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Motivation
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Lessons from the Solar System

The Solar System is coplanar
Most of the mass is in the Sun

Most of the angular momentum
IS In the planets and debris

Radionuclide dating constrains
ages and formation eras
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Lessons from Star Formation

Excess angular momentum
produces discs around
young stars

These discs are ~99% gas,
~1% dust

They are the feedstock for
planet formation

Figure from Armitage (2010)
Astrophysics of Planet Formation
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Lessons from Star Formation

Protoplanetary Disks HST - WFPC2
Orion Nebula

PRC95-45b - ST Scl OPO - November 20, 1995
M. J. McCaughrean (MPIA), C. R. O’Dell (Rice University), NASA

“Proplyds” imaged with
HST (optical)
McCaughrean et al (1995)
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HL Tau at 1.3cm using VLA, with
a protoplanetary candidate (“b”)
(Greaves et al 2008)

Fomalhaut imaged by Herschel
at 70 microns (Acke et al 2012)
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The Initial Conditions

An educated guess: Solar System ingredients distributed in a disc
We infer a Minimum Mass Solar Nebula by:

1. Smearing out the planets according to their spacing
2. Topping this mass up with H and He

3. Converting this smeared mass into a surface density
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The Initial Conditions
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Disc Evolution

Vertical hydrostatic equiliorium gives discs a flared structure
Stellar irradiation of the upper disc strongly affects the chemistry
Evolution - angular momentum transport and evaporation

photoevaporative wind
magnetosphere
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Disc Evolution

Vertical hydrostatic equiliorium gives discs a flared structure
Stellar irradiation of the upper disc strongly affects the chemistry
Evolution - angular momentum transport and evaporation
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A Hard Time Limit
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The Core Accretion Model

In short;:

1. The dust in the disc (1% of the total mass) collides and grows to
form planetesimals

2. These planetesimals collide to form protoplanetary cores

3. If these cores are massive enough, then they can accrete large
amounts of gas and become giant planets

4., If not, they become terrestrial planets
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Planetesimal Formation

e This is probably the hardest step in the core accretion process
e (Grains begin at sub-micron sizes, and must grow to a few km

Ceres (HST)
(500 mi)

* |nitially, growth Is easy, and assisted by electrostatic forces
* As the grains grow, they feel aesrodynamic drag from the gas

STFC Summer School, Sussex 2012




The Metre Barrier to Grain Growth

Aerodynamic drag pulls dust towards pressure maxima
—3» Settling to the disc midplane (good) and radial drift inward (bad)
Higher relative velocities, highly porous grains == fragmentation

Rice et al (2004) Stewart and Leinhardt (2009)
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Solutions to the Metre Barrier

Trap dust at the edges of disc “dead zones”
Use disc turbulence to scoop up grains
Vortices could also trap grains

The streaming instability can reduce drift

Credit: Wladimir Lyra Johansen et al (2007)
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Solutions to the Metre Barrier

Trap dust at the edges of disc “dead zones”
Use disc turbulence to scoop up grains
Vortices could also trap grains

The streaming instability can reduce drift

Johansen et al (2007)
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Core Growth: The Runaway Phase

e Once the planetesimals have formed, they grow by mutual collision
e Gravitational focusing soon becomes important

Ruv?

M = 7TR2pv (1 |

QGM)

M 13
Mp)_1/3 M x M

.. Rpg=a (

fractional growth rate
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Core Growth: The Runaway Phase

e Once the planetesimals have formed, they grow by mutual collision
e Gravitational focusing soon becomes important

M = 7TR2pv (1 | QGM)

Ruv?

M 3
Mp)_1/3 M x M

.. Rpg=a (

fractional growth rate

* \When the body’s escape velocity is large, runaway growth begins
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Rise of the Oligarchs

* Runaway growth of cores “stirs” the
planetesimals

* This increases the velocity dispersion,
limiting further growth

* Planetesimals which grow to the mass of
~ Vesta (10 Me) become “Oligarchs”

eccentricity

e Adjacent oligarchs regulate each other’s
growth
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The Terrestrial Planets

* Protoplanets can only accrete material
that enters their “feeding zone”

* The feeding zone is a few Hill Radii in

RH:a(

size:

Mp —1/3
i

e Eventually, the protoplanet will reach
an isolation mass

e At 1 AU, this is of order 0.1 Me,
further out it can be large as 9 Me

* The final assembly involves
protoplanetary collisions Canup (2003)
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The Giant Planets

* \While the core is growing, it
accretes gas hydrostatically from
the disc

e |f the core mass exceeds 10 Me,

then runaway gas accretion
begins
* The core then gobbles up gas
until:
1. There is no gas left
2. Tidal forces prevent
further gas from
becoming bound
e The formation timescale (start to
finish) is close to the disc lifetime
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Planet Migration

ne protoplanetary disc is not a stage: it is an actor
ne protoplanet excites density perturbations which create torques
nese torques are generated at resonances between the planet and disc

* Type | migration occurs when interior
and exterior torques are out of balance

e Type Il migration occurs when the
planet carves a gap in the disc

e Both are inward for laminar discs

* Planetesimal scattering can create

outward migration
Credit: Phil Armitage
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Dynamical Evolution li:
Resonant Capture

® Planets are resonant if they share a commensurate characteristic frequency

10

® c.g. the Mean Motion Resonance
(MMR, below)
S * & Migration can result in capture into a
— “yet¥e. | resonance
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Dynamical Evolution lli:
Planet-Planet Scattering

Raymond et al (2012)
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Dynamical Evolution lli:
Planet-Planet Scattering
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An Alternative Model:
Formation by Gravitational Instability

e Early on, protostellar discs
can be gravitationally
unstable

* This produces non-
axisymmetric perturbations:
spiral waves

e |f the density perturbations
are strong enough:
fragmentation
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Conditions for Disc Fragmentation

e Typically, self-gravitating discs
maintain a quasi-steady state

e The heating produced by the =
instabllity is balanced by cooling

e [0 make a disc fragment, this
thermostat must be broken
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Typical Fragment Masses

® [hese criteria were built for isolated discs

e They don’t take into account envelope accretion and other phenomena

¢ | rewrote the criteria in terms of the Jeans mass inside the spiral arm

e This also allows us to calculate fragment masses (Forgan and Rice 2011)
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Typical Fragment Masses

® [hese criteria were built for isolated discs
e They don’t take into account envelope accretion and other phenomena

¢ | rewrote the criteria in terms of the Jeans mass inside the spiral arm
e This also allows us to calculate fragment masses (Forgan and Rice 2011)
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The Tidal Downsizing Hypothesis

e Gravitational Instability only produces massive objects - or does it”
¢ Dust sediments to the centre, forming a solid core

e Embryo migrates inward, fills its Roche lolbe and is tidally stripped
e Presto! Lower mass planets (possibly terrestrial planets)
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Two Modes of Planet Formation

Start
MMSN Gas Disk

e Chances are both work
together in at least one system
(Boley 2009)

e Gravitational Instability forms
massive planets quickly at large
radii
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e Core accretion forms low
mass planets slowly at low radi
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Conclusions

® [he processes of planet formation and star formation are intimately
connected (via the protostellar disc)

e Physics: gravity, magnetohydrodynamics, radiation + Chemistry
e Core Accretion forms planets < a few Myyp slowly, at low radii
e Gravitational Instability forms objects > a few Myuyp quickly at large radi

e Both could work together
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