Ouantum simulation with cold ions and atoms

Brighton December 2013 Rene Gerritsma University Mainz lon trapping group

Quantum simulation with trapped ions in Mainz

2D crystals for studying frustration

Possible aps: spin ladders

Magnetic field based qSim

H. Kaufmann *et al.*, PRL 109, 263003 (2012) A. Bermudez et al., PRL 107, 207209 (2011)

J. Welzel *et al.*, EPJD 65, 285 (2011).

Also: Siegen, NIST, Sussex, ...

Defects in ion crystal phase transitions

S. Ulm et al., Nature *Communications* 4, 2290 (2013). Poster Kilian Singer, Mehlstauebler, Schätz

T. Feldker *et al., arXiv:1306.1109* (2013).Zoller, Lesanovsky, also: Hennrich

Part one

Part two

Contents

New quantum simulations using ion Rydberg excitation

Prospects for using atom-ion mixtures in quantum simulation

Quantum simulation with Rydberg ions

Quantum simulation with Rydberg ions

NJP 13, 075014 (2011).

Schmidt-Kaler, Feldker, Kolbe, Walz, Müller, Zoller, Li, Lesanovsky,

Using Rydberg ions for mode shaping

Since the Rydberg ions have a dipole moment the trap frequency changes significantly

• $\omega_{ryd} = \beta \omega_i$

With $0.5 < \beta < 2$

Li, Glaetzle, Nath and Lesanovsky, PRA 87,052304 (2013). Schmidt-Kaler, Feldker, Kolbe, Walz, Müller, Zoller, Li, Lesanovsky, NJP 13, 075014 (2011).

Extreme case: doubly ionised Ca2+

Feldker *et al.*, arXiv:1306.1109 (2013).

500

Ouantum simulation with cold ions AND atoms

Benasque October 2013 Rene Gerritsma University Mainz

Cold atoms or ion are great for studying quantum many-body physics

Atoms in an optical lattice: 'Artificial solids'

Easily scalable Fermionic statistics

Atoms or ions

Harder to get long-range interaction Harder to control/measure

Trapped ions: 'Arrays of interacting spins'

Superb control and readout Long range interactions Not easy to scale No Fermionic statistics

Picture: Michael Köhl

→ Sympathetic cooling → Ultracold collisions \rightarrow Cold chemistry

A. T. Grier *et al.*, PRL 102, 223201 (2009). C. Zipkes *et al.*, Nature 464, 388 (2010). S. Schmid *et al.*, PRL 105, 133202 (2010).

Group

MIT Ulm/Freiburg Cambridge

Mainz

S. Schmid *et al.*, PRL 105, 133202 (2010). A.Härter and J. Hecker Denschlag, arXiv:1309.5799

Atom-ion separation r

Species	S-wave limit (µK)	
172Yb / 174Yb+	0.044	
⁸⁷ Rb / ¹³⁸ Ba+	0.052	
⁸⁷ Rb / ¹⁷⁴ Yb+	0.044	
40K / 174Yb+	0.15	4
6 Li / 174Yb+	8.7	

Triplet/singlet

Interaction range (nm) 252 Bosons 295 307 ern 219 Suo

A single atom in a double-well potential with a single trapped ion in its center.

Why this system?

- -
- Add spin degree of freedom
- -

RG, Negretti *et al., PRL* 109, 080402 (2012). J. Joger et al., *in prep*

Z. Idziazsek, T. Calarco and P. Zoller, PRA 76, 033409 (2007).

 $\rightarrow \phi$ is related to the s-wave scattering length: $a = -R^* \cot \varphi$

Atom-ion interaction at long range

- → Large inter well distance: independent wells, No coupling to ion. → Closer distances: splitting into even and odd states.
- \rightarrow 2-mode approximation! \rightarrow Small coupling to molecular states.

Related work:

Many atoms (bosons)

Bose-Hubbard Hamiltonian:

 $\hat{H} = \hbar \hat{J} \left(\hat{c}_L^{\dagger} \hat{c}_R + \hat{c}_R^{\dagger} \hat{c}_L \right) + \frac{\hbar}{4} \hat{U} \left(\hat{c}_R^{\dagger} \hat{c}_R - \hat{c}_L^{\dagger} \hat{c}_L \right)^2$ State dependent! $\Delta E = E_e - E_q$ $J = \Delta E/(2\hbar)$ $U_0 = \frac{4\pi a_a \hbar^2}{m_a}$ $U = \frac{U_0}{\hbar} \int d\mathbf{r} |\Phi_L(\mathbf{r})|^4$

U. R. Fischer *et al.*, PRA 77, 031602R (2008).

Picture: 3-well

Rb and Yb⁺, local trapfreqs of $2\pi 200$ Hz

 \rightarrow Requires sufficiently large difference between spin short range phases. \rightarrow Need to go beyond BH model for long time scales K. Sakmann *et al.*, Phys. Rev. Lett. 103, 220601 (2009).

Superpositions of many-body dynamics

 d/R^* m_i/m_f

Solid state ${}^{6}\text{Li}{}^{174}\text{Yb}{}^{+}$ ${}^{40}\text{K}{}^{40}\text{Ca}{}^{+}$ Lattice spacing $d \pmod{0.3-0.6}$ Length scale R^* (nm) 0.026 Energy scale E^* (kHz) 10^{13} 10 - 20 $10^4 - 10^5$ 10^{8} Fermi energy (MHz) Phonon energy (MHz) 10⁶

\rightarrow A string of ions overlapped with a cloud of ultracold fermions: an artificial solid??

$10^3 - 10^4$	$10^3 - 10^4$
71	245
166	2.1
14 - 140	4-40
29	1.0
0.02	0.02
0.01 - 10	0.01 - 10

with the Bloch theorem

U. Bissbort, D. Cocks, A. Negretti, Z. Idziaszek, T. Calarco, W. Hofstetter, F. Schmidt-Kaler and RG, Phys. Rev. Lett. 111, 080501 (2013).

Bandstructure

Fermion-phonon coupling

lon crystal + atoms: Fröhlich model

- Atomic bandstructure Fermion-phonon coupling phonon mediated interactions
- Polarons
- Peierls instabilities

Fermions Fermion-phonon coupling

linear chain

Peierls type instability

- Conduction to insulator transitions in 1D Caused here by transverse phonons

 \rightarrow Using Bell states to detect the spin of single atoms. \rightarrow Magnetic coupling \rightarrow See talk by Ozeri

C. Hempel, B. P. Lanyon, P. Jurcevic, RG, R. Blatt and C. F. Roos, Nature Photonics 7, 630-633 (2013). F. Schmidt-Kaler & RG, EPL 99, 53001 (2012).

 \rightarrow Spin-motion entanglement in a two-ion string \rightarrow Ion-atom collisions show up as decoherence

Also see: poster by Jannis Joger

Collaborators: Jannis Joger, Antonio Negretti, Ulf Bissbort, Daniel Cocks, Walter Hofstetter, Tommaso Calarco, Zbigniew Idziaszek, Ferdinand Schmidt-Kaler

Rejish Nath, Alexander Glaetzle, Marcello Dalmonte, Peter Zoller 🗴 💷 💷 🕬

The end

Another word on micromotion

Group

MIT

Ulm

Cambridge

Mainz

Species	Quantum limit (µK)	Mass ratio
172 Yb / 174 Yb +	0.044	1.01
⁸⁷ Rb / ¹³⁸ Ba+	0.052	1.58
⁸⁷ Rb / ¹⁷⁴ Yb+	0.044	2
40K / 174Yb+	0.15	4.35
6Li / 174Yb+	8.7	29 (
Need high mass ratio!		
	/	

Mass ratio

