A Generalisation of Closed Unbounded and Stationary Sets

Hazel Brickhill

University of Bristol

British Logic Colloquium 8th September 2017

an unbounded set

- an unbounded set
- a closed unbounded (club) set

- an unbounded set
- ► a closed unbounded (club) set uncountable cofinality → clubs generate a filter (measure)

- an unbounded set
- ► a closed unbounded (club) set uncountable cofinality → clubs generate a filter (measure)
- a stationary set

- an unbounded set
- ► a closed unbounded (club) set uncountable cofinality → clubs generate a filter (measure)
- a stationary set defined at ordinals of uncountable cofinality only

A sketch

Definition

 $C\subseteq\kappa$ is stationary-closed if whenever $\alpha<\kappa$ and $C\cap\alpha$ is stationary in α we have $\alpha\in C$

Definition

 $C\subseteq\kappa$ is stationary-closed if whenever $\alpha<\kappa$ and $C\cap\alpha$ is stationary in α we have $\alpha\in C$

Definition

C is 1-club in κ iff C is stationary in κ and stationary-closed.

Definition

1 $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- On is γ-stationary closed if for any α such that C is γ-stationary in α we have α ∈ C.

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- 2 C ⊆ On is γ-stationary closed if for any α such that C is γ-stationary in α we have α ∈ C.
- **3** *C* is γ -club in κ if *C* is γ -stationary closed and γ -stationary in κ .

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- 2 C ⊆ On is γ-stationary closed if for any α such that C is γ-stationary in α we have α ∈ C.
- **3** *C* is γ -club in κ if *C* is γ -stationary closed and γ -stationary in κ .
- **(4)** κ is γ -*s*-*reflecting* if for any γ -stationary *S*, $T \subseteq \kappa$ there is $\alpha < \kappa$ with *S* and *T* both γ -stationary below α .

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- C ⊆ On is γ-stationary closed if for any α such that C is γ-stationary in α we have α ∈ C.
- **3** *C* is γ -club in κ if *C* is γ -stationary closed and γ -stationary in κ .
- **(**) κ is γ -*s*-*reflecting* if for any γ -stationary *S*, $T \subseteq \kappa$ there is $\alpha < \kappa$ with *S* and *T* both γ -stationary below α .
- S ⊆ κ is γ-stationary if for every γ' < γ we have κ is γ'-s-reflecting and for any C γ'-club in κ we have S ∩ C ≠ Ø

Definition

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- 2 C ⊆ On is γ-stationary closed if for any α such that C is γ-stationary in α we have α ∈ C.
- **3** *C* is γ -club in κ if *C* is γ -stationary closed and γ -stationary in κ .
- **4** κ is γ -*s*-*reflecting* if for any γ -stationary *S*, $T \subseteq \kappa$ there is $\alpha < \kappa$ with *S* and *T* both γ -stationary below α .
- S ⊆ κ is γ-stationary if for every γ' < γ we have κ is γ'-s-reflecting and for any C γ'-club in κ we have S ∩ C ≠ Ø

Notation

$$d_{\gamma}(A) := \{ \alpha : A \text{ is } \gamma \text{-stationary below } \alpha \}$$

Restating the Definitions in Terms of d_{γ}

Notation

 $d_{\gamma}(A) := \{ \alpha : A \text{ is } \gamma \text{-stationary below } \alpha \}$

Definition (restated)

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- **2** $C \subseteq On$ is γ -stationary closed if $d_{\gamma}(C) \subseteq C$.
- **3** *C* is γ -club in κ if *C* is γ -stationary closed and γ -stationary below κ .
- (4) κ is γ -reflecting if for any γ -stationary $S, T \subseteq \kappa, d_{\gamma}(S) \cap d_{\gamma}(T) \cap \kappa \neq \emptyset$.
- S ⊆ κ is n + 1-stationary if κ is n-reflecting and S ∩ C ≠ Ø for every C n-club in κ

If κ is *n*-reflecting, then for a subset of κ we have these implications:

Origins

- Sun, W. (1993). Stationary cardinals. Archive for Mathematical Logic, 32(6), 429-442.
- Hellsten, A. (2003). Diamonds on large cardinals (Vol. 134). Suomalainen Tiedeakatemia.
- L. Beklemishev, D. Gabelaia, (2014) Topological interpretations of provability logic, Leo Esakia on duality in modal and intuitionistic logics, Outstanding Contributions to Logic, 4, eds. G. Bezhanishvili, Springer, 257290
- Bagaria, J., Magidor, M., and Sakai, H. (2015) Reflection and indescribability in the constructible universe. Israel Journal of Mathematics 208.1: 1-11.
- Bagaria, J. (2016). Derived topologies on ordinals and stationary reflection. https://www.newton.ac.uk/files/preprints/ni16031.pdf

Definition 2: Reflection

Definition

1 $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .

Definition 2: Reflection

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- **2** $S \subseteq \kappa$ is γ -stationary if for every $\eta < \gamma$ and for any η -stationary T, $T' \subseteq \kappa$ there is $\alpha \in S$ with T and T' both γ -stationary below α

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- **2** $S \subseteq \kappa$ is γ -stationary if for every $\eta < \gamma$ and for any η -stationary T, $T' \subseteq \kappa$ there is $\alpha \in S$ with T and T' both γ -stationary below α
- Defining γ-stationary sets in this way is equivalent to defining them in terms of generalised clubs.

- **1** $S \subseteq On$ is 0-stationary in κ if it is unbounded in κ .
- **2** $S \subseteq \kappa$ is γ -stationary if for every $\eta < \gamma$ and for any η -stationary T, $T' \subseteq \kappa$ there is $\alpha \in S$ with T and T' both γ -stationary below α
- Defining γ-stationary sets in this way is equivalent to defining them in terms of generalised clubs.
- This is easy to show by induction: the key is that if κ is γ-stationary and T ⊆ κ is η-stationary for η < γ, then d_η(T) is η-club.

Let Ω be an ordinal and \mathfrak{T} a topology on Ω . For $A \subseteq \Omega$ we set

 $d_{\mathbb{T}}(A) =$ the set of limit points of A in the topology \mathbb{T} .

Let Ω be an ordinal and \mathfrak{T} a topology on Ω . For $A \subseteq \Omega$ we set

 $d_{\mathcal{T}}(A) =$ the set of limit points of A in the topology \mathcal{T} .

Set \mathcal{T}_0 to be the interval topology on Ω .

Let Ω be an ordinal and \mathcal{T} a topology on Ω . For $A \subseteq \Omega$ we set

 $d_{\mathcal{T}}(A) =$ the set of limit points of A in the topology \mathcal{T} .

Set \mathcal{T}_0 to be the interval topology on Ω .

 $\blacktriangleright d_{\mathcal{T}_0}(A) = d_0(A)$

Let Ω be an ordinal and \mathcal{T} a topology on Ω . For $A \subseteq \Omega$ we set

 $d_{\mathcal{T}}(A) =$ the set of limit points of A in the topology \mathcal{T} .

Set \mathcal{T}_0 to be the interval topology on Ω .

 $\blacktriangleright d_{\mathfrak{T}_0}(A) = d_0(A)$

• α is non-isolated in \mathcal{T}_0 iff α is a limit ordinal.

Let Ω be an ordinal and \mathcal{T} a topology on Ω . For $A \subseteq \Omega$ we set

 $d_{\mathfrak{T}}(A) =$ the set of limit points of A in the topology \mathfrak{T} .

Set \mathcal{T}_0 to be the interval topology on Ω .

 $\blacktriangleright d_{\mathcal{T}_0}(A) = d_0(A)$

• α is non-isolated in \mathcal{T}_0 iff α is a limit ordinal.

Definition

If ${\mathfrak T}$ is a topology on Ω then the topology derived from ${\mathfrak T}$ is the topology generated by

 $\mathfrak{T} \cup \{ \boldsymbol{d}_{\mathfrak{T}}(\boldsymbol{A}) : \boldsymbol{A} \subseteq \boldsymbol{\Omega} \}.$

Let Ω be an ordinal and \mathfrak{T} a topology on Ω . For $A \subseteq \Omega$ we set

 $d_{\mathfrak{T}}(A) =$ the set of limit points of A in the topology \mathfrak{T} .

Set \mathcal{T}_0 to be the interval topology on Ω .

$$\blacktriangleright d_{\mathcal{T}_0}(A) = d_0(A)$$

• α is non-isolated in \mathcal{T}_0 iff α is a limit ordinal.

Definition

If ${\mathfrak T}$ is a topology on Ω then the topology derived from ${\mathfrak T}$ is the topology generated by

 $\mathfrak{T} \cup \{ \boldsymbol{d}_{\mathfrak{T}}(\boldsymbol{A}) : \boldsymbol{A} \subseteq \boldsymbol{\Omega} \}.$

Set $\mathfrak{T}_{\gamma+1}$ to be the topology derived from \mathfrak{T}_{γ} and for limit λ set $\mathfrak{T}_{\lambda} = \bigcup_{\gamma < \lambda} \mathfrak{T}_{\gamma}.$

Let Ω be an ordinal and \mathcal{T} a topology on Ω . For $A \subseteq \Omega$ we set

 $d_{\mathbb{T}}(A) =$ the set of limit points of A in the topology \mathbb{T} .

Set \mathcal{T}_0 to be the interval topology on Ω .

$$\blacktriangleright d_{\mathcal{T}_0}(A) = d_0(A)$$

• α is non-isolated in \mathcal{T}_0 iff α is a limit ordinal.

Definition

If ${\mathfrak T}$ is a topology on Ω then the topology derived from ${\mathfrak T}$ is the topology generated by

 $\mathfrak{T} \cup \{ \boldsymbol{d}_{\mathfrak{T}}(\boldsymbol{A}) : \boldsymbol{A} \subseteq \boldsymbol{\Omega} \}.$

Set $\mathfrak{T}_{\gamma+1}$ to be the topology derived from \mathfrak{T}_{γ} and for limit λ set $\mathfrak{T}_{\lambda} = \bigcup_{\gamma < \lambda} \mathfrak{T}_{\gamma}.$

These topologies are closely related to γ-stationarity.

\mathfrak{T}_γ and $\gamma\text{-stationarity}$

What is T_1 ?

${\mathfrak T}_\gamma$ and $\gamma\text{-stationarity}$

What is T_1 ? We have the following equivalences:

$$\begin{array}{l} \alpha \in d_{\mathcal{T}_{1}}(A) \\ \Leftrightarrow \ \forall X, Y \subseteq \Omega \ \alpha \in d_{0}(X) \cap d_{0}(Y) \rightarrow d_{0}(X) \cap d_{0}(Y) \cap \alpha \cap A \neq \emptyset \end{array}$$

- $\Leftrightarrow \forall C, D \text{ club in } \alpha \text{ we have } C \cap D \cap A \neq \emptyset$
- \Leftrightarrow A is stationary in α , i.e. $\alpha \in d_1(A)$

${\mathfrak T}_\gamma$ and $\gamma\text{-stationarity}$

What is T_1 ? We have the following equivalences:

$$\begin{array}{l} \alpha \in d_{\mathcal{T}_1}(A) \\ \Leftrightarrow \ \forall X, Y \subseteq \Omega \ \alpha \in d_0(X) \cap d_0(Y) \rightarrow d_0(X) \cap d_0(Y) \cap \alpha \cap A \neq \emptyset \\ \Leftrightarrow \ \forall C, D \ \text{club in } \alpha \ \text{we have} \ C \cap D \cap A \neq \emptyset \\ \Leftrightarrow \ A \ \text{is stationary in } \alpha, \ \text{i.e.} \ \alpha \in d_1(A) \end{array}$$

Thus:

$$d_{\mathcal{T}_1}(A) = d_1(A) = \{ \alpha : A \text{ is stationary in } \alpha \}$$

${\mathfrak T}_\gamma$ and $\gamma\text{-stationarity}$

What is T_1 ? We have the following equivalences:

$$\begin{array}{l} \alpha \in d_{\mathcal{T}_1}(A) \\ \Leftrightarrow \ \forall X, \, Y \subseteq \Omega \, \, \alpha \in d_0(X) \cap d_0(Y) \rightarrow d_0(X) \cap d_0(Y) \cap \alpha \cap A \neq \emptyset \\ \Leftrightarrow \ \forall C, \, D \ \text{club in } \alpha \ \text{we have} \ C \cap D \cap A \neq \emptyset \\ \Leftrightarrow \ A \ \text{is stationary in } \alpha, \ \text{i.e.} \ \ \alpha \in d_1(A) \end{array}$$

Thus:

$$d_{\mathcal{T}_1}(A) = d_1(A) = \{ \alpha : A \text{ is stationary in } \alpha \}$$

In fact we can show that for any γ , $d_{\mathcal{T}_{\gamma}} = d_{\gamma}$.

\mathbb{T}_{γ} and $\gamma\text{-stationarity}$

What is T_1 ? We have the following equivalences:

$$\begin{array}{l} \alpha \in d_{\mathfrak{T}_{1}}(A) \\ \Leftrightarrow \ \forall X, Y \subseteq \Omega \ \alpha \in d_{0}(X) \cap d_{0}(Y) \rightarrow d_{0}(X) \cap d_{0}(Y) \cap \alpha \cap A \neq \emptyset \\ \Leftrightarrow \ \forall C, D \ \text{club in } \alpha \ \text{we have} \ C \cap D \cap A \neq \emptyset \\ \Leftrightarrow \ A \ \text{is stationary in } \alpha, \ \text{i.e.} \ \alpha \in d_{1}(A) \end{array}$$

Thus:

$$d_{\mathcal{T}_1}(A) = d_1(A) = \{ \alpha : A \text{ is stationary in } \alpha \}$$

In fact we can show that for any γ , $d_{\mathcal{T}_{\gamma}} = d_{\gamma}$. Thus a point α is *non-isolated* in \mathcal{T}_{γ} iff for every $\gamma' < \gamma$, α is γ' -s-reflecting (i.e. α is γ -stationary), and \mathcal{T}_{γ} is non-discrete iff there is an ordinal $\alpha < \Omega$ that is γ stationary.

Upper bound:

► An easy argument show that Π¹_n-indescribable cardinals are *n*-stationary reflecting.

Upper bound:

- ► An easy argument show that Π¹_n-indescribable cardinals are *n*-stationary reflecting.
- We can define a notion of Π^1_{γ} -indescribability for ordinals γ such that Π^1_{γ} -indescribable cardinals are γ -stationary reflecting.

Upper bound:

- ► An easy argument show that Π¹_n-indescribable cardinals are *n*-stationary reflecting.
- We can define a notion of Π^1_{γ} -indescribability for ordinals γ such that Π^1_{γ} -indescribable cardinals are γ -stationary reflecting.

Under V = L:

Theorem (Jensen)

In L a regular cardinal reflects stationary sets iff it is Π_1^1 -indescribable (=weakly compact).

Upper bound:

- ► An easy argument show that Π¹_n-indescribable cardinals are *n*-stationary reflecting.
- We can define a notion of Π^1_{γ} -indescribability for ordinals γ such that Π^1_{γ} -indescribable cardinals are γ -stationary reflecting.

Under V = L:

Theorem (Jensen)

In L a regular cardinal reflects stationary sets iff it is Π_1^1 -indescribable (=weakly compact).

Theorem (Bagaria, Magidor, Sakai) $(1 < n < \omega)$ In *L* a regular cardinal reflects *n*-stationary sets iff it is Π_n^1 -indescribable.

Upper bound:

- ► An easy argument show that Π¹_n-indescribable cardinals are *n*-stationary reflecting.
- We can define a notion of Π^1_{γ} -indescribability for ordinals γ such that Π^1_{γ} -indescribable cardinals are γ -stationary reflecting.

Under V = L:

Theorem (Jensen)

In L a regular cardinal reflects stationary sets iff it is Π_1^1 -indescribable (=weakly compact).

Theorem (Bagaria, Magidor, Sakai) $(1 < n < \omega)$ In *L* a regular cardinal reflects *n*-stationary sets iff it is Π_n^1 -indescribable.

Theorem (B., Bagaria)

In L a regular cardinal reflects γ -stationary sets iff it is Π^1_{γ} -indescribable.

Lower bound?

Theorem (Magidor)

A regular cardinal that is 1-s-reflecting is Π_1^1 -indescribable in *L*. Thus the existence of a 1-s-reflecting cardinal is equiconsistent with the existence of a Π_1^1 -indescribable.

Lower bound?

```
Theorem (Magidor)
```

A regular cardinal that is 1-s-reflecting is Π_1^1 -indescribable in *L*. Thus the existence of a 1-s-reflecting cardinal is equiconsistent with the existence of a Π_1^1 -indescribable.

Theorem (B.)

Let κ be a regular cardinal that is γ -s-reflecting such that the γ -club filter on κ is normal, and for "many" cardinals λ below κ we have λ is η -s-reflecting implies the η -club filter on λ is normal. Then κ is Π^1_{γ} -indescribable in L.

Lower bound?

```
Theorem (Magidor)
```

A regular cardinal that is 1-s-reflecting is Π_1^1 -indescribable in *L*. Thus the existence of a 1-s-reflecting cardinal is equiconsistent with the existence of a Π_1^1 -indescribable.

```
Theorem (B.)
```

Let κ be a regular cardinal that is γ -s-reflecting such that the γ -club filter on κ is normal, and for "many" cardinals λ below κ we have λ is η -s-reflecting implies the η -club filter on λ is normal. Then κ is Π^1_{γ} -indescribable in L.

Conjecture:

For $\gamma>1$ the consistency strength of a $\gamma\text{-s-reflecting cardinal is below that of a <math display="inline">\Pi^1_{\gamma}\text{-indescribable.}$

Generalised \Box sequences

Definition

A \Box^{γ} sequence on κ is a sequence $\langle C_{\alpha} : \alpha \in d_{\gamma}(\kappa) \rangle$ such that for each α :

- **1** C_{α} is an γ -club subset of α
- **2** (Coherence) for every $\beta \in d_{\gamma}(C_{\alpha})$ we have $C_{\beta} = C_{\alpha} \cap \beta$

Generalised \Box sequences

Definition

A \Box^{γ} sequence on κ is a sequence $\langle C_{\alpha} : \alpha \in d_{\gamma}(\kappa) \rangle$ such that for each α :

1 C_{α} is an γ -club subset of α

2 (Coherence) for every $\beta \in d_{\gamma}(C_{\alpha})$ we have $C_{\beta} = C_{\alpha} \cap \beta$

- ▶ We need to add an extra condition for □ sequences to be non-trivial (and useful)
- There are many ways to do this for the standard case
- ► Standard □ sequences are useful for a variety of constructions

Generalised \Box sequences

Definition

A \Box^{γ} sequence on κ is a sequence $\langle C_{\alpha} : \alpha \in d_{\gamma}(\kappa) \rangle$ such that for each α :

- **1** C_{α} is an γ -club subset of α
- **2** (Coherence) for every $\beta \in d_{\gamma}(C_{\alpha})$ we have $C_{\beta} = C_{\alpha} \cap \beta$
- ▶ We need to add an extra condition for □ sequences to be non-trivial (and useful)
- There are many ways to do this for the standard case
- ► Standard □ sequences are useful for a variety of constructions

Theorem (B.)(V = L) If κ is Π^1_{γ} - but not $\Pi^1_{\gamma+1}$ -indescribable then there is an $\gamma + 1$ -stationary set $E \subseteq \kappa$ and \Box^{γ} sequence avoiding E. Thus κ is not $\gamma + 1$ -reflecting.