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CW complexes

For algebraic topology, even spheres are hard.
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CW complexes

For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of
higher and higher dimension.

For n € N, let
@ D" denote the closed ball of radius 1 about the origin in R” (the n-disc),

e D" its interior (the open ball of radius 1 about the origin), and
e S"!its boundary (the n — 1-sphere).
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CW complexes

Definition
A Hausdorff space X is a CW complex if there exists a set of continuous functions

@l . D" — X (characteristic maps), for o in an arbitrary index set and n € N a
function of «, such that:

o
Q@ ¢ [ D" is a homeomorphism to its image, and X is the disjoint union as o

o
varies of these homeomorphic images ¢ [D"] (“cells").
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CW complexes

Definition
A Hausdorff space X is a CW complex if there exists a set of continuous functions
@l . D" — X (characteristic maps), for o in an arbitrary index set and n € N a

function of «, such that:
o
Q@ ¢ [ D" is a homeomorphism to its image, and X is the disjoint union as o
o
varies of these homeomorphic images ¢ [D"] (“cells").

@ Closure-finiteness: For each (", ©1[S"1] is contained in finitely many cells
all of dimension less than n.
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CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions

@l . D" — X (characteristic maps), for o in an arbitrary index set and n € N a
function of «, such that:

o
Q@ ¢ [ D" is a homeomorphism to its image, and X is the disjoint union as o
o
varies of these homeomorphic images ¢ [D"] (“cells").

@ Closure-finiteness: For each (", ©1[S"1] is contained in finitely many cells
all of dimension less than n.

© Weak topology: A set is closed if and only if its intersection with each closed
cell p[D"] is closed.
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CW complexes

Definition

A Hausdorff space X is a CW complex if there exists a set of continuous functions

@l . D" — X (characteristic maps), for o in an arbitrary index set and n € N a
function of «, such that:

o
Q@ ¢ [ D" is a homeomorphism to its image, and X is the disjoint union as o
o
varies of these homeomorphic images ¢ [D"] (“cells").

@ Closure-finiteness: For each (", ©1[S"1] is contained in finitely many cells
all of dimension less than n.

© Weak topology: A set is closed if and only if its intersection with each closed
cell p[D"] is closed.

We often denote ¢7[D"] by ell.
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Trouble in paradise
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Trouble in paradise

Flaw:

The Cartesian product of two CW complexes X and Y, with the product
topology, need not be a CW complex.
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Trouble in paradise

Flaw:

The Cartesian product of two CW complexes X and Y, with the product
topology, need not be a CW complex.

Since D™ x D" = D™t" there is a natural cell structure on X x Y, which

satisfies closure-finiteness, but the product topology is generally not as fine as the
weak topology.

Convention

In this talk, X x Y is always taken to have the product topology, so “X x Y is a
CW complex” means “the product topology on X X Y is the same as the weak
topology”.
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Example (Dowker, 1952)

Let X be the “star" with a central vertex xg and countably many edges e)1< N

(n € N) emanating from it (and the countably many “other end” vertices of those
edges).
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Example (Dowker, 1952)

Let X be the “star" with a central vertex xg and countably many edges e)1<,n

(n € N) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex yy and continuum many edges e%,f

(f € NY) emanating from it (and the other ends).
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-
Example (Dowker, 1952)

Let X be the “star" with a central vertex xg and countably many edges e)lcn

(n € N) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex yy and continuum many edges e%,vf

(f € NY) emanating from it (and the other ends).

Consider the subset of X x Y

1 1
H = 1 1 : N.f NN
{(f(")+l’f(n)+1>EeX,nxeY,f neN,f e

where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Products of CW complexes 5/23




-
Example (Dowker, 1952)

Let X be the “star" with a central vertex xg and countably many edges e)lcn

(n € N) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex yy and continuum many edges e%,vf

(f € NY) emanating from it (and the other ends).

Consider the subset of X x Y

1 1
H = 1 1 : N.f NN
{(f(”)+l’f(n)+1>EeX,nxeY,f neN,f e

where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X x Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

1 1
H= X veineN feNY
(o 7 ) € inemrent]

Let U x V be a member of the open neighbourhood base about (xg, y) in the

product topology on X X Y — so xg € U an open subset of X, and yp € V an
open subset of Y.
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Example (Dowker, 1952)

1 1
H= X veineN feNY
(o 7 ) € inemrent]

Let U x V be a member of the open neighbourhood base about (xg, y) in the
product topology on X X Y — so xg € U an open subset of X, and yp € V an

open subset of Y.

Consider the edges e , of X:

Let g: N — N7 be an increasing function such that [0,1/g(n)) C e , N U for
every n € N.
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Example (Dowker, 1952)

1 1 .
H{<f(n)+1’f(n)+1)€e><n><ew neN,feN }

Let U x V be a member of the open neighbourhood base about (xg, y) in the
product topology on X X Y — so xg € U an open subset of X, and yp € V an
open subset of Y.

Consider the edges e , of X:

Let g: N — N7 be an increasing function such that [0,1/g(n)) C e , N U for
every n € N.

Consider the edge ey , of Y:

Let k € N be such that

() eeygmv
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Example (Dowker, 1952)

1 1 .
H{<f(n)+l’f(n)+1>€exnxe\/f neN,feN }

Let U x V be a member of the open neighbourhood base about (xg, y) in the
product topology on X X Y — so xg € U an open subset of X, and yp € V an
open subset of Y.

Consider the edges e , of X:

Let g: N — N7 be an increasing function such that [0,1/g(n)) C e , N U for
every n € N.

Consider the edge ey , of Y:

Let kK € N be such that () EeygﬁV

Then (m, ﬁ) € U x VN H. Soin the product topology, (xo, o) € H.
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is what you would expect.
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X,
such that if €7 C A then its closure € = ¢"[D"] is contained in A.
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X,
such that if €7 C A then its closure € = ¢"[D"] is contained in A.

Eg.

For any CW complex X and n € N, the n-skeleton X" of X is the subcomplex of
X which is the union of all cells of X of dimension at most n.
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X,
such that if €7 C A then its closure € = ¢"[D"] is contained in A.

Eg.
For any CW complex X and n € N, the n-skeleton X" of X is the subcomplex of
X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is a subspace which is a union of cells of X,
such that if €7 C A then its closure € = ¢"[D"] is contained in A.

Eg.

For any CW complex X and n € N, the n-skeleton X" of X is the subcomplex of
X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition
Let k be a cardinal. We say that a CW complex X is locally less than k if for all x
in X there is a subcomplex A of X with fewer than x many cells such that x is in

the interior of A. We write locally finite for locally less than Xy, and locally
countable for locally less than ;.

Products of CW complexes 7/23



Proposition
If k is a regular uncountable cardinal, then a CW complex W is locally less than
if and only if every connected component of W has fewer than « many cells.

Proof sketch.

< is trivial. For =, given any point w, recursively fill out to get an open (hence
clopen) subcomplex containing w with fewer than x many cells, using the fact
that the cells are compact to control the number of cells along the way. O
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What was known

Suppose X and Y are CW complexes.
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If X or Y is locally finite, then X x Y is a CW complex.
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Footnote: “l do not know if this restriction on L is necessary.”
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What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or'Y is locally finite, then X x Y is a CW complex.
Footnote: “l do not know if this restriction on L is necessary.”

Theorem (J. Milnor, 1956)
If X and Y are both (locally) countable, then X x Y is a CW complex.
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N
What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or'Y is locally finite, then X x Y is a CW complex.
Footnote: “l do not know if this restriction on L is necessary.”

Theorem (J. Milnor, 1956)
If X and Y are both (locally) countable, then X x Y is a CW complex.

Theorem (Y. Tanaka, 1982)
If neither X nor Y is locally countable, then X x Y is not a CW complex.
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What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming CH, X x Y is a CW complex if and only if one of them is locally finite,
or both are locally countable.
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What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming CH, X x Y is a CW complex if and only if one of them is locally finite,
or both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming b = Ry, X x Y is a CW complex if and only if one of them is locally
finite, or both are locally countable.
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Can we do better?

Question
Can we show, without assuming any extra set-theoretic axioms, that the product
X x Y of CW complexes X and Y is a CW complex if and only if either

@ one of them is locally finite, or

@ both are locally countable?
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N
Can we do better?

Question

Can we show, without assuming any extra set-theoretic axioms, that the product
X x Y of CW complexes X and Y is a CW complex if and only if either

@ one of them is locally finite, or

@ both are locally countable?

Answer (follows from Tanaka's work)
No.
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Can we nevertheless do better?

Refined question

Can we characterise exactly when the product of two CW complexes is a CW
complex, without assuming any extra set-theoretic axioms?
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Can we nevertheless do better?

Refined question

Can we characterise exactly when the product of two CW complexes is a CW
complex, without assuming any extra set-theoretic axioms?

Answer (A. B.-T.)
Yes!
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|
Pushing Dowker's example harder

In the argument for Dowker's example, there was a lot of inefficiency — we can
do better, with the bigger star Y potentially having fewer edges.
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Pushing Dowker's example harder

In the argument for Dowker's example, there was a lot of inefficiency — we can
do better, with the bigger star Y potentially having fewer edges.

For this we need to talk about the cardinal b.
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The cardinal b

For f,g € NN, write f <* g if for all but finitely many n € N, f(n) < g(n).
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The cardinal b

For f,g € NN, write f <* g if for all but finitely many n € N, f(n) < g(n).

The bounding number b is the least cardinality of a set of functions that is
unbounded with respect to <*, i.e. such that no one g is >* them all, i.e.,

b = min{|F|: F C NV AVg € NYIf € F(f <* g)}.
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The cardinal b

For f,g € NN, write f <* g if for all but finitely many n € N, f(n) < g(n).

The bounding number b is the least cardinality of a set of functions that is
unbounded with respect to <*, i.e. such that no one g is >* them all, i.e.,

b =min{|F|: F C NYAVg € NYIf € F-(f <* g)}.
N; < b < 2% and each of
Ry =b < 2%,
N; < b =2%

R; < b < 2% and of course
Ny = b = 2% (CH)

is consistent with ZFC.
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Example (Dowker, 1952)

Let X be the “star" with a central vertex xg and countably many edges e)lcn

(n € N) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex yy and continuum many edges e%,vf

(f € NY) emanating from it (and the other ends).

Consider the subset of X x Y

1 1
H = 1 1 : N.f NN
{(f(”)+l’f(n)+1>EeX,nxeY,f neN,f ¢

where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X x Y contains at most one point of H, H is closed in the
weak topology.
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Example (Folklore based on Dowker, 1952)

Let X be the “star" with a central vertex xg and countably many edges e)lcn

(n € N) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex yp and b many edges e%,f (feF)
emanating from it where 7 C N is unbounded w.r.t. <* (and the other ends).

Consider the subset of X x Y

1 1
H= X veineNf
{(f(n)+1’f(n)+1>eeX’”XeY’f new EI}

where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X x Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

1 1 .
H{<f(n)+l’f(n)+1>€exnxe\/f neN,feN }

Let U x V be a member of the open neighbourhood base about (xg, y) in the
product topology on X X Y — so xg € U an open subset of X, and yp € V an
open subset of Y.

Consider the edges e , of X:

Let g: N — N be an increasing function such that [0,1/g(n)) C e , N U for
every n € N.

Consider the edge ey , of Y:

Let kK € N be such that () EeygﬁV

Then (m, ﬁ) € U x VN H. Soin the product topology, (xo, o) € H.
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-
Example (Folklore based on Dowker, 1952)

1 1
H{<f(n)+1’f(n)+1> €exnXeyrineN, fe}‘}

Let U x V be a member of the open neighbourhood base about (xg, y) in the
product topology on X X Y — so xg € U an open subset of X, and yp € V an
open subset of Y.

Consider the edges e , of X:

Let g: N — N be an increasing function such that [0,1/g(n)) C e , N U for
every n € N. Take f € F such that f £* g.

Consider the edge ey ; of Y:

Let k € N be such that € e%/)f NV and f(k) > g(k).

(k)+1

Then : (k)+1’ f(k)+1 : € U x VN H. So in the product topology, (xo, o) € H.
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Is this harder-working Dowker example optimal?
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Is this harder-working Dowker example optimal?

Yes!
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A complete characterisation

Theorem (A.B.-T.)

Let X and Y be CW complexes. Then X x Y is a CW complex if and only if one
of the following holds:

@ X or Y is locally finite.
@© One of X and Y is locally countable, and the other is locally less than b.
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Proof
The forward direction was actually done by Tanaka (1982).

So it remains to show that if X and Y are CW complexes such that X is locally
countable and Y is locally less than b, then X x Y is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and
Y has fewer than b many cells.
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Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and
each closed cell &7 is compact. So requiring X to have the weak topology is
equivalent to requiring that the topology be compactly generated: a set is closed
if and only if its intersection with every compact set is closed.
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|
Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and
each closed cell &7 is compact. So requiring X to have the weak topology is
equivalent to requiring that the topology be compactly generated: a set is closed
if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the
space {1/n: n € N} U {0} (equivalently, of the space w + 1).

Definition

A topological space Z is sequential if for every subset C of Z, C is closed if and
only if C contains the limit of every convergent (countable) sequence from C.
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|
Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and
each closed cell &7 is compact. So requiring X to have the weak topology is
equivalent to requiring that the topology be compactly generated: a set is closed
if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the
space {1/n: n € N} U {0} (equivalently, of the space w + 1).

Definition
A topological space Z is sequential if for every subset C of Z, C is closed if and
only if C contains the limit of every convergent (countable) sequence from C.

Any sequential space is compactly generated. Since D" is sequential for every n,
we have that CW complexes are sequential.
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Gist of the rest of the proof

Need to show: X x Y is sequential.

Products of CW complexes 23 /23



Gist of the rest of the proof

Need to show: X x Y is sequential. So we suppose H C X x Y is sequentially

closed and (xp, ¥0) € X x Y \ H, and show we can construct open neighbourhoods
U of xp in X and V of yp in Y such that (U x V)N H =0.
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|
Gist of the rest of the proof

Need to show: X x Y is sequential. So we suppose H C X x Y is sequentially
closed and (xp, ¥0) € X x Y \ H, and show we can construct open neighbourhoods
U of xp in X and V of yp in Y such that (U x V)N H =0.

Basic idea

The construction is essentially by simultaneous induction on cell number on the X
side (after enumerating the cells of X in a reasonable order) and dimension on the
Y side.

For each new cell e, that you consider on the Y side, you get a function

f, : N — N defining an open set on the X side avoiding H. Since there are fewer
than b many «, they can be eventually dominated by a single function f, with
respect to which the e, part of the neighbourhood can be chosen.
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Gist of the rest of the proof

Need to show: X x Y is sequential. So we suppose H C X x Y is sequentially
closed and (xp, ¥0) € X x Y \ H, and show we can construct open neighbourhoods
U of xp in X and V of yp in Y such that (U x V)N H =0.

Basic idea

The construction is essentially by simultaneous induction on cell number on the X
side (after enumerating the cells of X in a reasonable order) and dimension on the
Y side.

For each new cell e, that you consider on the Y side, you get a function

f, : N — N defining an open set on the X side avoiding H. Since there are fewer
than b many «, they can be eventually dominated by a single function f, with
respect to which the e, part of the neighbourhood can be chosen.

Naively implemented, that doesn't work (f,, <* f isn't enough), but with the right
bookkeeping it does.
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