mini-crashes (Lectures 3 and 4). It does not allow us to look at the response to size trades.
- What kind of database would you need for that?
- Would such a database be useful for a trading house?
- Do you think the elasticity of the response is a function of the individual stock? the open interest? the illiquidity of the stock? Anything else?
- Let's conclude this introductory talk by considering a typical problem about which there is a lack of theoretical understanding. The objective will be to abstract the nature of the problem, consider the time scales involved, and finally to propose a database experiment to search for market behavior.
- Let's take the VMW, EMC example. These are two related companies. Suppose we run a book with positions in VMW and EMC. When we are offered a large trade in VMW, we would like to know if we need to be hedging in EMC. Notice that this is not asking if stock prices are correlated (although they may be), but rather if volatility surfaces are correlated.
- For example, suppose that we are short 5000 Vega in VMW and long 5000 Vega in EMC. If we buy VMW premium we will become flat, say.
- Do we need to sell some amount of EMC volatility?
- If that is true, what would that tell us and how would we quantify it?
- What time scale would the vol changes occur on?
- To begin with we need to locate significant volatility changes in the histories of VMW and EMC. We need these changes to occur over a characteristic time scale, say one or two days, and then we need to see if there is a subsequent change in the volatility of the partner stock. The following quantities may be relevant:

$$
\begin{equation*}
<\Delta \sigma_{\mathrm{VMW}}\left(\mathrm{t}, \mathrm{~K}_{\Delta 1}\right) \Delta \sigma_{\mathrm{EMC}}\left(\mathrm{t}+\tau, \mathrm{K}_{\Delta 1}\right)> \tag{1}
\end{equation*}
$$

- What is this object? $\Delta \sigma$ is the change in vol, τ is the lag time (unknown but possibly very short) between the change in VMW vol and the subsequent change in EMC vol, $\tau>0$ assumed. $\mathrm{K}_{\Delta 1}$ is the strike corresponding to similar deltas in both products. (Notice how the assumptions are multiplying!!) From the physics of dynamical systems, this quantity is called a response function- for obvious reasons.
- Impact is frustrating (for me) in that it exposes the lack of theory.
- Given some set of parameters involving market cap, supply/demand, initial volatility surface, etc., a complete theory would explicitly yield the new volatility surface which results, given a large instantaneous trade of size, Q.
- This is far away, however:
- A "complete" solution exists for stock pinning (Lec. 2)
- "Partial" solutions exists for earnings and take-overs (Lecs. 3 and 4)
- A "complete" (hard) solution exists for hard-to-borrowness (another mini-course)
- The general technical approach is to identify slow variables in which reformulated static modeling approximately holds.
- We will see this next time...
\square
\square
\square

Event-Driven Finance
Lecture 2: Pinning.

Mike Lipkin
Columbia University (IEOR)

Bloomberg Businessweek
Markets\&Finance

Global Economics	Companies 8 Industries	Politics \& Policy	Technology	Markets 8 Finance	$\begin{array}{\|l} \hline \text { Innovation \& } \\ \text { Design } \\ \hline \end{array}$	Lifestyle

The Internet is abuzz with theories about Apple stock's dramatic closing number

Investing

An Apple Conspiracy? Theories on That \$500 Close
By Nick Summers on January 22,2013 \geqslant fin g. $Q 26$ comments

Related

Any Significance to Apple Closing at Exactly $\$ 500$?

Apple CEO Cook Feels the Heat on Profits

Shares of Apple (AAPL) closed at 500 on Friday, Jan. 18. Not 499.99, not 500.01-five zero zero point zero zero dollars on the nose. There's a long history of market watchers having cried conspiracy on Apple stock and for some observers, the impossibly round number was just too much of a coincidence. "I still have that bridge to sell you if you don't think the fix was in on this," wrote John Gruber an Apple über-blogger.

A Twitter chorus joined in:

- Proof of stock market manipulation
- If this doesn't merit an SEC investigation then they should just close
- Can't imagine all the crazy back-house trading and manipulation that must have occurred to have \$AAPL land exactly at $\$ 500.00$
- I'm reminded again why amateurs shouldn't get involved in the financial markets

For some, the neat 500 close seemed all the more fishy for coming so soon after loosely sourced reports of weak

Search Q

Business
Schools

Small Business	$\begin{array}{l}\text { Video \& } \\ \text { Mutitimedi }\end{array}$

China's Autos Need to Emit Less Pollution
A Canadian's Requiem for the Penny

EXPLORE HIGHER GROUND
Information Sessions Every Saturday, 10:30 a.m. Columbia Campus
F Columbia Business School Learn More π

Videos You May Like
by Taboola

KO : Oct 15,16,17

KO pinning to 67.50 (weeklies)

- (JDEC pin)

JDEC in March 2001

JDEC 2001 Mar 10 Put \& Call Open Interest

Average traded vol in stocks $=1 \mathrm{MM}$ shares

Notional number of shares corresponding to $\mathrm{Ol}=5.6 \mathrm{MM}$ shares

- Today we want to look at a static property of the option markets.
- Not all phenomena which appear to violate "standard" option theory are dynamic. As you know, there are many assumptions made in standard classical finance which we know, or suspect, cannot hold in the real markets.
- Suppose you see the following market:

$X Y Z \quad$ Jun 40 C	$8.50-8.80$	(100×450)
$($ Underlying $)$	$48.46-48.52(650 \times 75)$	

Expiration day.

- First of all, what does this mean? What is the fair value of the calls?
- Classical theory says that the Jun 40 calls are overpriced. By how much? Why haven't they traded?
- Costs are an obvious area typically ignored in order to price options.
- A more subtle idea is the assumption of a stock process. This is a stochastic process for the stock, independent of the presence of options trading.
- Suppose someone bids for 25000 calls all at once. (On Friday, April 28, 2006 this happened in MSFT May 25 (at-the-\$) calls.) Do you suspect that the stock would move in a correlated fashion? Which way? (In MSFT the stock price moved from 24.05 to 24.17 in 15 minutes from the origin of the order.)
- This means that on certain time scales a demand for (supply of) stock moves the stock. Quantifying this effect theoretically means identifying an Impact Function.
- What about the very presence of outstanding option open interest?

Typically it would seem not, because undoubtedly positions are hedged. And yet, sometimes option positions lead to changing deltas.

- Suppose you hold an XYZ Jun 40 C; it is expiration day and the stock is at 40.35 at 10:30. You calculate the delta and find it is 58 .
- At 1:30, three hours later, the stock is still at 40.35. What has happened to the delta of the call? When you recalculate the option delta, it is now 66. Why?
- To stay delta-neutral you must sell an additional 8 shares.
- Now couple this to the assumption that supply (demand) of the stock pushes the stock down (up) and the changing deltas of the option lead to long option holders selling the stock.
- An analogous argument applies with the stock below the strike; now buyers push the stock up toward the strike.
- In the Black-Scholes, classical world, there are an equal number of short option holders doing the exact opposite thing. The net effect should be zero.
- But is this an accurate assumption? Market makers are generally active hedgers. When they are long a strike they aggressively hedge, especially close to expiration. But when they are short a strike and since they cannot continuously hedge, they avoid hedging as long as possible.
- Consider the region over which the delta is changing most rapidly. This is also the region where $\theta \equiv-(\partial \mathrm{C} / \partial \mathrm{t})$ is largest. So there is an incentive for a trader to avoid hedging his short option, as long as the possibility of pinning remains high. On the other hand, the long option holder risks losing all the option value to pinning.
- So unlike the Black-Scholes world, real hedging strategies are asymmetric. Coupled with an additional non-classical assumption of stock price movement to supply/demand, there is the possibility of pinning the stock at expiry, that is a non-zero probability of the stock exactly closing at a strike price.

What is stock pinning?

- At the expiration of options, the close of trading on the third Friday of each month, a stock is pinned if it closes exactly at a strike price.
- For practical reasons, pinning can be considered to have occurred if the closing price is close to a strike ($\pm \$ 0.25$, say)
- Mathematically: $\mathrm{P}\{|\mathrm{K}-\mathrm{S}|<\varepsilon\}>0$ at expiration for all $\varepsilon>0$.
Pinning on Option Expiration Dates

Several results from the UI group. Data from January 1996 through September 2002

Percentage of optionable stocks closing within $\$ 0.25$ of a strike price

Relative Trading Date from Option Expiration Date
(Courtesy: Ni, Pearson \& Poteshman)

Percentage of optionable stocks closing within $\$ 0.25$ of an integer multiple of $\$ 5$

Relative Trading Date from Option Expiration Date
(Courtesy: Ni, Pearson \& Poteshman)

Percentage of optionable stocks closing within $\$ 0.125$ of a strike price

Relative Trading Date from Option Expiration Date
(Courtesy: Ni, Pearson $\&$ Poteshman)

Percentage of non-optionable stocks closing within $\$ 0.25$ of an integer multiple of $\$ 5$

Relative Trading Date from Option Expiration Date
(Courtesy: Ni, Pearson \& Poteshman)

Non-optionable stocks that were previously optionable closing within $\$ 0.125$ of an integer multiple of $\$ 2.50$

Relative Trading Date from Option Expiration Date

- So there is plenty of evidence for pinning, but only in optionable stocks. What models might suffice to explain the effect?
- Krishnan and Nelkin attack the problem of pinning by assuming that there exists an a priori mixture of pinning paths and independent random walks for the stock price. This model can get any desired probability of pinning, but leaves unanswered how actual option data and parameters, and stock price, may affect the probabilities. Also, once the KN mixture is fixed, the price of the straddle cannot be accurate for all eventual stock paths.
- Ni, Poteshman, Pearson originally suspected collusion on the part of market participants. (Post our work, somewhat less so.)
- Which of the following three slides doesn't belong? (And what are they?!)

Morphy vs Duke of Brunswick and Count Isourard/ Paris Opera House 1858

${ }^{\text {vert }}$ Opera House				$\left\lvert\, \begin{aligned} & \text { date } \\ & \text { d? } \\ & \text { ? }\end{aligned}\right.$	
site	Paris			[rnd	$\begin{array}{\|c\|} \hline 3 \text { core } \\ 1-0 \end{array}$
ite	Morphy Paul				
${ }^{\text {black }}$ Dukes of London					
1	e4	e5	21		
2	Nf3	d6	22		
3	d4	Bg4	23		
4	dxe5	Bxf3	24		
5	Qxf3	dxe5	25		
δ	Bc4	Nf6	25		
7	Qb3	Qe7*	27		
8	Nc3	c6	28		
9	Bg5	b5	29		
10	Nxb5	cxb5	30		
11	Bxb5+	Nbd7	31		
12	$\mathrm{O}-\mathrm{O}-\mathrm{O}$	Rd8	32		
13	Rxd7	Rxd7	33		
14	Rd1	Qe6*	34		
15	Bxd7+	Nxd7	35		
16	Qb8+	Nxb8	36		
17	Rd8\#	1-0	37		
18			38		
19			39		
20			40		

©

- The answer is: the Eiffel tower. Both the termite mounds and the chess game are constructs of independent agents. In other words, although both those slides show a very specific final ordered result, they are the consequence of two or many agents playing out a game. NO MASTER ARCHITECT exists.
- In the game of options trading, individual market-makers play at HEDGING their positions. They do not collude to maintain unbalanced positions.
- All possible models cannot be known, but one which involves market-makers acting independently to maintain approximately delta-neutral positions satisfies Occam's razor. It requires the fewest assumptions about the outside world. A kind of greatest entropy model.
- It should be noted that there are two distinctions which may be drawn between market participants. Some, market-makers and desk proprietary traders among them, are active hedgers. Others, investors and positional traders, put on positions (often but not always long delta), and let them play out.
- This asymmetry will be important.
- A number of groups have examined the response of markets to orders entering an order book.
- One group is associated with J D Farmer:

Lillo, Farmer, Montegna: Nature 421(2003) pp 129-130, Daniels, Farmer, Guillemot, Iori, Smith: cond-mat/0112422, a Los Alamos National Lab preprint.

- Another group is associated with JP Bouchaud (CFM).
- These groups all agree on the common sense notion that BUYING stock raises the market price, and SELLING stock lowers the market price.
- Curiously they all disagree on the functional way in which the changing market varies with S/D. (This will be a subject for discussion later.)
- $\Delta \mathrm{S} / \mathrm{S}=f(\mathrm{Q})=\mathrm{EQ}+\mathrm{E}_{2} \mathrm{Q}^{2}+\mathrm{E}_{3} \mathrm{Q}^{3}+\ldots=\mathrm{EQ}+\mathrm{g}(\mathrm{Q})$, g analytic. This is a simple Taylor's expansion for market price change as a function of the demand for (supply of) stock. For simplicity, we throw out $g(Q)$ and simply assume a linear form.

Estimating the Demand for Deltas using Black-Scholes
 $$
\Delta \delta=\frac{\partial \delta}{\partial t} d t, \quad \tau=T-t
$$

From
Black-Scholes

$$
\begin{aligned}
& \delta=2 N\left(d_{1}\right),
\end{aligned} d_{1}=\frac{1}{\sigma \sqrt{\tau}}\left(\operatorname { l n } \left(, \quad a=\mu+\frac{\sigma^{2}}{2},\right.\right.
$$

$$
\frac{\partial \delta}{\partial t}=-\frac{1}{\sqrt{2 \pi}} \frac{y-a \tau}{\sigma \tau^{3 / 2}} e^{-\frac{(y+a \tau)^{2}}{2 \sigma^{2} \tau}}
$$

Taking into account demand for stock: Price-Impact Functions

$$
\frac{d S}{S} \propto E\left(\frac{D}{<V>}\right)^{p} \quad \frac{D}{<V>} \gg 1
$$

$p=0.22$	Farmer, Lillo, Mantegna
$p=0.5$	X. Gabaix
$p=1$	linear model, (A. \& Lipkin)
$p=1.5$	convex model (Bouchaud, ...)

Dimensionless Model
 for Power-Law Price-Impact Function ($p>0$)

Price change=

Price impact+ noise

$$
\frac{d S}{S} \propto-\text { const }\left|\frac{\partial \delta}{\partial t}\right|^{p} \operatorname{sign}\left(\frac{\partial \delta}{\partial t}\right) d t+\sigma d W
$$

Dynamics for Stock Price

$$
\frac{d S}{S}=\frac{E . O I}{\langle | D| \rangle} \frac{\partial \delta}{\partial t} d t+\sigma d W \quad y=\ln \left(\frac{S}{K}\right)
$$

$$
d y=-\frac{E . O I}{\langle | D| \rangle \sqrt{2 \pi}} \cdot \frac{y-a(T-t)}{\sigma(T-t)^{3 / 2}} e^{-\frac{(y+a(T-t))^{2}}{2 \sigma^{2}(T-t)}} d t+\sigma d W
$$

Dimensionless Variables

$$
\begin{gathered}
z=\frac{y}{\sigma \sqrt{T}}, \quad s=\frac{t}{T}, \quad z_{0}=\frac{y_{0}}{\sigma \sqrt{T}}=\frac{1}{\sigma \sqrt{T}} \ln \left(\frac{S_{0}}{K}\right) \\
\alpha=\frac{a \sqrt{T}}{\sigma}, \quad \beta=\frac{E . O I}{\langle | D| \rangle \sqrt{2 \pi \sigma^{2} T}}
\end{gathered}
$$

$$
d z=-\frac{\beta(z-\alpha(1-s))}{(1-s)^{3 / 2}} e^{-\frac{(z+\alpha(1-s))^{2}}{2(1-s)}} d s+d \bar{W}
$$

- z represents the dimensionless (logarithmic) distance to the strike; it's presence in the formulation insures that the likelihood of pinning is subject to a feedback of the stock price itself
- $\boldsymbol{\beta}$ describes the strength of the pinning force. It is proportional to the open interest, OI, and the unknown elasticity constant, E, and inversely proportional to the stock volatility, σ
- $\boldsymbol{\beta}$ represents the strength of the coupling to the "pinning field"
- You can think of Ol as charge, E as the dimensionful coupling constant, and $\sigma \sqrt{ } T$ as a temperature
- $\boldsymbol{\alpha}$ the drift term we will arbitrarily set to 0

Dimensionless Model (alpha=0) for Linear Price-Impact Function

$$
d z=-\frac{\beta \cdot z}{(1-s)^{3 / 2}} e^{-\frac{z^{2}}{2(1-s)}} d s+d \bar{W}
$$

Linear restoring force with increasing coupling with time and compact support.

Cumulative PDF for price at expiration date (Beta=0.1)

Solving the linear response model ($p=1$)

Assume Alpha=0
Forward Fokker-Planck equation:

$$
\frac{\partial F}{\partial s}+\frac{1}{2} \frac{\partial^{2} F}{\partial z^{2}}-\frac{\beta z}{\tau^{3 / 2}} e^{-\frac{z^{2}}{2 \tau}} \frac{\partial F}{\partial z}=0, \quad \tau=1-s
$$

Look for solution of the form:

$$
F(z, s)=\exp \left(\frac{1}{\sqrt{\tau}} \phi\left(\frac{z}{\sqrt{\tau}}\right)\right), \quad \phi(\varsigma) \text { unknown, } \quad \varsigma=\frac{z}{\sqrt{\tau}}
$$

ODE for the `Phase Function’ (VKB)

$$
\begin{gathered}
\frac{\phi+\varsigma \phi^{\prime}+\phi^{\prime}}{2 \tau^{3 / 2}}+\frac{\left(\phi^{\prime}\right)^{2}-2 \beta \varsigma \phi^{\prime} e^{-\frac{\varsigma^{2}}{2}}}{2 \tau^{2}}=0 \\
O\left(\tau^{-2}\right) \quad\left(\phi^{\prime}\right)^{2}-2 \beta \varsigma \phi^{\prime} e^{-\frac{\varsigma^{2}}{2}}=0 \quad \text { Eikonal Equation } \\
\therefore \quad \phi(\varsigma)=-2 \beta e^{-\frac{\varsigma^{2}}{2}}+c \\
O\left(\tau^{-3 / 2}\right) \\
\phi+\varsigma \phi^{\prime}+\phi^{\prime \prime}=c \quad c=0 \\
F(z, s)=\exp \left[-\frac{2 \beta}{\sqrt{1-s}} e^{-\frac{z^{2}}{2(1-s)}}\right]
\end{gathered} \begin{aligned}
& \text { Exact solution of } \\
& \text { the FFP Equation! }
\end{aligned}
$$

A Formula for the Pinning

 Probability$$
P(z, s)=1-\exp \left[-\frac{2 \beta}{\sqrt{1-s}} e^{-\frac{z^{2}}{2(1-s)}}\right]
$$

Satisfies:

$$
\left\{\begin{array}{l}
\lim _{s \rightarrow 1+} P(z, s)=0 \\
\lim _{s \rightarrow 1+} P(0, s)=1
\end{array}\right.
$$

$$
\operatorname{Prob}\left(z(1)=0 \mid z(0)=z_{0}\right)=1-e^{-2 \beta e^{-\frac{z_{0}^{2}}{2}}}
$$

- From the solution (last slide), we see that to first order, the pinning probability should increase linearly in β - essentially the Ol / σ
- However as β increases the pinning probability should saturate
- As z increases the pinning probability should fall off quadratically to lowest order
- The following show unpublished work of my students- actually their PS solutions for the Event-Driven Finance class

KO

Pinning Probability for All Optionable Stocks

All stocks 2002-2003
(log distance with 1 week to expiry in $2^{\text {d }}$ graph)

Cumulative likelihood of pinning with 1 week to go to expiry (T. MacFarland)

Indices do not pin

Count of Close Price within $\mathbf{\$ 0 . 1 5}$ of Strike for $\mathbf{2 5}$ AM Settlement Indices

Observations with market-makers net long (\sim \$0.125)

Market-makers + firm proprietary

 traders net long

Lecture

Market-makers net short

-

Market-makers + firm proprietary traders net short

Dimensionless Model for Power-Law Price-Impact Function ($p>0$)

Price change=

Price impact+ noise

$$
\frac{d S}{S} \propto-\text { const }\left|\frac{\partial \delta}{\partial t}\right|^{p} \operatorname{sign}\left(\frac{\partial \delta}{\partial t}\right) d t+\sigma d W
$$

$$
d z=-\frac{\beta \cdot|z|^{p} \operatorname{sign}(z)}{(1-s)^{3 p / 2}} e^{-\frac{p z^{2}}{2(1-s)}} d s+d \bar{W}
$$

Dimensionless eq. without irrelevant drift terms (alpha=0).

Calculation of Pinning Probabilities by MC Simulation (Gennady Kasyan)

Pinning under non-linear priceimpact models

(i) If $p<=1 / 2$, there is no pinning, i.e. $\mathrm{P}[\mathrm{z}(1)=\mathrm{O} \mid \mathrm{z}(0)=\mathrm{z}]=0$, for all z .
(ii) If $p>1 / 2$ pinning occurs with finite probability (<1) and

$$
\begin{aligned}
& \ln \mathrm{P}(\mathrm{z}(1)=0 \mid \mathrm{z}(0)=\mathrm{z}) \propto-\frac{C(\beta, z)}{2 p-1} \\
& P_{p i n} \propto e^{-\frac{C}{2 p-1}}, \quad p>1 / 2
\end{aligned}
$$

- The power, p , in the previous slides is included to suggest the possibility of a spectrum of (non-analytic) impact functions
- Recent work by R. Cont supports the value 1.0 for p
- p may be thought of as a measure of the competition between diffusion and pinning pressure- as p decreases, the impact of hedging becomes less and less
- Viewing this as a physicist would, we should typically expect a phase transition in the p- parameter space from pinning to non-pinning as p declines
- If this is the case (we shall see it is), then the experimental fact of pinning should constrain the possible impact models
- As Ol changes with time:
- Integrate this model
- As other strikes compete:
- Sum over strikes
- Should work for other instruments that are singly hedged (interest rate, commodity, etc.) but not necessarily indices depending on indirect hedging over multiple instruments
- Complex pricing may result from feedback situations
- Here, independent agents (traders) drive the stock price, which in turn alters their hedging behavior, etc., etc.
- Nevertheless simple models work, as long as they are constrained by appropriate boundary conditions
- Allowing the price impact to be a variable leads to the expected result of a phase transition
- Impact functions weaker than square root are suspectthey cannot explain pinning via our mechanism; if they hold for a class of stocks, those stocks will not pin
\square
- Extra material after here...
- What we constructed in this fashion was essentially a feedback mechanism of independent agents
- Trader \longleftrightarrow stock \longleftrightarrow stock price \Longleftrightarrow Trader
- But for the purposes of this approach it is only necessary to imagine 1 agent hedging the entire outstanding delta position
- As time advances, the delta of an option (not exactly at the money) moves away from 50 and toward 0 or 100
- Hedging requires a repeated selling or buying of stock which positively impacts the stock price and drives it toward the strike
- We follow the math now...
- The power, p , in the previous slides is included to suggest the possibility of a spectrum of (non-analytic) impact functions
- Recent work by R. Cont supports the value 1.0 for p
- p may be thought of as a measure of the competition between diffusion and pinning pressure- as p decreases, the impact of hedging becomes less and less
- Viewing this as a physicist would, we should typically expect a phase transition in the p- parameter space from pinning to non-pinning as p declines
- If this is the case (we shall see it is), then the experimental fact of pinning should constrain the possible impact models
- You may have noted the use of BS for the calculation of delta in the demand equation
- This returns us to our initial discussion:
- We look for simple modular approaches to pricing where the hard part has been moved to the boundaries
- Too often the presence of market events is used to justify a complex stochastic model designed to price an entire state space
- The crux of the approach I am outlining here is to use the simplest (Occam) sufficient model with the most comprehensive boundary conditions- the boundaries being selected by the events themselves
- As Ol changes with time:
- Integrate this model
- As other strikes compete:
- Sum over strikes
- Should work for other instruments that are singly hedged (interest rate, commodity, etc.) but not necessarily indices depending on indirect hedging over multiple instruments
- Complex pricing may result from feedback situations
- Here, independent agents (traders) drive the stock price, which in turn alters their hedging behavior, etc., etc.
- Nevertheless simple models work, as long as they are constrained by appropriate boundary conditions
- Allowing the price impact to be a variable leads to the expected result of a phase transition
- Impact functions weaker than square root are suspectthey cannot explain pinning via our mechanism; if they hold for a class of stocks, those stocks will not pin
\square

Event-Driven Finance

Lecture 3: Dynamics. Earnings. Drug announcements. News

Mike Lipkin
Columbia University (IEOR)

- Consider the following scenarios:

Stock XYZ; price, $\mathrm{S}_{0}=50.00$; 3 weeks to go to expiration.

- Earnings date: 4 weeks away.
- For concreteness, we take the front month options to be the Junes.
- Which option generally has the higher implied vol, the Jun 50 C or Jul 50 C?
- Suppose that XYZ announces a change in the earnings announcement, moving the date ahead 1 week. What will happen to the implied vols?
- Suppose XYZ preannounces earnings today;
- what will happen to the vols?
- Will it matter whether the announcement is better than expected, or worse?
- Usually, only bad earnings gets preannounced.
- Some basics:
- How many times a year are earnings announced?
- What would happen if a stock fails to announce earnings?
- Imagine that earnings are coming out in 2 days (Jun expiry), and XYZ drops $\$ 3$ to $\$ 47.00$.
- What will happen to the Jun 50 vol?
- Suppose earnings are announced and XYZ drops \$3 to \$47.00.
- What will happen to the Jun 50 vol?
- What is the difference between these two scenarios?
- There are two kinds of new information that get disseminated in the marketplace. They are scheduled events and unscheduled ones.
- It is often pretty easy to distinguish between the two. Let's try some examples:
- Earnings
- Drug trial results
- Upgrades/downgrades by analysts
- Terrorist bombing in USA or Western Europe
- Articles in the news media
- Fed open market meeting/short rate change
- Mergers/take-overs/acquisitions
- State/federal actions for improprieties
- Corporate personnel changes (CEO, CFO, etc.)
- One of the things which we should like to understand is how the volatility surfaces adjust themselves before and after both kinds of events. In a thorough research project, one would examine stocks in different industry groups, of different market caps, etc., and look for regularity.
- Is there an existing theory which addresses these concerns?
- No.
- Note: Theory is different than empirical results. Good (predictive) results will never get published!
- Why???
- Earnings announcements come (usually) at very specific, well-defined times. What frequency?
- For some stocks, earnings are a small effect;
- which ones might these be?
- For others, earnings announcements move the stock more than any typical daily move. As a result, the implied volatilities increase strongly heading into earnings. In this way, IVs are anticipative.
- The following is a graph of the IVs for CAT over a six-month interval. (Brown curve; ignore the blue.)
- Can you identify the earnings dates?
- About how long before earnings does volatility appear to begin climbing?
- My students at Columbia examine the dynamics of earnings in the database.

CAT VOL + EARNINGS DATES

Day before LNKD earnings
(14) MicroHedge [ACTIV] v91.4.0.576 MIKE.31E5 - (Linkedn Corporation-LNKD) LNKD.L47
-
File Edit Yiew Format Parameters AutoQuote Recalc! Trade Risk Sheets Tools Help Logoff LIPKIN!

LNKD. $+89.07+12.68 \mathrm{~b}-89.06 \mathrm{a} 89.101 \times 1 \mathrm{~h} 89.73182 .06082 .37 \mathrm{~s} 76.3900$ v754138512:07 Divs: 3.00\% Yield
Trade Date: 02/10/12 Model: Microhedge Type: Ecquity Exercise: Àmerican
Volatility: Using Volatility Skew Interest: 0.3 0.3 0.30 .30 .30 .30 .30 .30 .3
Net LNRD.: -5 Delta: -433 Gamma: -9 Theta: 227 Vega: 89 Rho: -74 ThEdg: 492 0penPos: -5177 DayTrades: -1801 Net: -6978

Series	cPos	pPos	YaIVol	AIVol	cD1t		cNBB	cThy	cBid	chisk		NBO	cpVol	pD1t	pNBB	pThy	pBid	phsk	$\mathrm{p}^{\text {NBO }}$	\wedge
2FEB55-0	0	0	217.53	371.41	1.000	33.90	0	34.19	33.90	34.30	34.30	0	60.90	0.000		0.00		0.05	0.050	
2FEB60-0	0	0	174.64	309.79	1.000	28.90	0	29.19	28.90	29.50	29.50	0	60.90	0.000		0.00		0.05	0.050	
2FEE62 ${ }^{2}$-0	0	0	189.03	280.91	1.000	25.70	0	26.69	25.70	26.90	26.90	0	60.90	0.000		0.00		0.05	0.050	
2FEB65-0	0	0	181.51	252.71	1.000	23.90	0	24.19	23.90	24.30	24.30	0	60.90	0.000		0.00		0.05	0.050	
2FEE67\%-0	0	0	180.64	224.90	1.000	21.20	0	21.69	21.20	22.40	22.40	0	60.90	0.000		0.00		0.05	0.050	
2FEB70-0	0	0	181.21	198.11	1.000	18.90	0	19.19	18.90	19.30	19.30	0	60.90	0.000		0.00		0.05	0.050	
2FEE72 ${ }^{\text {²-0 }}$	0	0	179.29	172.27	1.000	16.50	0	16.69	16.50	16.80	16.80	0	60.90	0.000		0.00		0.05	0.050	
2FEE75-0	0	0	181.43	147.31	1.000	14.00	0	14.19	14.00	14.30	14.30	0	60.90	-0.000		0.00		0.05	0.050	
2FEE77\%-0	0	0	181.15	122.84	1.000	11.50	0	11.69	11.50	11.80	11.80	0	60.90	-0.000		0.00		0.05	0.050	
2FEE80-0	0	0	172.57	98.08	1.000	9.00	0	9.19	9.00	9.30	9.30	0	60.90	-0.000		0.00		0.05	0.050	
2FEE85-0	4	3	159.55	60.47	0.933	4.00	0	4.27	4.00	4.30	4.30	0	60.90	-0.067	0.050	0.08	0.05	0.10	0.100	
2FEE90-0	-15	0	163.49	52.68	0.379	0.55	0	0.62	0.55	0.65	0.65	0	52.12	-0.621	1.400	1.43	1.40	1.60	1.600	
2FEB95-0	0	0	165.17	78.53	0.068	0.05	0	0.10	0.05	0.15	0.15	0	78.10	-0.932	5.800	5.91	5.80	6.10	6.100	
2FEE30-0	0	0	232.57	279.98	1.000	57.30	0	59.19	57.30	59.90	59.90	0	81.32	0.000		0.00		0.05	0.050	
2FEE324-0	0	0	213.99	260.36	1.000	54.80	0	56.69	54.80	57.40	57.40	0	81.32	0.000		0.00		0.05	0.050	
2FEE35-0	0	0	196.47	242.25	1.000	52.30	0	54.19	52.30	54.90	54.90	0	81.32	0.000		0.00		0.05	0.050	
2FEB374-0	0	0	180.01	225.43	1.000	51.40	0	51.69	51.40	51.80	51.80	0	81.32	0.000		0.00		0.05	0.050	
2FEE40-0	0	0	164.64	209.73	1.000	48.90	0	49.19	48.90	49.30	49.30	0	81.32	0.000		0.00		0.05	0.050	
2FEB424-0	0	0	150.21	195.01	1.000	45.00	0	46.69	45.00	47.20	47.20	0	81.32	0.000		0.00		0.05	0.050	
2FEE45-0	0	0	136.63	181.16	1.000	43.90	0	44.19	43.90	44.30	44.30	0	81.32	0.000		0.00		0.05	0.050	
2FEB474-0	0	0	134.34	167.93	1.000	41.40	0	41.69	41.40	41.80	41.80	0	81.32	-0.000		0.00		0.05	0.050	
2FEB50-0	0	-5	121.43	155.06	1.000	38.90	0	39.19	38.90	39.30	39.30	0	81.32	-0.000		0.00		0.05	0.050	
2FEB52 ${ }^{\text {\% }}$-0	0	0	124.18	142.82	1.000	36.40	0	36.69	36.40	36.80	36.80	0	81.32	-0.000		0.00		0.05	0.050	
2FEB55-0	0	0	120.58	131.17	1.000	33.90	0	34.19	33.90	34.30	34.30	0	81.32	-0.000		0.00		0.05	0.050	
2FEB57\%-0	0	0	113.29	120.04	1.000	31.40	0	31.69	31.40	31.80	31.80	0	81.32	-0.000		0.00		0.05	0.050	
2FEE60-0	0	0	109.88	109.39	1.000	28.90	0	29.19	28.90	29.30	29.30	0	81.32	-0.000		0.00		0.05	0.050	v

 Ready

- Drug announcements come in two varieties.
- There are scheduled dates for stage trial announcements,
- but also sudden news releases.
- I'm not sure which one applies to the following, but you can see the potential for trading opportunities and blunders!

Monday, Mar 14, 2005
Interim Analysis of Phase III Trial Shows Avastin Plus Chemotherapy Extends Survival of Patients with First-Line Non-Squamous, Non-Small Cell Lung Cancer
-- First Positive Phase III Results with an Anti-Angiogenesis Therapy in Lung Cancer --

- When a corporate event happens suddenly and unexpectedly, a typical response in the market is to have a large size trading day. We have just seen this with DNA. However, size trading can accompany big increases or decreases in volatility and sometimes no change at all.
- The DNA event, a large upward price jump, was accompanied by a big spike in volume. Below are two spikes in volume coinciding with down moves.
- What do you imagine may have happened with the following news event?
- Why?

- When a news event is anticipated, such as earnings, there is a lag time for dealing with the event. The volatility must go up for earnings, drug announcements, etc.
- Why?
- Can you think of a future, scheduled event which will reduce volatility? (We will discuss such an event in a later week.)
- What would cause the volatility to go up slowly? In other words, why wouldn't the vol stay high from earnings to earnings?
- Let's take a look again at a blow up of the CAT preearnings chart:

- This is why vol doesn't stay high from start to finish. Rising vol just means prices decline at a slower pace.
- It is important to understand the change in volatility heading into earnings announcements. For typical curves of this sort there are two elements of interest:
- The size of the change, and
- The characteristic time scale over which this change occurs.
- Why would it be insufficient to only know one of these properties?
- Characteristic time scales can be eye-balled off the graph, however if the growth curve is exponential, it is conventional to identify the half-life of the curve, the time required to double in value (from a baseline).
- Is there a well-formulated theory of this effect in the literature?
- The only one I know is:

Johannes, Michael S. and Dubinsky, Andrew L., "EarningsAnnouncements and Option Prices" (June 2005). SSRN: http://ssrn.com/abstract=600593

- Enough about volatility before these events.
- What can we say about volatility after these events?
- The behavior of vol about scheduled and unscheduled events will generally be very different.
- Why?
- How do you expect CAT vol after earnings to compare with CAT vol well before earnings? (What does well before mean?)
- What are some of the consequences of this understanding?
- What about vol after the CEO of McDonald's dies suddenly?
- (There may be a characteristic time post this event).
- The following two slides show Hewlett-Packard (HPQ) through its earnings event: AMC 2/18/09, near months then mid-months.
Trade Date: 02/19/09 Hodel: Microhedge Type: Fquity Exercise: American

 Trade DaEe：02／19／09 Hodel：Micrchedge Type：Equity Exercise：Axerican Volatility：Using Volatility Skew

Interest： 1.11 .11 .11 .11 .11 .1
Net HPQ．： 278 I\＃Delta： 159 Gamna： 886 Theta：-450 Vega：-17 Rho：-543 ThEdg：-641 OpenPos：-216 DayTrades：-986 Net：-1202

Series	cPos	pPos	TAVol	RWVol	cD1t	cNBB	cThr	cBid	c＾Ask	cNio	cpVol	pDit	$\mathrm{p}^{\text {N／B }}$	pThr	pBid	p ${ }^{\text {disk }}$	pNBO
9MaR25－0	0	－5	71.00	57.78	0．911	6.00 CX	6.05	6.00	6.10	．10 OQIYYABPX	57.96	－0．096	0.20 owfab PX	0.23	0.20	0.25	25 0QWY
9以及R27ヶ－0	0	－29	64.92	52.53	5． 799	3.80 cwyabpx	3.87	3.80	3.90	3.90 OTYABPX	51.80	－0．207	0.55 00wfabpX	0． 56	0.55	0.60	0.60 0pW
9Mar30－0	49	78	60.95	3	． 607	2.00 отYabpK	2.05	2.00	2.10	2．10 00iryabpx	46	－0．397		1． 26	1.25	1.35	． 35 00\％\％
suลス3ž－0	35	21	57.01	43.91	3670	0.85 осбYabpx	0.89	0.85	0.90	0.90 00twax	44.16	－0．634		2.59	2.55	2.65	2.65 00\％\％
9Mar35－0	26	－50	54.81	42.53	D． 177	0.25 осwyabpx	0.32	0.25	0.35	． 35 00qYyabpx	43.41	－0．825	4． 40 00¢т\％．a．pX	． 5	4． 40	4.60	4.60
9MAR37\％－0	69	36	50.36	41.00	0． 070	0.05 0ctuyabp	0.10	0.05	0.10	0.10 0iYabPX	43.31	－0．931	6．70 00wfabpX	6.80	6.70	6.90	6.900 Wr
9MAR40－0	38	25	48.43	48.0	． 037		0.05		0.10	0.10 00iryabpx	47.92	－0．964	9．10 00才тABPX	9． 25	9.10	9.30	9.30 OTYEP＞
9MSR42＇s－0	3	0	46.09	51.37	． 020		0.02		0.05	0.05 0QITYABPX	51.23	－0．981	11.60 00twzabpX	． 78	11.60	1.80	11.80 0wy
9MaY15－0	0	－3	79.44	72.	． 990	5.60 cwybpy	5.8	15.60	16.00	16.00 OIYEPX	72.	－0．013		0.05		． 10	0.10 owr
9Mar20－0	0	29	68.42	62.2	942	10.90 обYABPK	1.08	10．90	11.10	11.10 0iYBPX	62.35	－0．059	0.20 OtreabPX	0.2	0.20	0.30	0.30 0w\％
SMYY2ziz－0	0	48	64.42	57.	． 894	8.70 cwyabp	8.8	8.70	8．90	． 90 00wyabpX	57.78	－0．106	0.45 00turab ${ }^{\text {d }}$	0.48	0.45	0.50	0.50 08WY
9MaY25－0	0	15	60.72	54.15	． 823	6． 50 0cwyab	6.6	6． 50	6.70	6． 70 OTYYabp	53.6	－0．178	0.85 ogwrabpX	0.8	0． 85	0.90	0.90 02W
9HYY27\％－0	17	82	56.48	49.89	72	． 70 0ctwyab	4.80	4．70	4.80	4.80 OTYM．	50.06	－0．278	1． 40 00tw？${ }^{\text {a PPX }}$	1． 46	1.40	1.50	1．50 0QW
9Mar30－0	0	72	53.94	46	． 595	3．10 0cwrab	3.21	3.10	3.20	3.20 OTYaB	47.0	－0．406	$2.3500 .8 B X$	2.	2.35	2.40	2.40000
9MAY32ぞ－0	33	－11	50.27	44.07	． 45	1．90 0cwyab	2.00	1.90	1.95	1.95 ONYEPX	44.77	－0．549	3.60 00twrabpX	3.	9．60	3.70	3.70 00W
9MAY35－0	－3	23	48.06	41.72		． 00 0cwyas	1.10	1.00	1.10	． 10 0QITYaBP	42	－0．692	5． 20 00wfabPX	5.2	5.20	5.40	5.40 0QW
9KAY37\％－0	－2	－1	45.48	39		0.50 OcwYABPK	0.5	0.50	0.55	0.5501 TY	40.70	－0．810	7.20 00才TFABP	7． 23	7.20	7.30	7.3000 T
SMAY423－0	4	－25	． 1	39.11	059	0.10 OY	0.1	0.10	0.15	． 15.50 0017YABPX	39.01	－0．947	11.70 00turabpX	11.79	1.70	1.90	11.90 0wY
9aver ${ }^{\text {a }}$－0	1	2	53.3	49.10	694	5.80 cwyabp	5.	5.80	5.90	5.90 OTYEPX	48.8	－0．307	2.55 отrab PX	2.	2.55	2.65	2.65 0wy
98UG40－0	－4	25	43.28	39	226	0.90 cwYABP	0.9	0.90	1.00	1.00 OTYABPX	39.57	－0．778	10.00 0wPABPX	10.08	10.00	10.20	10.20 0WY
9AUC4z3－0	4	0	41.47	38	161	0.55 cтYYABP	0.59	0.55	0.60	0.60 OYBP	38.87	－0．844	12.20 owfabpX	12.	12.20	12.40	12.40 0WY
9AJC47is－0	6	0	39.48	36.	0． 069	0.15 cowyabpk	0.20	0.15	0.25	0.25 OTYABPX	36.7	－0．938	16.80 об7．ABPX	16.88	16.80	17.00	17.00 0WY

- Now let's consider the vol surfaces.
- For simplicity let us restrict the discussion to one stock, one series. (For concreteness, we could imagine the XYZ Jun options with May being the front month.)
- What is the usual shape of the volatility surface for this series?
- What will happen if the stock experiences a gradual price change which shifts the at-the-\$?
- What will happen if the stock experiences a sudden price change which shifts the at-the-\$?
- Is there a theory which covers this behavior?
- No.
- Let's be blunt about standard option pricing theory!
- It applies when every option is well-priced. ONLY!
- In other words, if conditions materially change, standard option theory will not be able to distinguish between the need to alter the parameters of the model used and the presence of arbitrage!

I am plenty redundant about this point!!!!!!!!!!

- When a stock drops dramatically, the vol often changes. But it can go down and up!
- A theory would be a dynamic theory, but there is no such theory currently.
- An attempt to patch statics to dynamics is sticky strike/sticky delta.
- The following two slides show recent flashcrashes: AAPL; MNKD

- What is sticky strike?
- What is sticky delta?
- Sticky strike postulates that as the stock moves the vol skew stays put. This gibes with our intuition that as the stock moves lower the volatility might go up. But is this true?
- What if $X Y Z$ drops suddenly on uncertain news?
- What if XYZ drops suddenly because of definitive news (such as earnings or a drug trial results)?
- Will up moves be different than down moves?
- Sticky delta postulates that as the stock moves the vol skew stays with the corresponding option, delta by delta. This gibes with our intuition that the at-the-\$ options should have a depressed vol.
- Why?
- Should a time scale matter here? In other words, if the stock drifts gently up or down is this different than if the stock shoots quickly to another value?
- How would you define such a time scale?
- The same kinds of spikes can happen in the entire market's volatility. Here is a 3 -year graph of the VIX. The data set I used ended with the onset of a vol spike in May 2006.

So, here is a mini-quiz!
The following slide is a picture of a stock I traded for a number of months in 2006.

Can you look at it and deduce what happened to the volatility surface from before to after the event in question?

One thing that did not change much was the realized vol on either side of the event!

Why would the implied volatility not be a reflection of the realized volatility?

The key story is that implied volatilities assimilate the expected movement over an extended time horizon. They are a poor man's representation of a jump process.

Telik, Inc. (Public, NASDAQ:TELK) - Add to Portfolio - Discuss TELK

6.02	Open:	6.26		Mkt Cap:	315.07 M	P/E:
6.4.01						
High:	6.27	52Wk High:	22.70	FP/E:	N/A	
$-0.27(-4.33 \%)$	Low:	6.01	52Wk Low:	4.32	Beta:	0.81
Feb 9.4:00PM ET	Vol:	$842,130.00$		Avg Vol:	2.89 M	EPS:

\triangle Newer news \| Latest news
(A) Hot Stocks of the Week: Telik Tanks BusinessWeek - 29 Dec 2006
(B) Health Highlights: Dec. 27, 2006 Forbes - 27 Dec 2006
c AFTER HOURS Telik, Vascular shares active in late trade MarketWatch - 26 Dec 2006
(D Telik's Shares Plunge as Cancer Drug Fails in Trials (Update6)
Bloomberg - 26 Dec 2006 Telik cancer drug fails trials; stock plummets Reuters.uk Telik cancer drug fails trials; stock plunges Reuters Smartmoney.com - MarketWatch

E Volume Spikes: TELK CTIB ZICA PFSW BusinessWeek - 26 Dec 2006

F Tuesday's Small-Cap Winners \& Losers TheStreet.com-26 Dec 2006-Related articles.

- Older news I View all news for TELK>
－Here is a similar stock，in this case prior to an announcement：

HOptions	4 Profile	QReload	営Posit	\＄Executions			䀟Montage	Batch	90의Symbol	＊Info	轌 Anlo	
AGIX［Q］	10.61 （Q）	10.64 （D）	（ 10×10 ）		＋ 0.38	Exchanae－	Spread				Size	
Strike	Feb 07		Mar 07		Apr 07		Jul 07		Jan 08		Jan 09	
2.50	7.90	8.30	7.90	8.30	8.00	8.40	8.20	8.50	7.70	8.70	7.70	9.20
5.00	5.40	5.80	5.50	5.90	6.50	6.80	6.90	7.40	7.00	7.60	6.80	8.20
7.50	3.00	3.30	3.50	3.80	5.50	5.80	6.20	6.50	6.20	7.00	6.20	8.30
10.00	0.95	1.00	1.90	2.00	4.50	4.80	5.50	5.80	5.60	6.40	5.60	7.90
12.50	0.25	0.30	1.10	1.30	3.70	3.90	5.00	5.20	5.20	5.80	5.00	7.40
15.00	0.10	0.20	0.75	0.85	3.20	3.30	4.40	4.80	4.80	5.20	5.00	6.40
17.50	0.10	0.15	0.55	0.65	2.75	2.95	3.90	4.30	4.60	5.00	4.40	6.40
20.00	0.05	0.15	0.25	0.45	2.50	2.60	3.60	3.90	4.00	4.50	4.00	6.40
22.50	0.00	0.10	0.20	0.45	2.10	2.30	3.30	3.60				
25.00	0.00	0.10	0.20	0.35	1.85	1.95	3.00	3.30	3.60	4.00	3.30	4.90
30.00	0.00	0.10	0.10	0.30	1.50	1.60	2.40	2.70	2.90	3.30	2.45	4.10
35.00	0.00	0.10	0.10	0.20	1.15	1.25	1.90	2.20	2.30	2.65	$-\operatorname{Jan}^{124,2007^{\circ}}$	
40.00	0.00	0.10			0.90	1.00	1.35	1.60	1.90	2.20		
45.00	0.00	0.10			0.70	0.75	0.95	1.25				
Strike	Feb 07		Mar 07		Apr 07		Jul 07		Jan 08		Jan 09	
Strike	Feb 07		Mar 07		Apr 07		Jul 07		Jan 08		Jan 09	
2.50	0.00	0.05	0.00	0.20	0.30	0.35	0.55	0.75	0.70	0.95	0.75	1.10
5.00	0.05	0.10	0.35	0.40	1.40	1.45	1.90	2.10	2.00	2.30	2.10	2.50
7.50	0.10	0.25	0.80	0.85	2.85	2.90	3.50	3.90	4.10	4.40	4.00	5.40
10.00	0.50	0.60	1.65	1.80	4.30	4.40	5.30	5.70	5.70	6.20	5.50	6.80
12.50	2.15	2.40	3.20	3.80	6.10	6.20	7.40	7.80	7.40	8.30	7.40	8.70
15.00	4.50	4.80	5.30	5.80	8.00	8.10	9.50	9.70	10.00	10.40	9.40	10.90
17.50	6.90	7.20	7.50	8.00	10.00	10.30	11.30	12.00	11.40	12.50	11.30	13.00
20.00	9.40	9.70	9.90	10.50	12.10	12.70	13.40	14.10	13.50	14.60	13.20	15.00
22.50	11.90	12.20	12.30	12.90	14.30	14.90	15.60	16.10				
25.00	14.30	14.60	14.70	15.30	16.50	17.10	17.60	18.20	17.90	18.80	17.20	19.20
30.00	19.30	19.60	19.60	20.20	21.20	21.60	22.00	22.70	22.20	23.20	21.00	23.40
35 กn	2430	$24 \mathrm{6n}$	2450	25.00	25 F	2F10	2¢ 40	27 กn	2\％30	27 Kn	2490	28 n

File Edit View Format Parameters AutoQuote Recalc! Trade Risk Sheets Tools Help LogOff MKR!

AGIX. +11.98 to. $14 \mathrm{~b}+11.96$ all.98 $1 \times 28 \mathrm{hl2} .14111 .80$ oll.95 sll.840y v627061 13:32 Divs: None
Trade Date: 02/14/07 Model: Microhedge Type: Equity Exercise: American
Volatility: Using Wr-ata'ity Skew Interest: -5.0 -5.0 -5.0
Net AGIX. : 0 I\# D 1 lta: -2 c 352 Gamma: -760 Theta: 1665 Vega: -2029 Rho: -625 ThEdg: 12827 0penPos: -5542 DayTrades: 0 Net: -5

Series	cPos	pros	cIVol	c)1t	cNBB	cThr	cBid	chsk	cNBO	cpVol	pplt	pNBB	pThr	pBid	phsk
7FEE124\%	33		65.32	0.255	0.05 WYAPX	0.10	0.05	0.15	0.15 WYBPX	66.03	-0.745	0.55 WYABPX	0.63	0.55	0.85
7FEE150	-68	,	160.55	0.778		0.05		0.10	0.10 WYAPX	161.04	-0.922	3.00 WYABPX	3.08	3.00	3.40
7.PR124\%	29)	282.19	0.45	5.20 WYAPX	5.72	5.20	5.30	5.30 W	309.53	-0.255	6.30 YP	6.35	6.20	6.40
7APR150	238)	279.64	0.682	4.50 WYAPX	4.83	4.50	4.70	4.60 Y	292.28	-0.318	8.00 WYPX	7.99	8.00	8.30
7APR25\%	-80)	274.95	0.516	2.80 WYAPX	3.03	2.80	3.10	3.10 WYABPX	278.71	-0.494	16.10 WYPX	16.27	16.10	16.50
7APR30才	-250)	269.23	0.4:8	2.25 WYPX	2.35	2.25	2.45	2.45 WYABPX	269.41	-0.572	20.50 WYP	0.64	20.50	20.80
7JUL150	90)	220.13	0.7	5.50 WYABPX	6.11	5.50	5.80	5.70 P	237.32	-0.252	9.30 WYABPX	9.45	9.30	9.70
7JUL250	-306	,	216.58	0.55	4.00 Y	4.16	3.90	4.30	4.30 WYABPX	218.73	-0.405	17.50 WYABPX	17.72	17.50	17.90
7JUL30W	-368	0	212.79	0.525	3.40 WYPX	3.41	3.40	3.60	3.50 Y	210.17	-0.476	21.90 WYABPX	22.08	21.90	22.20

Subsequent to an event, the vol may be ca. 60.

Here is VMW before the Jan 2008 earnings announcement:

- What do you think happened to the vols after this event?
- Can you tell from the candlesticks what happened to the realized vol?
\square

Event-Driven Finance
 Lecture 4: Take-overs

Mike Lipkin
Columbia University (IEOR)

- From time to time stocks are acquired for cash, stock, or some combination of the two.
- There are many scenarios for these deals:
- Big buyer, small target
- Equals
- Take-unders
- Spin-offs
- Government intervention
- Litigation
- Friendly
- Hostile
- Two-tier deal
- SDC Platinum (from Thomson Reuters) for Mergers \& Acquisitions.
- The duration for completion of a deal can be brief, i.e. several months, or prolonged, i.e. several years.
- Because there are so many possible scenarios, we will content ourselves with a few choice observations, and also restrict the discussion to cash deals.
- "January's [2006] cash-based takeovers (24 deals with a combined $\$ 15$ billion purchase price) tripled 2005's record level, according to Bloomberg." Kenneth L. Fisher, 03.27.06, Forbes.com.
- A typical cash deal involves a tender offer, by the acquirer, for all the stock of the acquiree, at a premium above the last traded price.
- The timeline for undisputed cash deals looks a little bit as follows:

- After a deal is announced the volatility surface of the acquiree becomes severely distorted. Why?
- The price of the target company moves up, but not to the take-over price.
- Why?
- What does the price discount represent?
- Let's take a concrete example to examine the problem:
- AZZ acquires XYZ for cash, Jun 2008 (XYZ << AZZ)
- XYZ pre-takeover price, $\mathrm{S}_{0}=32.25$
- Target price, $\mathrm{S}_{++}=46.30$
- Post price, $\mathrm{S}_{+}=45.26$
- Pre-takeover, XYZ has flat vol profiles, $\sigma=35$
- The following might be a typical vol profile after the announcement:
$-\sigma($ Jun 30 $)=8, \quad \sigma($ Jun 32.5 $)=10, \quad \sigma($ Jun 35 $)=35, \quad \sigma($ Jun 37.5 $)=60$, $\sigma($ Jun 40$)=75, \quad \sigma($ Jun 45 $)=75, \quad \sigma($ Jun 50 $)=8$.
- $\sigma($ Jul $)=$ similar to Jun
- σ (outer months) << Jul, σ (outer 45's) not large.
- Why? Specifically, why are some vols so low and others very high?
- What would happen if the deal doesn't go through?
- Why might this happen?
- Now let's consider some delicate questions.
- What would be the consequence of insider trading before a takeover?
- What if there were take-over rumors whether they were founded on fact or not?
- Can insider trading be reinforced in the options markets?
- The answer to the last question is YES.
- To get an idea of the consequences of leaked deals and insider trading on the options markets, we need to think about the result of a deal on an option portfolio.
- Consider the following two positions in XYZ:

1. $+100 \operatorname{Jun}(35) \mathrm{C}-100 \operatorname{Nov}(35) \mathrm{C}$
2. - 50 Jun(32.5) C +200 Jun(35) C

- For the parameters we chose, $35 \mathrm{vol}, \mathrm{S}_{0}=32.25$, on June 1, the Jun 35's are worth \$0.16, the Nov 35's \$2.25, and the Jun 32.5's \$0.82.
- So we can put on the Jun-Nov calendar spread, if we are adroit, for a credit of \$2.10.
- Likewise, the $32 / 354 \times 1$, can be done for a credit of $\$ 0.18$.

- What are the post-takeover values of the spreads?
- When XYZ goes to $\$ 45+$, the calendar falls to parity (from $\$ 2.10$).
- The 4×1 loses $\$ 12.76$ once and makes $\$ 10.26$ four times for a gain of $\$ 28.28$. (But this doesn't include the 18 cent credit we put this play on for. Net \$28.46.)
- The temptation for cheating may be very strong!!
- So what will happen if takeover rumors begin and make their way to the trading floor?
- The Markets will respond by factoring the possibility into the pricing of options.

- The previous slide is a caricature of the way volatilities change as a result of takeover potentiality.
- Problem Set VII delves into both the pre- and post- announcement volatility scenarios.
- Option market makers never get asked by the SEC about takeovers, but they should be, because with zero inside information they can abstract a likelihood that information has been leaked.
- Is this just idle speculation? The following is a screen for EDS after (unfounded?) takeover rumors began:

EDS after takeover rumors began 4 March, 2004

Mar 2053 vol; Mar 22.558 vol; Sep 3032 vol.

- Here is a screen shot of QLGC from March 2010 after rumors:
© MicroHedge [ACTIV] v91.2.0.510 MIKE.31E5 - (QLogic Corp-QLQ QLC VEB YIO) QLGC. 31 E5
File Edit View Format Parameters AutoQuote Recalc! Trade Risk Sheets Tools Help Logoff LIPKIN!

QLGC. $-20.48+0.37 \mathrm{~b}-20.47 \mathrm{a} 20.4811 \times 34 \mathrm{~h} 20.51120 .01020 .09 \mathrm{~s} 20.1100$ v1154703 14:35 Divs: None														
Trade Date: 03/23/10 Model: Microhedge Type: Bquity Exercise: American Volatility: Using Volatility Skew Interest: 0.40 .4														
Net QLGC. : -119.56			I\# Delta: 9554		Gamma: 10145 Theta:		-625 Ve	ega:	Rho	ThBdg: 1	dipha:	㖪	g.	
Series	cPos	$\mathrm{p}^{\text {Pos }}$	YaLVol	AIVol	cD1t	cNBB		cBid	cåsk	cNB0	cpVol	pD1t	pNBB	p
0APR15-0	0	-50	56.91	60.96	0.977	5.20 WYBX	5.51	5.20	5.60	5.60 WYBX	60.57	-0.023		
OAPR17\%-0	117	-7	34.84	38.99	0.942	2.80 WYABPX	3.03	2.80	3.10	3.10 WYABPX	38.53	-0.058		
0APR20	-67	0	28.44	28.66	0.633	0.85 WYAPX	0.90	0.85	0.90	0.90 TYAPX	29.77	-0.368	0.35 WYABPX	
OAPR224-0	830	0	34.08	32.57	0.159	0.10 WYABPX	0.13	0.10	0.15	0.15 WYABPX	33.16	-0.842	2.05 WYABPX	
0APR25-0	-1	0	42.47	40.24	0.038		0.03		0.05	0.05 WYPX	40.65	-0.963	4.40 TYABPX	
OJUL15-0	0	-2	38.35	36.62	0.946	5.40 WYABPX	5.60	5.40	5.70	5.70 WYABPX	36.40	-0.054	0.05 WYABPX	
0JUL17\%-0	10	2	33.49	33.53	0.818	3.30 WYABPX	3.42	3.30	3.50	3.50 WYABPX	34.01	-0.182	0.35 WYABPX	
OJUL20-0	10	0	31.15	31.07	0.592	1.60 WYABPX	1.70	1.60	1.70	1.70 WYABPX	31.37	-0.409	1.15 WYABPX	

- We can look at several other examples. First let's summarize what we expect to see:
- 1) near-term 50Δ and next-higher-strike vols may flip
- 2) long term vols, especially higher strikes should tumble
- Let's look at three stocks: FORE, DIGI and COFD
- We will follow the at-the-moneys, next higher strike and an upside leap
- For one of these, only the long terms came in in advance, for one, the near-terms flipped and for one both characteristics were exhibited.
- Here is a chart of FORE in the year 1999:
- There seems to be a price run-up prior to the $\$ 35$ announced deal.
- What were options doing?

The evidence is extraordinary. Even while near-term volatility exploded to over 100, leap volatility dropped by 33% !

- On June 4, 1998 the French phone giant Alcatel acquired DSC (ticker: DIGI) for stock.
- How can you tell it is for stock from this chart?

- On March 17,1997 COFD was acquired for cash. The following graph shows that both long-terms and near-terms behaved as expected:

- Now let's look at what happens after a stock take-over has been announced.
- We have already seen for FORE that the stock jumps up to a price below that of the announced price.
- There are two reasons for this.
- What are they?
- There are many reasons why a deal can fail.
- Can you name some?
- The post-announcement price is an integration by the marketplace of likelihood of success, final price (What are two reasons why this might be different than the announced price?), and time to completion.
- Why is time to completion relevant?
- Additionally, the stock price will fluctuate dramatically if news alters any of the parameters. One of the stocks I traded even traded above the deal price for a time!! Why?
- Just as the stock prices behave in a circumscribed fashion after a deal announcement, so the options after an announcement assume a very characteristic structure.
- Some strikes have vols of near 0; others have vols much higher than the levels seen prior to announcement.
- Which strikes would you guess are the fat ones, and which the cheap ones?
- Again, it is a simple bimodal cartoon model which can allow us to analyze the problem.
- Let's take a simple case: XYZ acquired for cash.
- $S_{t}=25.00$
- $S_{D}=36.00$
- $\mathrm{S}_{\mathrm{t}+}=33.00$
- Let's make additional simplifying assumptions:
- Time to completion or breakup, 90 days
- Interest rate 5.0\%
- Breakdown price 25.00
- Strategy:
- Calculate the market's estimate of success
- Calculate the implied volatilities of the 30 day 30 and 35 strike options
- The carry on the stock for 90 days is:

$$
33(1 / 4) 0.05=\$ 0.4125
$$

- Let's call the market expectation of success, p ;
- $\mathrm{p}=1-\mathrm{f}$, the failure probability.
- In this simple picture,

$$
\begin{aligned}
33 & =p 36+f 25-.41 \\
& =25+11 p-.41
\end{aligned}
$$

- $p=76 \% ; f=24 \%$
- This same analysis will allow us to find the volatilities of the 90 day 35 and 30 options.
- First ignore carry.
- We will look at two positions:
- 1) long a 35 call and short N units of stock
- 2) long a 30 call and short M units of stock
- If both these positions are correctly priced then the returns for both these positions will be equal; from N and M we can determine the deltas.
- Let's look at the initial cash layouts
- $\mathrm{T}=0$;

1) $c[35]-33 \mathrm{~N}$
2) $(3+c[30])-33 \mathrm{M}$

- Here $c[X]$ is the pop of the X-strike call
- $r=0$
- At t_{f}, the value for 1 is: $(1+(-N)(36))(.76)+(-N)(.24)(25)=-33.36 N+.76$
- The value for 2 is: $(6+(-\mathrm{M})(36))(.76)+(-\mathrm{M})(.24)(25)=-33.36 \mathrm{M}+4.56$
- What are these terms?
- So the payouts are:
- 1) $-33.36 \mathrm{~N}+.76-(c[35]-33 \mathrm{~N})=-0.36 \mathrm{~N}+.76-\mathrm{c}[35]$
- 2) $-33.36 \mathrm{M}+4.56-(3+\mathrm{c}[30]-33 \mathrm{M})=-0.36 \mathrm{M}+1.56-\mathrm{c}[30]$
- For fairly priced options there should be no advantage to owning the options hedged or owning the bond, so the premium on the 35 -call is close to 76 .
- The premium on the 30 -call is close to 1.20 . Why?
- The 30 -call is $\$ 3$ in the money, the $\$ 35$ is only $\$ 2$ out of the money, yet the premium on the 30 -call is ca. 40% higher than on the 35 strike.
- What does this say about the skew?
- In fact, I used an approximation that the 30's were 100 delta and the 35's 0 delta so the skew is even more extreme!
- If the take-over were at $\$ 35$, this bimodal assumption would lead to a value of 0 for the 35 call. Why? In fact it would trade at a non-zero bid. What are two reasons for this?
- We can put the pop's into an American pricer and back out volatilities for the 30 and 35 strikes but the point is that the next lowest strike is much fatter than the at-the-money strike.
- The bimodal model also predicts the pop for the 27.5 strike. Is it fatter or cheaper than the 30 ? Why?
- What would be a good strategy for trading the volatilities of a possible take-over stock if you had an estimate for the likely takeover price?
- For example, suppose XYZ trades at $\$ 35$ and the likely t.o. price were $\$ 46$. Which lines in the short term would you want to own? Which lines would you not want to own?
- If the rumor gets strong, the stock may run up quickly to \$40 and certain lines will get cheap and others fat. Which ones?
- Suppose you buy the new cheap lines and sell the fat ones. What event are you hoping for?
- Here is a graph of CFC for the first three months of 2007; the stock had been torn between threat of take-over and threat of catastrophic failure in the subprime lender crisis. We know what eventually did happen!!

34.96	Open:	36.38	Mkt Cap:	20.62B	P/E: 8.13
	High:	36.50	52Wk High:	45.26	F P/E: 8.49
-0.51 (-1.44\%)	Low:	34.79	52Wk Low:	32.20	Beta: 0.68
Mar 16, 4:00PM EDT	Vol:	13.19 M	Avg Vol:	10.57 M	EPS: 4.30
Compare V			ours: 34.80-0	.16 (-0.4	:53PM EDT

Charts can now display extended hours trading - Learn more \| Settings

- Newer news I Latest news

G CORRECTED - Credit review hits Countrywide higher-c issue
Reuters - 15 Feb 2007 - Related articles *
(H) Countrywide, New Century lead home lenders down Reuters - 12 Feb 2007 - Related articles *

I Stocks end day, week down on housing and chip woes MSN Money - 9 Feb 2007 - Related articles *
] US STOCKS-Stocks end day, week down on housing chip woes
Reuters - 9 Feb 2007 - Related articles \%
K UPDATE 1-Bank of America CEO downplays Country talk
Reuters - 31 Jan 2007
Bank of America CEO casts doubt on Countrywide de MarketWatch
US STOCKS-Dow, S\&P dip on rate worry, tempered b Countrywide Reuters.uk
Bloomberg - TheStreet.comOlder news \| View all news for CFC *

