

The Transient Universe – current and future surveys S.J. Smartt Queen's University Belfast

Tycho Brahe 1546-1601

3

"Stella nova" of

Historical Supernovae

Supernova Remnant	Year	Peak Visual mag
Kepler	1604	-3
Tycho	1572	-4
3C58	1181	-1
Crab	1054	-4
SN1006	1006	-9

Crescent Moon = -9

"Nova" in the Andromeda galaxy

1885: Isaac Ward, Belfast (19thAug)

Ernst Hartwig, Tartu (20th Aug) Next one fom Ireland ? Dave Rahenny, Dublin 2010

"Super"-nova

Fritz Zwicky 1898-1974 Swiss/Bulgarian

"Nova" in Andromeda = 2x10⁹ times solar luminosity = 10⁴ times most luminous stars and galactic novae

Baade & Zwicky (1934) : core-collapse in massive star, gravitational energy release, neutron star formed, source of high energy cosmic rays

Surveying the Universe

Volume surveyed $\approx Ad \approx (d)(d^2tan^2(\theta/2)) \approx d^3$

How to increase *Volume* by a factor 10 ? increase d by ~ 2 inverse square law, objects 4 times fainter increase aperture size by ~16

Equivalent Volumes – depth or area ? Ζ 10

Palomar Transient Factory

- I.2m Palomar Schmidt : 7 square degree camera
- Large pixels I arcsec pixels, 2 arcsec image quality
- Shallow, wide and fast dedicated follow-up

GigaPixel Camera I

Optical design

3pi sky coverage to Jan 1, 2012

Image Subtraction

Supernova type Jc, z=0.116 Target Reference Difference Image: Image:

Moving objects

~3x10³ transients, ~300 spectroscopically Confirmed SNe

Photpipe team :Huber, Rest, Narayan, Stubbs, Wood-Vasey, Chornock, Foley, Berger, Rodney ++ QUB Team :Smartt,Smith, Kotak, McCrum, Fraser , Magil, Valenti, Botticella, Pastorello, Young

Theory HRD - STARS code

Supernova types

Supernovae are classified by their optical spectra

SN2008bk : red supergiant disappears

Mattila, Maund, Smartt et al in prep. Maund & Smartt 2009, Science Smartt 2009, Annual Rev. Astron & Astrophys.

Transients : parameter space

Image credit : Shri Kulkarni, CalTech

Superluminous stellar explosions

Palomar Transient Factory

RM Quimby et al. Nature 2011

Pan-STARRs I probing redshift ranges 0.1 – 1.5

- Z = 0.1 0.3 in the 3Pi survey
- SN2010gx, PS1-11xk, PS1-12fo, + two other candidates

• Z= 0.5 – 1.5 in the MD fields

Pastorello et al. 2010, Chomiuk et al. 2011, Beger et al. 2012

⁵⁶Ni powered luminoisty is unphysical

Figure 1: The bolometric light curve of model CO138 ($M_{\rm CO} = 13.8M_{\odot}$, $E_{\rm exp} = 3 \times 10^{52}$ ergs, $M_{56} = 0.7M_{\odot}$) compared with the observations of SN1998bw. The time of the core collapse is set at the detection of the

Iwamoto et al. (1998)

Scaling relations ("Arnett's law") means $M_{Ni} > M_{ej}$ Pastorello et al. 2010, Chomiuk et al. 2011

Search for Orphans

- PS1-11zd
- Type Ia, z=0.1 ; same as "host"
- Offset by ~25kpc

- PS1-10awh
- Type I SN at z=0.9
- No obvious host even in deep stacks

>3.5" from any catalogued star or galaxy, to $r \approx 23.5$ 254 orphans from 1.25yr

Two "ultra-luminous" SNe at $z \approx 0.9$

Chomiuk et al. 2011, ApJ

Magnetar Powered lightcurve?

- If NS formed spinning at P = 2-20 ms ; with B ~ 10¹⁴ G
- Rapid spin down powers extra energy in expanding SN
- If diffusion time is similar to spin down time :

Kasen & Bildsten 2010 Chomiuk et al. 2011

$$L_{peak} \sim \frac{E_p t_p}{t_d^2}$$

Pair Instability Supernovae

- "Pair instability SN" in which core is destroyed in CO thermonuclear runaway
- T ~ 10⁹ : e⁻ e⁺ production and thermal pressure decrease
- Thermonuclear runaway in $\sim 60 M_{\odot}$ CO core
- Was this the mechanism ?

Pair-Instability SN at z=0.5?

- PS1-11ap (MD05): *z* = 0.524
- Discovered on first image of MD05 observing season in Jan 2011 ; -50 days before peak.
- Unresolved host :
 - r = 23.6 ±0.16 observed
 - $z = 23.7 \pm 0.0.3$ observed ; $M_r(rest) = -18.7$
- Kotak et al. 2011, in prep.

Pair-instability SN ?

Kotak et al. 2011, in prep.

Young et al. 2010, Gal-Yam 2009

- Rise time : 1^m in 40 days (rest frame)
- Decay : ~1 mag per 100 day approximately fits i, z, y
- Rest frame $r \approx$ observed z_{P1}
- *M_r* ≈ -21.4

Transients : the future

the unknown

What are the limits of physical explosions and transients ?

Image credit : Shri Kulkarni, CalTech

Current

10 square degree cameras + 1-2m telescopes

PS1 – high-z SNe (dedicated 4-8m follow-up)

PTF – low-z SNe ("factory" follow-up built in)

Catalina Sky Survey – 0.5 – 1m telescopes (~7 sq degree FOV), specialises in solar system but also stationary transients

NG Transient Surveys

La Silla QUEST + SkyMapper (~10 sq deg. Cameras) + PESSTO (90N per year on ESO NTT)

 $PS1 \times 2 = PS1 (2014)$

NG-PTF (2015) : 30 sq degree

LSST

- Large Synoptic Survey Telescope construction due to start 2013/14
- Start Survey ~2020
- 6m telescope + 10 square degree field
- Surveys down to ~24.5^m; 15000 dq degree every 3N

