Mathematical Concepts (G6012)

Lecture 21

Thomas Nowotny

Chichester I, Room CI-105

Office hours: Tuesdays 15:00 - 16:45

T.Nowotny@sussex.ac.uk

Exam in January

Fri 08 January, 09:30 SPORTCENTRE
1 Hr 30 Mins

Previous exams can be found here:

http://www.sussex.ac.uk/students/pastexams/ search

MEQ

- The module evaluation questionnaires are open
- You can find them in your module resources on Sussex Direct
- I do read and consider every comment (but they are anonymous)

Lecture content for Thursday

- Two alternatives:
 - 1 hour introduction to Information Theory
 - Start with revisions
- I will ask for a show of hands at the end of today's lecture

Last time: Hypothesis test

In hypothesis testing you set a "significance niveau" α , e.g. $\alpha=0.05=5\%$

Then you calculate the probability P of your observation or a more extreme one if the hypothesis were true.

If your observation lies in the region of extreme observations (with respect to α) you reject the hypothesis.

Example chess game:

Chess game statistical test

Probability space:
$$\Omega=\{0,1\}$$

$$P(\{0\})=P(\{1\})=\frac{1}{2}$$
 (This is the null hypothesis ${\rm H_0}$)

We can calculate the probability for k wins from this:

Probability for k wins

Tail probability

Summary: Statistical tests so far

- Typically we test a null-Hypothesis H₀, typically about a property of the underlying probability space, e.g. p
- There is a test statistic X (some function of an observation) and a corresponding probability distribution P(X=k)
- We calculate the probability of an observed value x of the test statistic under the assumption that the null-Hypothesis is true
- Based on the this probability we reject the null-Hypothesis or "do not reject" it.
- There is no such thing as "accepting the null- Hypothesis"

Possible errors

- There are two possible errors we can make:
- 1. Errors of the first kind: The null-Hypothesis was true but we reject it accidentally. The probability for this type of error is limited by the significance level α

Possible errors

2. Errors of the second kind: The null-Hypothesis is false but we cannot reject it. The probability of this type of error is not controlled in basic test design and may be large*.

This is one of the reasons why not rejecting the null-Hypothesis should not be interpreted as accepting it.

This error is sometimes denoted β

* often it cannot be calculated (!)

Reporting significance (P-value)

- In the past the distributions of test statistics were taken from tables. To avoid imprecisions from this, scientists only reported $P < \alpha$ for a significance level α that was chosen up front.
- Nowadays, all distributions of test statistics can be calculated numerically to any precision – it is ok now to report observed P-values directly, e.g. P=0.015.

Testing two alternatives

- Example: Test for an infection
 - For infected patients, there is a p_{w1} =0.15 probability to observe a white blood cell and p_{r1} =0.85 probability to see a red one when examining cells in a blood sample
 - For healthy patients, these are p_{w2} =0.1 for white and p_{r2} = 0.9.
- Here, we want to test two Hypotheses against each other (H_0 (infected): p_{w1} =0.15 against H_1 (healthy): p_{w2} =0.1)

Testing two alternatives

When counting n cells from an infected sample:

$$P(X_w = k) = b_{n,p_{w1}}(k)$$

- Let's use significance level $\alpha = 0.05$, and count n=100 cells.
- We calculate

k	$P(X_w \le k)$	
6	0.0047	
7	0.0122	
8	0.0275	Reject when x _w is
9	0.0551	8 or smaller
10	0.0994	

Error of the second kind

 This is the error of a "false positive", i.e. not rejecting H₀ (infected), even though the subject is healthy

$$P(X'_w \ge 9) = \sum_{k=9}^{n} b_{n,p_{w2}}(k) \approx 0.6791 = 67.91\%$$

i.e. we would scare 67.9% of healthy people and send them on for further testing!

Visualisation

Decision boundary

k

Increased sample size

- If we do the same analysis but count 200 cells:
 - Reject for 21 or less white blood cells
 - Error of the second kind: 35.2%

 So, there is a trade-off between the errors for each given test size.

 The test is called "sensitive" or "powerful" if the error of the second kind is also small

Visualisation

Area under the curve (AUC)

• The area under the α - β curve can be used as an indicator of the quality of a test:

Significance level α (false negatives)

So far: Binomial distribution

- Is correct for many applications:
 - Any Bernoulli processes (constant probability for success/failure, independent trials)
 - E.g.: games, gambling, many medical tests, elections (certain aspects), ...
- However, it's not easy to manipulate in practice
- For many other applications, the exact probability distribution is not known, e.g. repeated measurements of unknown quantities

Central limit Theorem

• For independent, identically distributed (i.i.d) random variables X_i with expectation μ and variance σ^2 the distribution of

$$s_n = \frac{1}{n} \sum_{i=1}^n X_i$$

converges to

$$\mathcal{N}(\mu, \sigma^2/n) = \frac{1}{\sqrt{2\pi}\sigma/\sqrt{n}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2/n}\right)$$

(independent of the probability distribution of X_i)

Normal distribution

• In other words, $s_n^* = \frac{s_n - \mu}{\sigma/\sqrt{n}}$ has always the

same distribution for large n:

$$\mathcal{N}(0,1)(x) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right)$$

This is the so-called "Normal distribution".

Example 1

Example 2

Normal approximation

- In statistical testing it is generally accepted to use a normal distribution if
 - The samples are independent
 - -the sample size n is larger than about 30.

Some concluding remarks about statistical tests

- A statistical test has
 - A Null Hypothesis H₀ that we would like to reject
 - A test statistic X (a function of an observed sample)
 - A probability distribution for the test statistic and hence the ability to calculate a "p value"
 - In practice the challenge is often to apply the right test:

Examples of tests

- Test for a specific expectation value: simple tail test
- Compare whether two groups of samples come from distributions with the same expectation (e.g. before and after an intervention): t-Test
- Decide whether there are meaningful groupings in a sample:
 F-test (or analysis of variance(ANOVA))
- ...

Thursday Lecture

- Information theory
- Revisions I
- Abstentions