iQsim 2013

Weak Dipolar interactions in trapped-ion crystals

Roee Ozeri Nitzan Akerman Shlomi Kotler Yinnon Glickman Yehonatan Dallal Tomas Sikorsky Boaz Nissan-Cohen Nir Navon Ravid Shaniv Osip Schwarz Ziv Meir Anna Keselman Roy Patael Collaboration with Dan Oron

Quantum magnetism

- Localized qubits ("spins")
- Realization of correlated spin models requires spin-spin interactions
- Didi says: "natural" spin-spin interactions are very weak

Trapped-ions

Phonon-mediated (synthetic) spin-spin interactions

• Spin dependent forces

$$x_0 = \sqrt{\frac{\hbar}{2m\omega}}$$

- Dipole moment \approx 200 ea_0
- Dipole-dipole interaction: $\hbar\omega_{int} = rac{e^2}{2\pi\epsilon_0 d^3} x_0^2$

Photon-mediated (Natural) dipole-dipole interactions

Magnetic spin-spin interactions:

• Magnetic dipole: spin. equivalent ~ $ea_0/137$ $ea_0 = \frac{\mu_B}{\alpha c}$

• Dipole-dipole interaction: $\xi = \mu_0 (g\mu_B/2)^2/4\pi\hbar d^3$

$$\xi/2\pi = \frac{13}{(r/1\mu m)^3} \quad mHz$$

$$d = 5 \mu m$$

$$\xi/2\pi = 0.1 \ mHz$$

Photon-mediated (Natural) dipole-dipole interactions

Electric dipole-dipole interactions:

- Eigenstates a symmetric under parity: no permanent dipole moment
- A field induces a dipole moment:

$$\vec{d} = \alpha \vec{E}$$

Typically with $E \approx 10^6$ V/m \longrightarrow $d \approx 10^{-3} ea_0$

Possible Enhancements:

Rydberg states

• Oscillating fields: resonance enhancement; far field 1/d

Magnetic dipole-dipole interactions

Which ions?

hydrogen	Single electron in valence shell													helium				
1																		
1.0070																		
lithium	beryllium												boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be	Be											В	С	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	14	phosphorus 15	16	chiorine 17	argon 18
Na	Ma												AL	Si	D	S	CL	٨r
INA	INIG												AI	31	Г	3	G	AI
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 dermanium	30.974 arsenic	32.065 selenium	35.453 bromine	39,948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium	strontium 38		yttrium 39	zirconium 40	1005ium	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ad	Cd	In	Sn	Sb	Te	Ĩ	Xe
85.468	87.62		88,906	Ginna	92,906	95.94	1981	101.07	102.91	106.42	107.87	112.41	114.82	118 71	121.76	127.60	126.90	131.29
caesium	barium	NORMANNAS.	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
trancium	radium		lawrencium	ruthertordium	dubnium	seaborgium	Donrium	hassium	meitnerium	ununnilium	unununium	ununbium		ununquadium				
87	88	89-102	103	104	105	106	107	108	1 109	1 110		112		114				
87	88 Do	89-102	103	104 Df	105	106 Sca	107 Dh		109 N/14	110				114				
⁸⁷ Fr	Ra	89-102 * *	¹⁰³	Rf	105 Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

10.1					1000
*	an	tha	nid	0 0	Orio
	Lan	una	mu	6 3	CIIC

**Actinide series

rias	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
105	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
es	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

⁸⁸Sr⁺ electronic spin

- No nuclear spin S = 1/2
- Magnetic dipole moment: $\mu_e = -g\mu_B \frac{S}{\hbar}$
- Bound electron $g: 10^{-4}$ correction vs. free electron (Breit 1928)

Turn on small B field 2.8 MHz/G

Hamiltonian

Electronic Spins

$$H = \frac{\hbar\omega_A}{2}(\sigma_{z,1} + \sigma_{z,2}) + 2\hbar\xi\sigma_{z,1}\sigma_{z,2} - \hbar\xi(\sigma_{x,1}\sigma_{x,2} + \sigma_{y,1}\sigma_{y,2})$$

$$\hbar \xi = \frac{1}{2}k\lambda_c^2$$
 $\lambda_c = \frac{h}{m_e c} \equiv 2.4 \times 10^{-12} \ m$ $\xi/2\pi = \frac{13}{(r/1\mu m)^3} \ mHz$

- Was never directly measured: dominated by exchange interaction
- If measured with high precision: search for anomalous spin forces

Eigenstates

• $(\sigma_{x,1}\sigma_{x,2} + \sigma_{y,1}\sigma_{y,2})$ Remove the degeneracy between $|\Psi_{\pm}\rangle$

 $\left|\downarrow\downarrow\right\rangle$

Decoherence-Free subspaces

All the states in the sub-space, spanned by the two states,

$$\begin{split} |\Psi+\rangle &= (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2} \quad \text{(triplet; m=o)} \\ |\Psi-\rangle &= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)/\sqrt{2} \quad \text{(singlet)} \end{split}$$

- Subspace invariant under spin-spin coupling
- Remain coherent under collective magnetic field noise.

Haffner *et. al.* Appl. Phys. B, **81**, 151 (2005) Langer *et. al.* Phys. Rev. Lett., **95**, 060502 (2005)

Rotation in DFS

• $\Delta E = 4\xi = 3.8 \text{ mHz} \approx 200 \times 10^{-15} \text{ }^{\circ}\text{K} \approx 20 \times 10^{-18} \text{ eV}$

• B-field spins apply on each other nGauss; 10⁶ < than noise

- Magnetic field gradient removed degeneracy between $|{\uparrow}{\uparrow}\rangle$ and $|{\downarrow}{\downarrow}\rangle$
- Detunes spin-spin coupling from resonance
- After careful nulling: $3 \times 10^{-7} \text{T/m}$

$$\Delta \omega_A = (2\pi) 20 \text{ mHz}$$

- Still overwhelms spin-spin
- Solution: Spin-Echo pulse-train

(2Hz rep. rate)

|↓↑)

Difficulties: long experiments

Detection fidelity

 $\left|\uparrow\uparrow\right\rangle$ (red) $\left|\downarrow\downarrow\right\rangle$ (blue)

Dephasing

Echo coherence in DFS

Coherence time = 44 Sec

(Consistent with detection error)

Magnetic Spin-Spin interactions

Spontaneously entangled spins

Magnetic Spin-Spin interactions

Distance dependence

Magnetic Spin-Spin interactions

Spontaneously entangled spins

Electric dipole-dipole interactions

Resonance field excitation

- Excite a dipole moment with a laser field, on resonance with an electric dipole transition
- Atomic polarizability resonantly enhanced
- Spontaneous photon scattering
- Far field regime $d \gg \lambda$ non-trivial distance dependence $\neq \frac{1}{d^3}$
- Weak excitation intensity $I < I_{sat}$ to avoid multiple photon scattering (dipole linear in field)

lons as coherent field emitters

Two-ion far field interference

Electric dipole-dipole interaction

lons as coherent field emitters

Three-ion far field interference

Quantum coupled antennas

• Retardation: phase of emitted filed oscillates with a λ period.

Electric dipole-dipole interaction

Resonant dipole-dipole interactions

Spectroscopy

Electric dipole-dipole interaction

Spectral resolution

- The transition/laser drifts.
- Interlacing distance points (30 sec per point)
- Few days integration

- 93300 measurements
- n = 1325 photons on average/meas.
- Gaussian width $0.4963(12) \mathrm{MHz}$
- Photon shot-noise $\frac{\Gamma}{2\sqrt{n}} = 0.469 \text{MHz}$
- Frequency shift $f_0 = 50.6 \pm 1.6$

Two ions

- Light blue theory (no fit parameters)
- Small effect : 10⁻³ (60KHz)
- Acc. : 10⁻⁴ (<3KHz)
- Int. time : 8.6 hrs/point,
 Almost a week for entire
 data set
- Control via polarization

Multiple-ions theory

$$|\psi\rangle = \frac{1}{\sqrt{M}} \sum_{i} |g_1 \dots e_i \dots g_N\rangle$$
$$\delta_M = \frac{1}{M} \sum_{m \neq n} \delta(r_m - r_n)$$

- Coherent sum of al pair-wise shifts
- Narrowing of resonances
- Not equidistant Beating

r (µm)

Multiple ions experiment

- 3 ions: single distance
- Blue lines: theory with no fit parameters
- Grey lines: equidistant-chain theory

r (µm)

Synthesized dipole-dipole interactions

Optical-qubit Entanglement gate

Laser-driven entanglement: Sørensem-Mølmer gate

Synthetic dipole-dipole interaction

Mølmer-Sørensen coupling

Synthetic dipole-dipole interactions

Union Jack

- Weak interactions at the μ m separation

Magnetic ~ mHz; Electric~ 10⁻³ of transition strength

- Many future prospects

Magnetic coupling of excited states – coupled current loops Electric Quadrupolar coupling between ions Electric dipolar coupling in the quantum regime (multi-photon) Etc.

- Possible error source in large ion arrays
 - Quantum computing
 - Frequency metrology

Weizmann Institute Trapped-ion group

Open Postdoc and PhD positions at the Weizmann

Nitzan Akerman Yinnon Glickman Shlomi Kotler Yehonatan Dallal Anna Keselman **Ziv Meir Elad Kronstein** Nir Navon **Boaz Nissan-Cohen Osip Schwartz** Tomas Sikorsky **Roy Patael** Roee Ozeri

ISRAEL SCIENCE FOUNDATION

European Research Council