Mathematical Concepts (G6012)

Computing Machines III

Thomas Nowotny
Chichester I, Room CI-105
Office hours: Tuesdays 15:00-16:45
T.Nowotny@sussex.ac.uk

Last time

- We saw that deterministic FSA and nondeterministic FSA are equivalent
- We introduced Finite State Transducers: Addition of an output tape

Input symbol
Output symbol

BB Another example

- Let's build a whitespace remover (remove any multiple space characters)

x used here for anything that is not s.

Today: Pushdown Automata

- What FSA cannot do is processing nested structures:
- In programming languages: if-then-else, procedure calls, ...
- In natural languages: phrases embedded in others
- Generally: We need the power to process strings of brackets, e.g. ([\{\}()])

Processing nested structures

- Memory requirements:
- Unlimited unless we limit the depth of nesting
- Need to keep track of the order in which brackets must be closed
- We have a linear structure (sequence) of symbols
- Most recently recorded memories (opening brackets) must be accessed first

Pushdown

- A special kind of list
- Provides (in principle) unbound storage
- Last in, first out (LIFO)
- Add/remove items only from one end ("top")
- Push - add an element to the top of PD
- Pop - remove and element from the top of PD
- No other editing or browsing allowed

Example

- It's like a stack of paper where you stack stuff on the top and take it away from the top:

- Alternative notation:

$$
() \xrightarrow{\text { push 'a' }}(\mathrm{a}) \xrightarrow{\text { push 'a' }}(\mathrm{aa}) \xrightarrow{\text { push 'b' }}(\mathrm{baa}) \xrightarrow{\text { pop }} \text { 'b' }(\mathrm{aa})
$$

Pushdown Automata

- Result of adding a pushdown storage to an FSA
- This gives a more powerful language recogniser (see below)
- Provides enough power for programming language analysis (syntax analysis)
- May even be enough for natural language analysis

Pushdown Automaton: How does it work?

- Need to specify 3 things now:
- Input symbol to be scanned
- Symbol to be popped from pushdown
- Symbol to be pushed onto pushdown
- Any of these can be the empty string ϵ

Example

What language does this accept?

Input tape

State
Pushdown q_{0}
q_{0}
q_{0}
q_{1}
q_{1}
(11)
()
(1)
(1)
()

- Accepts a string of a's followed by the same number of b's:
$\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- This cannot be expressed with a regular expression!

Accepting computation

- Must be in a final state
- The input must have been consumed
- The pushdown must be empty

Error states

- No rule applies for input symbol (stuck)
- Cannot pop correct symbol (error) (includes trying to pop a symbol other than ϵ from empty pushdown)

Alternative Notation for Computation

$\left(\mathrm{q}_{0}\right.$, aabb,$\left.\epsilon\right) \quad \mapsto\left(\mathrm{q}_{0}, \mathrm{abb}, 1\right)$

$$
\begin{aligned}
& \mapsto\left(q_{0}, b b, 11\right) \\
& \mapsto\left(q_{1}, b, 1\right) \\
& \mapsto\left(q_{1}, \epsilon, \epsilon\right)
\end{aligned}
$$

- Pushdown here represented as a string of pushdown symbols

Example

BB: A successful Computation

$\left(q_{0}\right.$, babab, $\left.\epsilon\right) \mapsto\left(q_{0}\right.$, abab, $\left.B\right)$

$$
\begin{aligned}
& \mapsto\left(q_{0}, b a b, A B\right) \\
& \mapsto\left(q_{1}, a b, A B\right) \\
& \mapsto\left(q_{1}, b, B\right) \\
& \mapsto\left(q_{1}, \epsilon, \epsilon\right)
\end{aligned}
$$

- This recognises the language:

$$
\left\{w\{a, b\} w^{R} \mid w \in\{a, b\}^{n}, n \geq 0\right\}
$$

Non-deterministic - guessing midpoint

Wrongly guessed midpoint:
$\left(\mathrm{q}_{0}\right.$, babab, $\left.\epsilon\right) \mapsto\left(\mathrm{q}_{0}\right.$, abab, $\left.B\right)$

$$
\begin{aligned}
& \mapsto\left(q_{0}, b a b, A B\right) \\
& \mapsto\left(q_{0}, a b, B A B\right) \\
& \mapsto\left(q_{1}, b, B A B\right) \\
& \mapsto\left(q_{1}, \epsilon, A B\right)
\end{aligned}
$$

FAIL

As usual ...

- Machine explores all possible choices
- Acceptance when one accepting computation path exists
- It turns out that here non-determinism does add power
- There are cases, where non-determinism cannot be removed (like guessing the midpoint)

Non-deterministic PDA (NPDA) and deterministic PDA (DPDA) accept the a different family of languages

Properties of Pushdown Automata

- Family of languages:
- PDA accept the same family of languages as can be expressed by Context Free Grammars
- In other words they accept exactly the Context Free Languages
- Context Free Grammars are used to describe (define) programming language syntax
- (Also equivalent to BNF and syntax charts)

Context-Free Grammar

- Is define by "productions" or "production rules":

1. $S \mapsto a S b$
2. $S \mapsto a b$

- Are applied repeatedly, e.g
$\mathrm{S} \mapsto \mathrm{aSb} \mapsto \mathrm{aaSbb} \mapsto \mathrm{aa}$ abbb 1. 1.2.
- Generates a's followed by same number of b's

Derivation tree

- Generating a word can be visualised as a tree:

Other example

- Productions:
$\mathrm{S} \mapsto \mathrm{aSa}$
$\mathrm{S} \mapsto \mathrm{bSb}$
$\mathrm{S} \mapsto \epsilon$
- Generates the palindrome language $\left\{S S^{R} \mid S \in\{a, b\}^{n}, n \geq 0\right\}$ where the ${ }^{\mathrm{R}}$ denotes the reverse of the string

Derivation tree example

Limits of Power

- Can be achieved:
- Language of palindroms
- Counting two symbols
- Programming languages (deterministically)
- Natural Languages?
- What can't be done:
- Copy language $\left\{S S \mid S \in\{a, b\}^{n}, n \geq 0\right\}$
- Counting symbols beyond 2
- (Crossing dependencies)

Performance consideration

- When syntax-checking programs,
- PDA based checking can take $O\left(n^{3}\right)$ time
- This can be very slow for large programs
- However, if the PDA is deterministic, time is only O(n)

Stacks vs Pushdowns

- Most people would not make a distinction
- If a distinction is made
- Pushdown strictly push-pop
- Stack can be inspected read-only
- Stack automata are a more powerful but little known type of machine

TURING MACHINES

Turing Machines (TM)

- Are a very simple extension to finite state machines
- The main change is to allow editing the input tape
- No limit on the size of the tape
- Tape 2-way infinite (like the integers)

- (We will use the symbol B for blank positions)

Transitions in TM

- Current state
- New state
- Symbol currently read
- New symbol to replace the read symbol
- Direction to move the tape head (left (L), right (R), stay (S))

output move

Example

uolıełndmoう
q_{0}
q_{0}
q_{1}
finished

What did it do?

- baab became abba
- This machine swaps a to b and b to a until it finds a *

| B | a | a | a | $*$ | B | B | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | q_{0}B|b|a|a|*|B|B|B|B|B ...$q_{1}$$q_{1}$

$\ldots .$| B | b | a | a | $*$ | B | B | B | B | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\ldots \frac{B|b| a|a|{ }^{*}|a| B|B| B \mid B}{\ldots}$

 q_{3} 93\ldots| B | b | a | a | $*$ | a | B | B | B | B | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$q_{3}$$\mathrm{q}_{2}$$\mathrm{q}_{3}$$q_{1}$

$$
\ldots \frac{B|b| a|a| *|a| B|B| B \mid B}{\ldots} \quad \mathrm{a}_{3}
$$

$$
\ldots \frac{B|b| a|a| *|a| B|B| B \mid B}{\ldots} . .
$$

$$
\ldots \frac{B|b| b|a| *|a| B|B| B \mid B}{\ldots}
$$

$$
\ldots B|b| b|a| *|a| B|B| B \mid B \ldots
$$

$$
\ldots \frac{B|b| b|a| *|a| B|B| B|B|}{\ldots}
$$

$$
\ldots B|b| b|a| *|a| a|B| B \mid B \ldots
$$

q_{0}
q_{1}
q_{1}
q_{2}
q_{2}
q_{3}
q_{3}

$$
\ldots \frac{B|b| b|a| *|a| a|B| B \mid B}{\ldots} \quad q_{3}
$$

$$
\ldots \frac{B|b| b|a| *|a| a|B| B \mid B}{\ldots} . .
$$

$$
\ldots \xrightarrow[B|b| b|a| *|a| a|B| B \mid B]{\ldots} . .
$$

$$
\ldots \frac{B|b| b|b| *|a| a|B| B \mid B}{\ldots}
$$

$$
\ldots B|b| b|b| *|a| a|B| B \mid B \ldots
$$

$$
\ldots \quad B|b| b|b| *|a| a|B| B \mid B \ldots
$$

$$
\ldots B|b| b|b| *|a| a|B| B \mid B \ldots
$$

$$
\ldots \frac{B|\mathrm{~B}| \mathrm{a}|\mathrm{a}| *|a| a|a| B \mid B}{\widehat{\square}} \ldots
$$

q_{0}
q_{1}
q_{2}
q_{2}
q_{2}
q_{3}
$\ldots B|b| b|b|^{*}|a| a|a| B \mid B$. $\mathrm{q}_{3}$$\ldots \quad B|b| b|b| *|a| a|a| B \mid B \quad \ldots$

$$
\ldots \quad B|b| b|b| *|a| a|B| B \mid B \ldots
$$

$$
\ldots \quad B|b| b|b| *|a| a|B| B \mid B .
$$

$$
\ldots \frac{B|b| b|b| *|a| a|B| B \mid B}{\ldots}
$$

$$
\ldots B|b| b|a|^{*}|a| a|B| B|B| .
$$

$$
\ldots \text { B|b|a|a|*|a|a|B|B|B.} \ldots
$$

$$
\ldots \frac{B|a| a|a| *|a| a|a| B \mid B}{\ldots}
$$

q_{3}
q_{3}
q_{0}
q_{4}
q_{4}
q_{4}
q_{4}

Initial State was:

q_{0}

- The machine makes a copy of n a's and puts them behind the *

Multiplication

- We can use this machine to do "unary multiplication":

\ldots| B | a | a | a | $*$ | a | a | $\%$ | B | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Multiply "number" before * by "number" between * and \% (3 times 2 here):

$\ldots .$| B | a | a | a | $*$ | a | a | $\%$ | a | a | a | a | a | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Can be done by adapting the discussed machine and using it repeatedly

Church/Turing Thesis

- Every computable function can be computed by a Turing Machine
- I.e.: Turing Machines are universal computing machines
- Every problem that can be solved by an algorithm can be solved by a Turing machine
- Where is the power coming from?

The read/write input/output tape!

More about TM

- The tape can be used to record any data for later access
- There is always space available after last non-blank location
- There is no limit how often the tape is accessed
- You PC is less powerful than a TM - why? Because it has finite memory

Efficiency

- TM are universal but not efficient
- Progress can be really slow
- Looking up memory involves sequential access - the opposite of efficiency

Managing complexity

- One can encapsulate useful functionality in "separate" sub-routines
- Collection of states set aside for each subroutine
- (similar to structured programming approach)
- However, TM are mainly useful as a theoretical concept, not for solving real world problems!

Variations

- There are common variants of TM:
- Multiple tapes
- Single-side infinite tape
- Non-deterministic TM
- It can be shown that these have all equivalent power to the TM discussed here.

Example: Non-deterministic TM

- To simulate non-deterministic TM:
- 3 tapes:
- One tape for original input
- One tape for the choice sequence: $(2,3,1,2)$
- One tape to run on current choice sequence
- For this to work we need to enumerate all possible sequences of choices (ok, as states are finite)

Another equivalence

- The " 2 pushdown" automaton is equivalent to the Turing Machine:
- One pushdown holds tape contents to left of tape head
- One pushdown holds tape contents to the right of tape head
- As tape head moves, symbols shift across from one pushdown to another

More generally ...

- Chomsky Hierarchy (for language classes):
- Type 0: Languages accepted by Turing Machines
- Type 1: Languages accepted by Turing Machines with linear bounded storage
- Type 2: Languages accepted by Pushdown Automata
- Type 3: Languages accepted by Finite State Automata

Alternative Characterization

- Equivalent grammar formalisms
- Type 0: Languages generated by unrestricted grammars
- Type 1: Languages generated by contextsensitive grammars
- Type 2: Languages generated by context-free grammars
- Type 3: Languages generated by regular grammars

Equivalence and Inclusions

