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Exam in January

* Fri 08 January, 09:30 SPORTCENTRE
1 Hr 30 Mins

* Previous exams can be found here:

http://www.sussex.ac.uk/students/pastexams/
search




MEQ

* The module evaluation questionnaires are
open

* You can find them in your module resources
on Sussex Direct

* | do read and consider every comment (but
they are anonymous)



Lecture content for Thursday

* Two alternatives:
— 1 hour introduction to Information Theory
— Start with revisions

e | will ask for a show of hands at the end of
today’s lecture



Last time: Hypothesis test

In hypothesis testing you set a “significance
niveau” o ,e.9. a=0.05=5%

Then you calculate the probability P of your
observation or a more extreme one if the
hypothesis were true.

If your observation lies in the region of extreme
observations (with respect to « ) you
reject the hypothesis.

Example chess game:



Chess game statistical test

Probability space: € = {0,1}

1
P({0}) = P({1}) = 3
(This is the null hypothesis H,)

We can calculate the probability for k wins from this:
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Summary: Statistical tests so far

Typically we test a null-Hypothesis H,, typically about a
property of the underlying probability space, e.g. p

There is a test statistic X (some function of an observation) and
a corresponding probability distribution P(X=k)

We calculate the probability of an observed value x of the test
statistic under the assumption that the null-Hypothesis is true

Based on the this probability we reject the null-Hypothesis or
“do not reject” it.

There is no such thing as “accepting the null- Hypothesis”



Possible errors

* There are two possible errors we can make:

1. Errors of the first kind: The null-Hypothesis
was true but we reject it accidentally. The
probability for this type of error is limited by
the significance level ¢



Possible errors

2. Errors of the second kind: The null-Hypothesis
is false but we cannot reject it. The probability
of this type of error is not controlled in basic
test design and may be large”.

This is one of the reasons why not rejecting
the null-Hypothesis should not be interpreted
as accepting it.

This error is sometimes denoted 3

* often it cannot be calculated (!)



Reporting significance (P-value)

* |n the past the distributions of test statistics
were taken from tables. To avoid imprecisions
from this, scientists only reported P < (x for a
significance level ¢ that was chosen up front.

 Nowadays, all distributions of test statistics can
be calculated numerically to any precision — it
is ok now to report observed P-values directly,
e.g. P=0.015.



Testing two alternatives

 Example: Test for an infection

— For infected patients, there is a p,,;=0.15
probability to observe a white blood cell and
p,,=0.85 probability to see a red one when
examining cells in a blood sample

— For healthy patients, these are p,,=0.1 for white
and p,,=0.9.

* Here, we want to test two Hypotheses against
each other (H, (infected): p,,;,=0.15 against H,
(healthy): p,,,=0.1)



Testing two alternatives

When counting n cells from an infected sample:

P(Xw = k) = bnp,, (F)

Let’s use significance level & = 0.05, and count

n=100 cells.
We calculate

k| P(Xy <K
6 0.0047
7 0.0122
8 0.0275
9 0.0551
10 0.0994

Reject when x,, is
8 or smaller



Error of the second kind

* This is the error of a “false positive”, i.e. not
rejecting H, (infected), even though the
subject is healthy

P(X;,>9) =Y bnp,,(k) = 0.6791 = 67.91%
k=9

i.e. we would scare 67.9% of healthy people
and send them on for further testing!



Visualisation
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Increased sample size

* |f we do the same analysis but count 200 cells:
— Reject for 21 or less white blood cells
— Error of the second kind: 35.2%

e So, there is a trade-off between the errors for
each given test size.

* The test is called “sensitive” or “powerful” if
the error of the second kind is also small



Visualisation
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Area under the curve (AUC)

* The area under the a - 8 curve can be used
as an indicator of the quality of a test:
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So far: Binomial distribution

* |s correct for many applications:

— Any Bernoulli processes (constant probability for
success/failure, independent trials)

— E.g.: games, gambling, many medical tests, elections
(certain aspects), ...

 However, it’s not easy to manipulate in practice

* For many other applications, the exact
orobability distribution is not known, e.g.
repeated measurements of unknown quantities




Central limit Theorem

* Forindependent, identically distributed (i.i.d)
random variables X. with expectation £ and
variance ¢ the distribution of

1 n

converges to

N(,U, 02/n) _ 1 (I B :u)

V2ro /\/n — ( 202 /n )
(independent of the probability distribution of
X:)




Normal distribution

* Sn —
* |[n other words, $,, = - has always the
o/ f

same distribution for large n:
2

N(0,1)(z) = \/127 exp (- )

This is the so-called “Normal distribution”.
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Normal approximation

* |n statistical testing it is generally accepted to
use a normal distribution if

—The samples are independent

—the sample size n is larger than about 30.



Some concluding remarks about
statistical tests

* A statistical test has
— A Null Hypothesis H, that we would like to reject

— A test statistic X (a function of an observed
sample)

— A probability distribution for the test statistic and
hence the ability to calculate a “p value”

— In practice the challenge is often to apply the right
test:



Examples of tests

Test for a specific expectation value:
simple tail test

Compare whether two groups of samples come
from distributions with the same expectation
(e.g. before and after an intervention):

t-Test

Decide whether there are meaningful groupings
in a sample:

F-test (or analysis of variance(ANOVA))



Thursday Lecture

* Information theory
* Revisions |
* Abstentions



