
Robust computability notions for types arising in
classical analysis

John Longley

School of Informatics
University of Edinburgh
jrl@inf.ed.ac.uk

British Logic Colloquium
Sussex, September 2017

1 / 11

jrl@inf.ed.ac.uk

Computability: three stages of enlightenment

Presented via crude slogans . . .

1 All reasonable definitions of computability are equivalent.
E.g. Turing machines, λ-calculus, Post processes, . . . all yield
the same functions N→ N.

2 No they’re not. If more complex kinds of ‘data’ are admitted
(e.g. functions acting on functions acting on functions), then
different flavours of computability are possible (Longley and
Normann 2015). Programming languages differ in expressivity!

3 Yes they are! Under quite mild conditions, different flavours of
higher-order computability give rise to exactly the same
hereditarily total functionals over N, for non-trivial reasons
(Normann 2000, Longley 2007).

This talk: Some recent extensions of the scope of phenomenon 3,
covering a range of data types relevant to ‘mathematical practice’,
especially in analysis.

2 / 11

Computability: three stages of enlightenment

Presented via crude slogans . . .

1 All reasonable definitions of computability are equivalent.
E.g. Turing machines, λ-calculus, Post processes, . . . all yield
the same functions N→ N.

2 No they’re not. If more complex kinds of ‘data’ are admitted
(e.g. functions acting on functions acting on functions), then
different flavours of computability are possible (Longley and
Normann 2015). Programming languages differ in expressivity!

3 Yes they are! Under quite mild conditions, different flavours of
higher-order computability give rise to exactly the same
hereditarily total functionals over N, for non-trivial reasons
(Normann 2000, Longley 2007).

This talk: Some recent extensions of the scope of phenomenon 3,
covering a range of data types relevant to ‘mathematical practice’,
especially in analysis.

2 / 11

Computability: three stages of enlightenment

Presented via crude slogans . . .

1 All reasonable definitions of computability are equivalent.
E.g. Turing machines, λ-calculus, Post processes, . . . all yield
the same functions N→ N.

2 No they’re not. If more complex kinds of ‘data’ are admitted
(e.g. functions acting on functions acting on functions), then
different flavours of computability are possible (Longley and
Normann 2015). Programming languages differ in expressivity!

3 Yes they are! Under quite mild conditions, different flavours of
higher-order computability give rise to exactly the same
hereditarily total functionals over N, for non-trivial reasons
(Normann 2000, Longley 2007).

This talk: Some recent extensions of the scope of phenomenon 3,
covering a range of data types relevant to ‘mathematical practice’,
especially in analysis.

2 / 11

Computability: three stages of enlightenment

Presented via crude slogans . . .

1 All reasonable definitions of computability are equivalent.
E.g. Turing machines, λ-calculus, Post processes, . . . all yield
the same functions N→ N.

2 No they’re not. If more complex kinds of ‘data’ are admitted
(e.g. functions acting on functions acting on functions), then
different flavours of computability are possible (Longley and
Normann 2015). Programming languages differ in expressivity!

3 Yes they are! Under quite mild conditions, different flavours of
higher-order computability give rise to exactly the same
hereditarily total functionals over N, for non-trivial reasons
(Normann 2000, Longley 2007).

This talk: Some recent extensions of the scope of phenomenon 3,
covering a range of data types relevant to ‘mathematical practice’,
especially in analysis.

2 / 11

Computability: three stages of enlightenment

Presented via crude slogans . . .

1 All reasonable definitions of computability are equivalent.
E.g. Turing machines, λ-calculus, Post processes, . . . all yield
the same functions N→ N.

2 No they’re not. If more complex kinds of ‘data’ are admitted
(e.g. functions acting on functions acting on functions), then
different flavours of computability are possible (Longley and
Normann 2015). Programming languages differ in expressivity!

3 Yes they are! Under quite mild conditions, different flavours of
higher-order computability give rise to exactly the same
hereditarily total functionals over N, for non-trivial reasons
(Normann 2000, Longley 2007).

This talk: Some recent extensions of the scope of phenomenon 3,
covering a range of data types relevant to ‘mathematical practice’,
especially in analysis.

2 / 11

Foundational issues

To define ‘computability’ over e.g. spaces of analytic functions, we
need to face the foundational question: What sort of entity is an
analytic function anyway?

A certain kind of set, as in ZF? Maybe, but hasn’t proved very
fruitful for developing theories of (effective) computability.

An object of finite type, as in Church’s simple theory of types?
Much better for our purposes; has also proved convenient for
formalizing mathematics as in Isabelle/HOL.

Idea: Types are built up e.g. from a base type N via a ‘function
space’ constructor → (admitting various interpretations). So e.g.

Natural numbers / rationals are representable at type N.

Real / complex numbers are representable at type N→N.

Functions on R or C are representable at (N→N)→ (N→N).

Operators on such functions are representable at . . . , etc.

‘Feferman’s thesis’: Most of analysis needs just the first few levels.

3 / 11

Foundational issues

To define ‘computability’ over e.g. spaces of analytic functions, we
need to face the foundational question: What sort of entity is an
analytic function anyway?

A certain kind of set, as in ZF? Maybe, but hasn’t proved very
fruitful for developing theories of (effective) computability.

An object of finite type, as in Church’s simple theory of types?
Much better for our purposes; has also proved convenient for
formalizing mathematics as in Isabelle/HOL.

Idea: Types are built up e.g. from a base type N via a ‘function
space’ constructor → (admitting various interpretations). So e.g.

Natural numbers / rationals are representable at type N.

Real / complex numbers are representable at type N→N.

Functions on R or C are representable at (N→N)→ (N→N).

Operators on such functions are representable at . . . , etc.

‘Feferman’s thesis’: Most of analysis needs just the first few levels.

3 / 11

Foundational issues

To define ‘computability’ over e.g. spaces of analytic functions, we
need to face the foundational question: What sort of entity is an
analytic function anyway?

A certain kind of set, as in ZF? Maybe, but hasn’t proved very
fruitful for developing theories of (effective) computability.

An object of finite type, as in Church’s simple theory of types?
Much better for our purposes; has also proved convenient for
formalizing mathematics as in Isabelle/HOL.

Idea: Types are built up e.g. from a base type N via a ‘function
space’ constructor → (admitting various interpretations). So e.g.

Natural numbers / rationals are representable at type N.

Real / complex numbers are representable at type N→N.

Functions on R or C are representable at (N→N)→ (N→N).

Operators on such functions are representable at . . . , etc.

‘Feferman’s thesis’: Most of analysis needs just the first few levels.

3 / 11

Foundational issues

To define ‘computability’ over e.g. spaces of analytic functions, we
need to face the foundational question: What sort of entity is an
analytic function anyway?

A certain kind of set, as in ZF? Maybe, but hasn’t proved very
fruitful for developing theories of (effective) computability.

An object of finite type, as in Church’s simple theory of types?
Much better for our purposes; has also proved convenient for
formalizing mathematics as in Isabelle/HOL.

Idea: Types are built up e.g. from a base type N via a ‘function
space’ constructor → (admitting various interpretations). So e.g.

Natural numbers / rationals are representable at type N.

Real / complex numbers are representable at type N→N.

Functions on R or C are representable at (N→N)→ (N→N).

Operators on such functions are representable at . . . , etc.

‘Feferman’s thesis’: Most of analysis needs just the first few levels.
3 / 11

Subset and quotient types

For ‘practical’ purposes, helpful to augment our system with subset
and quotient types. E.g. R as a quotient of a subset of N→ N.

In the context of a classical logic (as in Isabelle/HOL), this is an
inessential extension: e.g. a function with domain S ⊆ N→ N can
always be represented by some function on N→ N.

Not so in constructive or computable settings. E.g. under any
reasonable definition of ‘computability’ . . .

f 7→ min i . f (i) 6= 0 is computable on (N→ N)− {Λi .0}, but not
extendable to a computable (or continuous) function on N→ N.

x 7→ 1/x : R− {0} → R is computable, but not extendable to a
computable (or continuous) function R→ R.

Given a closed curve c in the plane and a point p not on c , can
compute the winding number of c around p. Not extendable to a
computable operation on arbitrary pairs (c , p).

If f is analytic on a disc D1+ε and nonzero on ∂D1, can compute the
number of zeros (by multiplicity) of f within D1. Not extendable to
arbitrary continuous f , if codomain is taken to be N rather than R.

4 / 11

Subset and quotient types

For ‘practical’ purposes, helpful to augment our system with subset
and quotient types. E.g. R as a quotient of a subset of N→ N.

In the context of a classical logic (as in Isabelle/HOL), this is an
inessential extension: e.g. a function with domain S ⊆ N→ N can
always be represented by some function on N→ N.

Not so in constructive or computable settings. E.g. under any
reasonable definition of ‘computability’ . . .

f 7→ min i . f (i) 6= 0 is computable on (N→ N)− {Λi .0}, but not
extendable to a computable (or continuous) function on N→ N.

x 7→ 1/x : R− {0} → R is computable, but not extendable to a
computable (or continuous) function R→ R.

Given a closed curve c in the plane and a point p not on c , can
compute the winding number of c around p. Not extendable to a
computable operation on arbitrary pairs (c , p).

If f is analytic on a disc D1+ε and nonzero on ∂D1, can compute the
number of zeros (by multiplicity) of f within D1. Not extendable to
arbitrary continuous f , if codomain is taken to be N rather than R.

4 / 11

Subset and quotient types

For ‘practical’ purposes, helpful to augment our system with subset
and quotient types. E.g. R as a quotient of a subset of N→ N.

In the context of a classical logic (as in Isabelle/HOL), this is an
inessential extension: e.g. a function with domain S ⊆ N→ N can
always be represented by some function on N→ N.

Not so in constructive or computable settings. E.g. under any
reasonable definition of ‘computability’ . . .

f 7→ min i . f (i) 6= 0 is computable on (N→ N)− {Λi .0}, but not
extendable to a computable (or continuous) function on N→ N.

x 7→ 1/x : R− {0} → R is computable, but not extendable to a
computable (or continuous) function R→ R.

Given a closed curve c in the plane and a point p not on c , can
compute the winding number of c around p. Not extendable to a
computable operation on arbitrary pairs (c , p).

If f is analytic on a disc D1+ε and nonzero on ∂D1, can compute the
number of zeros (by multiplicity) of f within D1. Not extendable to
arbitrary continuous f , if codomain is taken to be N rather than R.

4 / 11

Subset and quotient types

For ‘practical’ purposes, helpful to augment our system with subset
and quotient types. E.g. R as a quotient of a subset of N→ N.

In the context of a classical logic (as in Isabelle/HOL), this is an
inessential extension: e.g. a function with domain S ⊆ N→ N can
always be represented by some function on N→ N.

Not so in constructive or computable settings. E.g. under any
reasonable definition of ‘computability’ . . .

f 7→ min i . f (i) 6= 0 is computable on (N→ N)− {Λi .0}, but not
extendable to a computable (or continuous) function on N→ N.

x 7→ 1/x : R− {0} → R is computable, but not extendable to a
computable (or continuous) function R→ R.

Given a closed curve c in the plane and a point p not on c , can
compute the winding number of c around p. Not extendable to a
computable operation on arbitrary pairs (c , p).

If f is analytic on a disc D1+ε and nonzero on ∂D1, can compute the
number of zeros (by multiplicity) of f within D1. Not extendable to
arbitrary continuous f , if codomain is taken to be N rather than R.

4 / 11

Subset and quotient types

For ‘practical’ purposes, helpful to augment our system with subset
and quotient types. E.g. R as a quotient of a subset of N→ N.

In the context of a classical logic (as in Isabelle/HOL), this is an
inessential extension: e.g. a function with domain S ⊆ N→ N can
always be represented by some function on N→ N.

Not so in constructive or computable settings. E.g. under any
reasonable definition of ‘computability’ . . .

f 7→ min i . f (i) 6= 0 is computable on (N→ N)− {Λi .0}, but not
extendable to a computable (or continuous) function on N→ N.

x 7→ 1/x : R− {0} → R is computable, but not extendable to a
computable (or continuous) function R→ R.

Given a closed curve c in the plane and a point p not on c , can
compute the winding number of c around p. Not extendable to a
computable operation on arbitrary pairs (c , p).

If f is analytic on a disc D1+ε and nonzero on ∂D1, can compute the
number of zeros (by multiplicity) of f within D1. Not extendable to
arbitrary continuous f , if codomain is taken to be N rather than R.

4 / 11

Subset and quotient types

For ‘practical’ purposes, helpful to augment our system with subset
and quotient types. E.g. R as a quotient of a subset of N→ N.

In the context of a classical logic (as in Isabelle/HOL), this is an
inessential extension: e.g. a function with domain S ⊆ N→ N can
always be represented by some function on N→ N.

Not so in constructive or computable settings. E.g. under any
reasonable definition of ‘computability’ . . .

f 7→ min i . f (i) 6= 0 is computable on (N→ N)− {Λi .0}, but not
extendable to a computable (or continuous) function on N→ N.

x 7→ 1/x : R− {0} → R is computable, but not extendable to a
computable (or continuous) function R→ R.

Given a closed curve c in the plane and a point p not on c , can
compute the winding number of c around p. Not extendable to a
computable operation on arbitrary pairs (c , p).

If f is analytic on a disc D1+ε and nonzero on ∂D1, can compute the
number of zeros (by multiplicity) of f within D1. Not extendable to
arbitrary continuous f , if codomain is taken to be N rather than R.

4 / 11

Robust computability notions for mathematical types

Moral: Saying what ‘computability’ means at type S → T doesn’t
immediately fix what it means at S ′ → T where S ⊆ T .

So a ‘computability theory’ applicable e.g. to analysis should pay
due attention to subset types (perhaps overlooked so far).
Quotient types then fall out for general abstract reasons.

Earlier work (Normann, Longley): Under mild conditions, two
‘higher-order computability models’ (e.g. programming languages)
yield same total functions at all simple types (built from N via →).

Present work: This remains largely true even when subset
formation is thrown in. (Precise extent still being clarified, but
covers naturally arising mathematical types.)

Other work: Much existing work on computability in analysis (e.g.
Weihrauch) tends to pick some particular underlying ‘model of
computation’ and see what that yields.

Our contribution is to show that the classes of ‘computable functions’ we

get are (largely) independent of the choice of underlying model.

5 / 11

Robust computability notions for mathematical types

Moral: Saying what ‘computability’ means at type S → T doesn’t
immediately fix what it means at S ′ → T where S ⊆ T .

So a ‘computability theory’ applicable e.g. to analysis should pay
due attention to subset types (perhaps overlooked so far).
Quotient types then fall out for general abstract reasons.

Earlier work (Normann, Longley): Under mild conditions, two
‘higher-order computability models’ (e.g. programming languages)
yield same total functions at all simple types (built from N via →).

Present work: This remains largely true even when subset
formation is thrown in. (Precise extent still being clarified, but
covers naturally arising mathematical types.)

Other work: Much existing work on computability in analysis (e.g.
Weihrauch) tends to pick some particular underlying ‘model of
computation’ and see what that yields.

Our contribution is to show that the classes of ‘computable functions’ we

get are (largely) independent of the choice of underlying model.

5 / 11

Robust computability notions for mathematical types

Moral: Saying what ‘computability’ means at type S → T doesn’t
immediately fix what it means at S ′ → T where S ⊆ T .

So a ‘computability theory’ applicable e.g. to analysis should pay
due attention to subset types (perhaps overlooked so far).
Quotient types then fall out for general abstract reasons.

Earlier work (Normann, Longley): Under mild conditions, two
‘higher-order computability models’ (e.g. programming languages)
yield same total functions at all simple types (built from N via →).

Present work: This remains largely true even when subset
formation is thrown in. (Precise extent still being clarified, but
covers naturally arising mathematical types.)

Other work: Much existing work on computability in analysis (e.g.
Weihrauch) tends to pick some particular underlying ‘model of
computation’ and see what that yields.

Our contribution is to show that the classes of ‘computable functions’ we

get are (largely) independent of the choice of underlying model.
5 / 11

Interlude: Why is this interesting?

Some possible reasons:

1 Sheds light on (theoretical) expressive power of different
programming languages within the area of exact computation
(here we represent reals via potentially infinite digit streams).

2 Broadly relevant to questions of mathematical ontology: e.g.
relates different ‘constructive presentations’ of mathematical
objects.

3 Relevant to: How ‘computable’ or ‘mechanistic’ is your
favourite model of physics? Cf. Laplace’s demon.

6 / 11

Interlude: Why is this interesting?

Some possible reasons:

1 Sheds light on (theoretical) expressive power of different
programming languages within the area of exact computation
(here we represent reals via potentially infinite digit streams).

2 Broadly relevant to questions of mathematical ontology: e.g.
relates different ‘constructive presentations’ of mathematical
objects.

3 Relevant to: How ‘computable’ or ‘mechanistic’ is your
favourite model of physics? Cf. Laplace’s demon.

6 / 11

Interlude: Why is this interesting?

Some possible reasons:

1 Sheds light on (theoretical) expressive power of different
programming languages within the area of exact computation
(here we represent reals via potentially infinite digit streams).

2 Broadly relevant to questions of mathematical ontology: e.g.
relates different ‘constructive presentations’ of mathematical
objects.

3 Relevant to: How ‘computable’ or ‘mechanistic’ is your
favourite model of physics? Cf. Laplace’s demon.

6 / 11

Interlude: Why is this interesting?

Some possible reasons:

1 Sheds light on (theoretical) expressive power of different
programming languages within the area of exact computation
(here we represent reals via potentially infinite digit streams).

2 Broadly relevant to questions of mathematical ontology: e.g.
relates different ‘constructive presentations’ of mathematical
objects.

3 Relevant to: How ‘computable’ or ‘mechanistic’ is your
favourite model of physics? Cf. Laplace’s demon.

6 / 11

Some technical details: Higher-order computation models

Types: σ ::= N | σ → σ.

Our computation models are typed partial combinatory algebras
with weak numerals and ground-type iteration. They consist of:

a set A(σ) for each type σ,
for each σ, τ , a partial function ·στ : A(σ → τ)× A(σ) ⇀ A(τ)
(called ‘application’),
elements kστ ∈ A(σ → τ → σ), and sρστ ∈ A(· · ·),

elements 0̂, 1̂, 2̂, . . . ∈ A(N), suc ∈ A(N→ N) and
primrec ∈ A(N→ (N→ N→ N)→ N→ N),
an element iter ∈ A((N→ N)→ (N→ N))

. . . all satisfying various axioms.

There is an abundance of such structures, both ‘syntactic’ (term
models for programming languages) and ‘semantic’ (arising from
domain theory, game semantics, . . .), embodying different flavours
of higher-order computability.

Some of our results also work in a non-deterministic variant of the
above setup (new progress).

7 / 11

Representing ‘mathematical’ objects within A

An A-assembly X consists of:

a set |X |,
a type σX ,

a realizability relation X⊆ A(σX)× |X |, such that
∀x .∃a. a X x . (Think of x and a as ‘mathematical’ and
‘computational’ objects respectively.)

Our intended operations for constructing ‘mathematical’ types can
be interpreted in terms of A-assemblies:

Start with N = (N, N,N), where a N n iff a = n̂.

Given assemblies X ,Y , may form an assembly X ⇒ Y whose
elements are functions f : |X | → |Y | that are ‘realized’ by
some t ∈ A(σX → σY) in an evident sense.

Given an assembly X and a subset S ⊂ |X |, may form the
restricted assembly Sub(X ,S) in an obvious way.

Idea is to see how this interpretation of our types looks for
different computation models A.

8 / 11

Axioms on computation models

We obtain results of interest under various combinations of axioms
on A. (Cleaner than approach via simulations in Longley 2007.)

E.g. the following axioms can be seen as capturing typical intrinsic
consequences (for A) of effective simulability.
Here ∆A denotes |N ⇒ N| (this plays a key role).

Enumeration: For all f ∈ A(N→ N) there exists g ∈ ∆A such that
for all n,m ∈ N we have: f · n̂ = m̂ iff ∃i . g(i) = 〈n,m〉+ 1.

(N.B. Only rarely holds ‘uniformly within A’.)

Collection (w.r.t. a type σ): For any Φ ∈ A(σ → N), there exists
f ∈ A(N→ N) with the same ‘range in N’ as Φ. More precisely, for
any m ∈ N, we have ∃a ∈ A(σ). Φ · a = m̂ iff ∃n ∈ N. f · n̂ = m̂.

(Again, rarely holds uniformly.)

More ‘standard’ axioms: Continuity, Normalizability, Restriction.

9 / 11

Regular types

A function F even of high type can typically be represented by a
function gF : N→ N, called a graph for F (well understood).

We call a mathematical type T regular (for A) if its interpretation
over A contains exactly those functions that have a graph in ∆A.
So if T is regular, its contents are completely determined by ∆A.

Second-order math types: e.g. take Q ⊆ N, form Q ⇒ N,
take R ⊆ Q ⇒ N and form R ⇒ N. Various types of this form
are regular under various combinations of axioms, via abstract
versions of the Kreisel-Lacombe-Shoenfield argument.
Third-order and above: requires the heavy Normann-Longley
machinery. Details still being worked out, but under
reasonable axioms, certainly get regularity when all subsets
involved are tame (i.e. ∆-separable).
[N.B. Here we need a bit more computing power in A: type 1

recursion rather than just ground type iteration.]

So if A and B satisfy certain axioms and ∆A = ∆B , they’ll agree
on all math types that can be proved regular under these axioms.

10 / 11

Concluding remarks

Questions of robustness/canonicity of computability concepts
are characteristic of computability theory, whatever entities
we’re wanting to compute with.

We’re making some progress in establishing the existence of
robust computability concepts for many types arising in
analysis. Also have some counterexamples to indicate the
limits of this phenomenon.

The entities we compute with must themselves have at least a
‘semi-constructive’ character. E.g. can compute with arbitrary
continuous functions R→ R, but not discontinuous ones.

Our computability concepts may still not be the only
reasonable ones for the types in question (cf. M. Schröder).
More work needed here.

Draft paper available:
homepages.inf.ed.ac.uk/jrl/Research/ubiquity-reloaded3.pdf

11 / 11

