# Lieb-Robinson bounds & nonequilibrium dynamics in trapped ions

Phys. Rev. Lett. 111, 230404 (2013)

Andrea Cadarso, Alejandro Bermudez, J. Juenemann (>Mainz) Juanjo Garcia-Ripoll Instituto de Fisica Fundamental

David Perez-Garcia Universidad Complutense de Madrid







#### To-do

Experimental tools
 Theoretical tools
 Fundamental questions
 Concrete applications

#### To-do

Experimental tools Theoretical tools Fundamental quest Concrete applica earning by example earn

#### Static correlations & order



*M. Endres et al., Science* **334**, 200-203 (2011)

#### Quasiparticle dynamics



*T. Fukuhara, Nature Physics* 9, 235–241 (2013)

### Equilibration



S. Trotzky et al, Nature Physics 8, 325–330 (2012)

### **CMP** Problems

Equilibrium

Nonequilibrium

Correlations Entanglement Topological order Phase transitions

Energy gaps Excitations / quasiparticles Equilibration / thermalization **Correlation propagation Causality** 



$$|\psi_{0}\rangle \rightarrow \left(1 - i\frac{\varepsilon}{\hbar}A(0)\right)|\psi_{0}\rangle + O(\varepsilon^{2})$$
$$\langle B(t)\rangle \rightarrow \langle B(t)\rangle + \frac{\varepsilon}{\hbar}\langle [B(t), A(0)]\rangle + O(\varepsilon^{2})$$

### Entanglement

#### **Mutual influence**

#### **Vacuum fluctuations**



A Retzker, JI Cirac, B Reznik, Phys. Rev. Lett. **94**, 050504 (2005)

### Entanglement



C. Sabin, M. del Rey, JJGR, J. Leon Phys. Rev. Lett 107, 150402 (2011)

#### Effective causality



# Spin models

Hopping of particles:

$$H = \sum_{\langle i, j \rangle} J_{ij} (\sigma_i^* \sigma_j - + \sigma_i^- \sigma_j^+)$$



Hopping from the **z** nearest neighbors is slower than  $z \times max_{\langle i, j \rangle} |J|$ 

Thus the group velocity is smaller than that.

#### Basic idea

Starting point  

$$\frac{\mathrm{d}}{\mathrm{dt}}[B_X(t), A_Y] = [[B_X(t), H], A_Y]$$

with a local model

$$H = \sum_{\langle x, y \rangle} H_{xy}$$

#### Basic idea

Starting point

$$\frac{\mathrm{d}}{\mathrm{dt}} [B_X(t), A_Y] = [[B_X(t), H], A_Y]$$

Quantity to bound

$$C(t, X, Y) = ||[B_X(t), A_Y(t)]||$$

Recurrence relation

$$C(t, X, Y) \leq \sum_{\langle Z, X \rangle} \|H_{XZ}\| \|B_X\| \int C(t, Z, Y) dt$$



# Beyond here

#### What has been done

- Harmonic oscillators
  - Bounded nonlinearity
  - Generalized oscillators
- Dissipative models
- Bounds on selected observables

#### What for

- Condensed Matter
- Proof of exponential clustering of correlations
  - -Area law
  - Correlation length
- Proof of MPS simulability
- Generalized adiabatic theorem.
- Proof of robustnes of topological order

Lieb-Robinson bounds for spin-boson lattice models and trapped ions

J. Jünemann, A. Cadarso, D. Pérez-García, A. Bermúdez, JJGR Phys. Rev. Lett. **111**, 230404 (2013) arXiv:1307.1992



# Spin-boson model

$$H = \sum_{m} \frac{\Delta_{m}}{2} \sigma_{m}^{z} + \sum_{k} \omega_{k} a_{k}^{\dagger} a_{k} + \sum_{m} g_{m}(t) \sigma_{m}^{z} x_{m}$$

# Spin-boson model



$$H = \sum_{m} \frac{\Delta_{m}}{2} \sigma_{m}^{z} + \sum_{k} \omega_{k} a_{k}^{\dagger} a_{k} + \sum_{m} g_{m}(t) \sigma_{m}^{z} x_{m}$$

- Two models with LR bounds
- Infinite-dimensional
- Highly nonlinear
- Non-integrable
- Multiple experimental applications
  - Trapped ions, c-QED, nanophotonics, etc.

#### State dependent forces



# Spin-boson model Phonons Out Out O State dependent force

$$H = \sum_{k} \omega_{k} a_{k}^{\dagger} a_{k} + \sum_{m} \frac{\Delta_{m}}{2} \sigma_{m}^{z} + \sum_{m} F_{m}(t) \sigma_{m}^{z} x_{m}$$

Balance between Coulomb force and trap creates a crystal Light pushes the atoms depending on the state

#### Effective interactions

Accumulated phase can be computed

$$\varphi = \sum_{i,j} \sigma_i^z \sigma_j^z \times \int_0^T \int_0^{t_1} F_i(t_1) G_{ij}(t_1 - t_2) F_j(t_2) dt_1 dt_2$$

$$G_{ij}(t) = \sum_{ij} \frac{M_{ik} M_{jk}}{m \omega_k \hbar} \sin(\omega_k t)$$

This may be recasted as an spin-spin interaction

$$H_{eff} \sim \sum_{i,j} \sigma_i^z J_{ij} \sigma_j^z$$

which can be used for quantum simulation, QIPC, entanglement

### Quantum simulation

State dependent force

$$H = \sum_{k} \omega_{k} a_{k}^{\dagger} a_{k} + \sum_{m} \frac{\Delta_{m}}{2} \sigma_{m}^{z} + \sum_{m} F_{m}(t) \sigma_{m}^{z} x_{m}$$

$$F, \dot{F} \ll \omega, \Delta; \langle n_{i} \rangle \simeq 0$$

$$H_{eff} \sim \sum_{i, j} \sigma_{i}^{z} J_{ij} \sigma_{j}^{z}$$

#### Quantum simulation



*A. Friedenauer et al, Nature Physics 4, 757 - 761 (2008) R. Islam et al, Nature Comm. 2, 377 (2011); ibid, Science 340 (2013) J. W. Briton et al, Nature 484, 489 (2012)* 

### Signal intensification



Different ions may experience different forces  $\varphi = \operatorname{Im} \int_{0}^{T} \int_{0}^{t} G(|t-t'|) f_{1}(t) f_{2}(t') dt dt'$   $\propto B \times N$ 

### Boson-mediated interactions



A very general framework: c-QED, ions, photonics,... When the dynamics of the bosons is as fast as the particle-boson interaction, we cannot eliminate them perturbatively.

### Proof sketch

Many intermediate results:

- Proof of a LR for the harmonic oscillator model with and without long-range interactions
  - Tighter bounds than existing literature
- "Interaction-like" picture removes the influence of the oscillators in the ion's local dynamic.
- Integrate out the bosonic d.o.f. with the propagator.
- Sum up the resulting recurrence only for the spins.
- Feed back to the oscillators for further bounds.

# Two theory results

**#** An improved L-R bound for the ion phonons



# Two theory results

**#2** A resulting L-R bound for the interacting ions / spins



#### Bound saturation

**#2** A resulting L-R bound for the interacting ions / spins

$$\left\| \left[ \sigma_i(t), \sigma_j(0) \right] \right\| \leq \frac{\exp(vt)}{d_{i,j}^{\eta}} \left( e^{g^2 \frac{t}{v}} - 1 \right)$$

The bound is saturated in the

#### impulsive regime

(When the forces act instantaneously)

# Trapped ions

Top-view image



*J. Britton et al, Nature* **484**, 489–492 (2012)

#### Measurement protocol

#### **Continuous forces**

#### **Impulsive forces**



$$\langle B(t) \rangle \rightarrow \langle B(t) \rangle + \frac{\varepsilon}{\hbar} \langle [B(t), A(0)] \rangle + O(\varepsilon^2)$$

# Correlation spread



#### Generalized LR bounds

 $\|[A_x(t), B_v(0)]\| \le c \exp(v t - d_{x,v})$ 

Outside an effective light-cone with speed v correlations are exponentially attenuated.

$$\|[A_x(t), B_y(0)]\| \le c \exp(vt) \frac{1}{d_{x,y}^{\eta}}$$

A milder version needed for long range interactions.

### Correlation spread



Approximate light cones because of long range interaction. The full model is faster, because it involves the bosons in a nonperturbative fashion

# Summary

- Spin-boson model of interest beyond quantum dissipation.
- New mathematical tools for analyzing correlation spread in these systems.
- Experimental possibility of measuring the propagation of correlations.



### Acknowledgements















