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CW complexes

For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of
higher and higher dimension.

For n ∈ N, let

Dn denote the closed ball of radius 1 about the origin in Rn (the n-disc),
◦
Dn its interior (the open ball of radius 1 about the origin), and

Sn−1 its boundary (the n − 1-sphere).
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CW complexes

Definition
A Hausdorff space X is a CW complex if there exists a set of continuous functions
ϕn
α : Dn → X (characteristic maps), for α in an arbitrary index set and n ∈ N a

function of α, such that:

1 ϕn
α �

◦
Dn is a homeomorphism to its image, and X is the disjoint union as α

varies of these homeomorphic images ϕn
α[
◦
Dn] (“cells”).

2 Closure-finiteness: For each ϕn
α, ϕn

α[Sn−1] is contained in finitely many cells
all of dimension less than n.

3 Weak topology: A set is closed if and only if its intersection with each closed
cell ϕn

α[Dn] is closed.

We often denote ϕn
α[
◦
Dn] by enα.
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Trouble in paradise

Flaw:
The Cartesian product of two CW complexes X and Y , with the product
topology, need not be a CW complex.

Since Dm × Dn ∼= Dm+n, there is a natural cell structure on X × Y , which
satisfies closure-finiteness, but the product topology is generally not as fine as the
weak topology.

Convention
In this talk, X × Y is always taken to have the product topology, so “X × Y is a
CW complex” means “the product topology on X × Y is the same as the weak
topology”.
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Example (Dowker, 1952)

Let X be the “star” with a central vertex x0 and countably many edges e1X ,n
(n ∈ N) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex y0 and continuum many edges e1Y ,f
(f ∈ NN) emanating from it (and the other ends).

Consider the subset of X × Y

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}
where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X × Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1/g(n)) ⊂ e1X ,n ∩ U for
every n ∈ N.

Consider the edge e1Y ,g of Y :

Let k ∈ N be such that 1
g(k)+1 ∈ e1Y ,g ∩ V .

Then
(

1
g(k)+1 ,

1
g(k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is what you would expect.

E.g.

For any CW complex X and n ∈ N, the n-skeleton X n of X is the subcomplex of
X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X .
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition
Let κ be a cardinal. We say that a CW complex X is locally less than κ if for all x
in X there is a subcomplex A of X with fewer than κ many cells such that x is in
the interior of A. We write locally finite for locally less than ℵ0, and locally
countable for locally less than ℵ1.
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Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ
if and only if every connected component of W has fewer than κ many cells.

Proof sketch.

⇐ is trivial. For ⇒, given any point w , recursively fill out to get an open (hence
clopen) subcomplex containing w with fewer than κ many cells, using the fact
that the cells are compact to control the number of cells along the way.
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What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then X × Y is a CW complex.

Footnote: “I do not know if this restriction on L is necessary.”

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then X × Y is a CW complex.

Theorem (Y. Tanaka, 1982)

If neither X nor Y is locally countable, then X × Y is not a CW complex.
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What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming CH, X × Y is a CW complex if and only if one of them is locally finite,
or both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming b = ℵ1, X × Y is a CW complex if and only if one of them is locally
finite, or both are locally countable.
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Can we do better?

Question
Can we show, without assuming any extra set-theoretic axioms, that the product
X × Y of CW complexes X and Y is a CW complex if and only if either

one of them is locally finite, or

both are locally countable?

Answer (follows from Tanaka’s work)

No.
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Can we nevertheless do better?

Refined question

Can we characterise exactly when the product of two CW complexes is a CW
complex, without assuming any extra set-theoretic axioms?

Answer (A. B.-T.)

Yes!

Andrew Brooke-Taylor (Leeds) Products of CW complexes 12 / 23



Can we nevertheless do better?

Refined question

Can we characterise exactly when the product of two CW complexes is a CW
complex, without assuming any extra set-theoretic axioms?

Answer (A. B.-T.)

Yes!

Andrew Brooke-Taylor (Leeds) Products of CW complexes 12 / 23



Pushing Dowker’s example harder

In the argument for Dowker’s example, there was a lot of inefficiency — we can
do better, with the bigger star Y potentially having fewer edges.

For this we need to talk about the cardinal b.
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The cardinal b

For f , g ∈ NN, write f ≤∗ g if for all but finitely many n ∈ N, f (n) ≤ g(n).

The bounding number b is the least cardinality of a set of functions that is
unbounded with respect to ≤∗, i.e. such that no one g is ≥∗ them all, i.e.,

b = min{|F| : F ⊆ NN ∧ ∀g ∈ NN∃f ∈ F¬(f ≤∗ g)}.

ℵ1 ≤ b ≤ 2ℵ0 , and each of

ℵ1 = b < 2ℵ0 ,

ℵ1 < b = 2ℵ0 ,

ℵ1 < b < 2ℵ0 , and of course

ℵ1 = b = 2ℵ0 (CH)

is consistent with ZFC.
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b = min{|F| : F ⊆ NN ∧ ∀g ∈ NN∃f ∈ F¬(f ≤∗ g)}.

ℵ1 ≤ b ≤ 2ℵ0 , and each of

ℵ1 = b < 2ℵ0 ,

ℵ1 < b = 2ℵ0 ,

ℵ1 < b < 2ℵ0 , and of course

ℵ1 = b = 2ℵ0 (CH)

is consistent with ZFC.
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Example (Dowker, 1952)

Let X be the “star” with a central vertex x0 and countably many edges e1X ,n
(n ∈ N) emanating from it (and the countably many “other end” vertices of those
edges).
Let Y be the “star” with a central vertex y0 and continuum many edges e1Y ,f
(f ∈ NN) emanating from it (and the other ends).

Consider the subset of X × Y

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}
where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X × Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1/g(n)) ⊂ e1X ,n ∩ U for
every n ∈ N.

Consider the edge e1Y ,g of Y :

Let k ∈ N be such that 1
g(k)+1 ∈ e1Y ,g ∩ V .

Then
(

1
g(k)+1 ,

1
g(k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.
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Example (Folklore based on Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ F

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1/g(n)) ⊂ e1X ,n ∩ U for

every n ∈ N. Take f ∈ F such that f �∗ g .

Consider the edge e1Y ,f of Y :

Let k ∈ N be such that 1
f (k)+1 ∈ e1Y ,f ∩ V and f (k) > g(k).

Then
(

1
f (k)+1 ,

1
f (k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.

Andrew Brooke-Taylor (Leeds) Products of CW complexes 18 / 23



Is this harder-working Dowker example optimal?

Yes!

Andrew Brooke-Taylor (Leeds) Products of CW complexes 19 / 23



Is this harder-working Dowker example optimal?

Yes!

Andrew Brooke-Taylor (Leeds) Products of CW complexes 19 / 23



A complete characterisation

Theorem (A.B.-T.)

Let X and Y be CW complexes. Then X × Y is a CW complex if and only if one
of the following holds:

1 X or Y is locally finite.

2 One of X and Y is locally countable, and the other is locally less than b.
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Proof

The forward direction was actually done by Tanaka (1982).

So it remains to show that if X and Y are CW complexes such that X is locally
countable and Y is locally less than b, then X × Y is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and
Y has fewer than b many cells.

Andrew Brooke-Taylor (Leeds) Products of CW complexes 21 / 23



Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and
each closed cell ēnα is compact. So requiring X to have the weak topology is
equivalent to requiring that the topology be compactly generated: a set is closed
if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the
space {1/n : n ∈ N} ∪ {0} (equivalently, of the space ω + 1).

Definition
A topological space Z is sequential if for every subset C of Z , C is closed if and
only if C contains the limit of every convergent (countable) sequence from C .

Any sequential space is compactly generated. Since Dn is sequential for every n,
we have that CW complexes are sequential.
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Gist of the rest of the proof

Need to show: X × Y is sequential.

So we suppose H ⊂ X × Y is sequentially
closed and (x0, y0) ∈ X ×Y \H, and show we can construct open neighbourhoods
U of x0 in X and V of y0 in Y such that (U × V ) ∩ H = ∅.

Basic idea
The construction is essentially by simultaneous induction on cell number on the X
side (after enumerating the cells of X in a reasonable order) and dimension on the
Y side.

For each new cell eα that you consider on the Y side, you get a function
fα : N→ N defining an open set on the X side avoiding H. Since there are fewer
than b many α, they can be eventually dominated by a single function f , with
respect to which the eα part of the neighbourhood can be chosen.

Näıvely implemented, that doesn’t work (fα ≤∗ f isn’t enough), but with the right
bookkeeping it does.
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