Microfabricated Ion Traps for Quantum Simulations

Bjoern Lekitsch IQT Group, University of Sussex

- Simple Fabrication Process
- Extremely High Breakdown Voltage
- 2D Lattice Ion Trap
- Site to Site Shuttling

Simple Fabrication Process

Extremely High Breakdown Voltage

Two-Dimensional Ion Trap Array 2D Lattice Ion Trap

- Hexagon lattice with 6 nearest neighbours
- 270.5µm separation
- Scalable concept

- 156µm ion-electrode distance
- 60µm undercut

Two-Dimensional Ion Trap Array 2D Lattice Ion Trap

University of Sussex Ion Quantum Technology Group R. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M.Kraft and W. K. Hensinger, arXiv:1302.3781 [quant-ph]

2D Lattice Ion Trap

University of Sussex Ion Quantum Technology Group R. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M.Kraft and W. K. Hensinger, arXiv:1302.3781 [quant-ph]

Two-Dimensional Ion Trap ArraySite to Site Shuttling

University of Sussex Ion Quantum Technology Group R. Sterling, H. Rattanasonti, S. Weidt, K. Lake, P. Srinivasan, S. C. Webster, M.Kraft and W. K. Hensinger, arXiv:1302.3781 [quant-ph]

- Polygon Size and Separation
- Optimum Geometry ¹⁷¹Yb⁺ lons
- Fabrication Mask for Optimal Trap Design

Polygon Size and Separation

Lattice site radius and separation optimized highest interaction in square (squares), hexagonal (circles) and centre rectangular (diamonds) unit cell lattices and ¹⁷¹Yb⁺ ions.

University of Sussex Ion Quantum Technology Group J. D. Siverns, S. Weidt, K. Lake, B. Lekitsch, M. D. Hughes and W. K. Hensinger, New J. Phys. 14, 085009 (2012)

Optimum Geometry ¹⁷¹Yb⁺ lons

- 30μm ion height
- 3x3 square unit cell ion trap array
- 14μm polygon radius
- 52µm separation

J. D. Siverns, S. Weidt, K. Lake, B. Lekitsch, M. D. Hughes and W. K. Hensinger, New J. Phys. 14, 085009 (2012)

Fabrication Mask for Optimal Trap Design

- Multilayer Design with Buried Wires
- Isolated DC and RF Electrodes
- Ring Trap
- Y-Junction with Centre Segmented Electrodes
- Voltage Control System

Multilayer Design with Buried Wires

University of Sussex

Ion Quantum Technology Group

Isolated DC and RF Electrodes

Buried wires and vertical interconnect access (VIA) structures

More advanced trap designs with isolated electrodes

Ring Trap

- Homogenous ion-ion spacing
- 1690µm radius
- 245µm ion-electrode distance
- Periodic Boundary Conditions
- Variety of experiments possible including Homogenous Kibble-Zurek-mechanism, Hawking radiation, space time crystals, superposition of quantum phase

University of Sussex Ion Quantum Technology Group

M. D. Hughes, J. Maclean, C. Mellor and W. K. Hensinger

Advanced Microfabricated Ion Traps Ring Trap

High Energy Ion Source Surface Cleaning Noble and reactive gases 5kV maximum acceleration

Ring Trap

Simulated trap parameters:

- V_{RF} = 190 V
- Ω/2π = 13.6 MHz
- Trap depth = 0.1 eV
- $\omega_{r/z}/2\pi = 720 \text{ kHz}$
- $\omega_c / 2\pi = 210 \text{ kHz}$

University of Sussex Ion Quantum Technology Group

M. D. Hughes, J. Maclean, C. Mellor and W. K. Hensinger

Advanced Microfabricated Ion Traps Y-Junction with Centre Segmented Electrodes

University of Sussex Ion Quantum Technology Group

M. D. Hughes, J. Maclean, C. Mellor and W. K. Hensinger

Advanced Microfabricated Ion Traps Voltage Control System

- 16 bit accuracy and 16MSPS update rate
- 90 channels
- Adjustable voltage range of ±100V and ±10V
- Low noise components and PCB design
- Digital, active and passive filters

Test Signal with 8MSPS update rate Pink: Output from DAC Green: Signal after active filter

University of Sussex Ion Quantum Technology Group

B. Lekitsch, G. S. Giri and W. K. Hensinger

- Novel Fabrication Process
- Current-Carrying Wire Structures
- Thermal Transport System
- Advanced Trap Designs
- Microfabrication Results

Novel Fabrication Process

Gold

Silicon Nitride

Aluminium

Titanium

Current-Carrying Wire Structures

- 30µm thick and 40-1000µm wide
- Embedded in diamond substrate
- Gradients ~150 T/m for 12.5A
 at 60 μm ion height
- Traps with gradients along
 x and z direction are in production
- 5W of power dissipation

Advanced Trap Designs

Trap	lon height (um)	Current – carrying wires	Special Features
Linear trap	60	yes	
	120	yes	Loading slot
	165	-	Detection slot
	250	_	Large number of control electrodes
X-junction	100	yes	
	200	-	Loading slot
Ring trap	35	yes	
	100	yes	
3 x 3 array	30	-	
	50	-	
	100	-	

University of Sussex Ion Quantum Technology Group

B. Lekitsch, M. D. Hughes and W. K. Hensinger

Linear trap design with current-carrying wires

Microfabrication Results

University of Sussex Ion Quantum Technology Group

Ion Traps with B-Field Gradient Structures Microfabrication Results

University of Sussex Ion Quantum Technology Group

Microfabrication Results

University of Sussex Ion Quantum Technology Group

Microfabrication Results

Cryogenic Vacuum System

- Ion Chip Mount with Permanent Magnets
- Ion Trap with Integrated Niobium Nitride High-Q Resonator
- Flat Multipole Ion Trap

Cryogenic Vacuum System

- Gifford-McMahon cryocooler
- Ultra low vibration interface ~10nm
- Helium exchange buffer gas

Cryogenic Vacuum System

Ion Chip Mount with Permanent Magnets

• Approximately 75 T/m gradient at the ions position

Ion Trap with Integrated Niobium Nitride High-Q Resonator

Ion Trap with Integrated Niobium Nitride High-Q Resonator

University of Sussex Ion Quantum Technology Group

B. Lekitsch, D. DeMotte, G. S. Giri, S. Pearce, I. Sari, K.S.Kiang, H. Rattanasonti, M.Kraft and W. K. Hensinger

Flat Multipole Ion Trap

University of Sussex Ion Quantum Technology Group

B. Lekitsch, D. DeMotte, G. S. Giri, S. Pearce, I. Sari, K.S.Kiang, H. Rattanasonti, M.Kraft and W. K. Hensinger

Summary

Development of two-dimensional array and ring trap

- Variety of novel fabrication processes
- Advanced multilayered trap designs
- Cryogenic trapping and surface cleaning capabilities

The IQT Group

University of Sussex

Head of Group: Dr. Winfried Hensinger

Postdocs: Dr. Simon Webster Dr. Gouri Giri

Research Assistants: Dr. Marcus Hughes Dr. James Siverns

PhD Students: Bjoern Lekitsch Seb Weidt Kim Lake Darren De Motte Joe Randall Eamon Standing David Murgia Tomas Navickas

EPSRC

Engineering and Physical Sciences Research Council

