## Astronomical software

Jon Loveday
Astronomy Centre
University of Sussex

### Common tasks

- Image detection and measurement
- Catalogue matching
- Coordinate conversion (equatorial ↔ Galactic)
- Photometric redshifts
- Spectroscopic redshifts
- K-corrections

## Image detection and measurement

- IRAF Image Reduction and Analysis Facility (<a href="http://iraf.noao.edu/">http://iraf.noao.edu/</a>)
  - easiest for data from NOAO telescopes
- MIDAS (<a href="http://www.eso.org/sci/software/esomidas/">http://www.eso.org/sci/software/esomidas/</a>) is ESO equivalent
- SExtractor (http://www.astromatic.net/software/sextractor)
  - very widely used by many projects

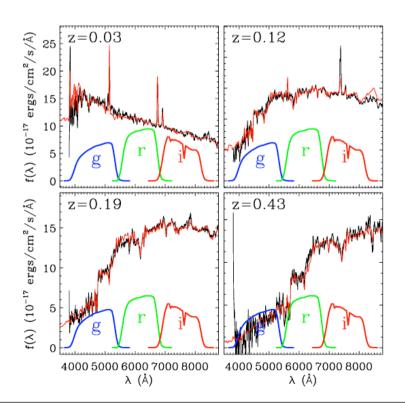
# Catalogue matching

- TOPCAT (<a href="http://www.star.bris.ac.uk/~mbt/topcat/">http://www.star.bris.ac.uk/~mbt/topcat/</a>)
- Also great for making scatterplots, histograms, 3d plots ...
- Command line interface STILTS

#### Coordinate conversion

- Starlink COCO (download from <a href="http://www.starlink.rl.ac.uk/docs/sun56.htm/">http://www.starlink.rl.ac.uk/docs/sun56.htm/</a>
- Web services, e.g. <a href="http://nedwww.ipac.caltech.edu/forms/calculator.html">http://nedwww.ipac.caltech.edu/forms/calculator.html</a>
- IDL Astronomy Users Library (<a href="http://idlastro.gsfc.nasa.gov">http://idlastro.gsfc.nasa.gov</a>)
- astLib Python astronomy modules (<a href="http://astlib.sourceforge.net/">http://astlib.sourceforge.net/</a>)

#### Photometric redshifts


- Approximate redshifts from multi-band photometry
- Two approaches: template fitting and empirical
- Template fitting: Hyperz (<a href="http://webast.ast.obs-mip.fr/hyperz/">http://webast.ast.obs-mip.fr/hyperz/</a>)
- Empirical: ANNz (<a href="http://www.homepages.ucl.ac.uk/~ucapola/annz.html">http://www.homepages.ucl.ac.uk/~ucapola/annz.html</a>)
  - can be used for any neural network application (e.g. morphological classification)

# Spectroscopic redshifts

- IRAF Image Reduction and Analysis Facility (<a href="http://iraf.noao.edu/">http://iraf.noao.edu/</a>)
  - easiest for data from NOAO telescopes
- ESO MIDAS
- Starlink Figaro (<a href="http://www.starlink.rl.ac.uk/docs/sun86.htx/sun86.html">http://www.starlink.rl.ac.uk/docs/sun86.html</a>)
- Most big projects use their own code (e.g. 2dfdr and runz for 2dfGRS and GAMA; SDSS spectro pipeline)

### K-corrections

- Correct for fact that fixed observed-frame bandpass samples different parts of a galaxy's restframe SED depending on its redshift
- Depends on SED, redshift and passband
- kcorrect (<a href="http://howdy.physics.nyu.edu/index.php/Kcorrect">http://howdy.physics.nyu.edu/index.php/Kcorrect</a>) is widely used
  - C libraries and IDL interface



# Summary

- (Free) software exists for many common astronomy applications
- See what's already available before re-inventing the wheel