Mathematical Concepts (G6012)

Lecture 16

Thomas Nowotny Chichester I, Room CI-105 Office hours: Tuesdays 15:00-16:45 T.Nowotny@sussex.ac.uk

DERIVATIVES

Derivative of a smooth function

• The derivative of a smooth function is the value the ratio $\frac{f(x + \Delta x) - f(x)}{\Delta x}$

converges to for smaller and smaller Δx , mathematicians write

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

INTEGRATION

Area under a graph

• Car travelling at 70 mph

Area = distance traveled: $A = v \cdot t = 70 \cdot 2$ miles = 140 miles

What if we are interested in the area under this curve:

This is called "lower Riemann sum"

Riemann integral

For many functions

$$\lim_{\Delta x \to 0} A_{-} = \lim_{\Delta x \to 0} A_{+}$$

The upper and lower Riemann sum become the same for small steps.

Such functions are called "Riemann integrable", and

lower limit

Example from first principles

 $\int_{0}^{T} x \, dx = \lim_{\Delta x \to 0} \sum_{i=0}^{T/\Delta x} (i \cdot \Delta x) \cdot \Delta x$ $= \lim_{N \to \infty} \sum_{i=0}^{NT} \frac{i}{N} \cdot \frac{1}{N} = \lim_{N \to \infty} \frac{1}{N^2} \sum_{i=0}^{NT} i$ $=\lim_{N\to\infty}\frac{1}{N^2}\Big(\frac{NT(NT+1)}{2}\Big)$ $= \lim_{N \to \infty} \frac{1}{2}T^2 + \frac{T}{2N} = \frac{1}{2}T^2$

Main theorem of differential and integral calculus

In principle, one could calculate integrals from first principles, but fortunately...

Integration is the opposite of differentiation!

$$\frac{d}{db}\left(\int_{a}^{b}f(x)\ dx\right) = f(b)$$

Plausibility argument

Take a difference
Differentiation
$$f'(x) = \frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\int_{0}^{T} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=0}^{T/\Delta x} f(i \cdot \Delta x) \cdot \Delta x$$

$$\lim_{i \to 0} \int_{0}^{T} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=0}^{T/\Delta x} f(i \cdot \Delta x) \cdot \Delta x$$

$$\lim_{i \to 0} \int_{0}^{T} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=0}^{T/\Delta x} f(i \cdot \Delta x) \cdot \Delta x$$

$$\lim_{i \to 0} \int_{0}^{T} f(x) dx = \lim_{\Delta x \to 0} \int_{0}^{T/\Delta x} f(i \cdot \Delta x) \cdot \Delta x$$

Differentiation inverts integration

Khan Academy proof

Rules of Differentiation

Rule name	Function	Derivative
Polynomials	$f(x) = x^n$	$f'(x) = n x^{n-1}$
Constant factor	g(x) = a f(x)	g'(x) = a f'(x)
Sum and Difference	$egin{aligned} h(x) = \ f(x) + g(x) \end{aligned}$	$egin{aligned} h'(x) = \ f'(x) + g'(x) \end{aligned}$

Become rules of integration

Rule name	Eunction Integral	Derivative Function
Polynomials	$\int_0^x f(t)dt = x^n + C$	$f(x) = nx^{n-1}$
Constant factor	$\int_0^x g(t)dt = a \int_0^x f(t)dt$	g(x) = a f(x)
Sum and Difference	$\int_0^x h(t)dt$ $= \int_0^x f(t)dt + \int_0^x g(t)dt$	$ \begin{array}{c} h(x) = \\ f(x) + g(x) \end{array} $

Special functions

Function	Integral
$f(x) = x^n$	$\int_0^x t^n dt = \frac{1}{n+1} x^{n+1}$
$\exp(x) = e^x$	$\exp(x) = e^x$
$\frac{1}{x}$	$\log(x) = \ln(x)$
$\cos(x)$	$\sin(x)$
$\sin(x)$	$-\cos(x)$

Integration constant

The "antiderivative", "primitive integral" or "indefinite integral" is only defined up to a constant:

$$\frac{d}{dx}F(x) = f(x)$$
$$\frac{d}{dx}F(x) + C = f(x)$$

Practical tips $\int_{a}^{b} f(x) \, dx =$ f(x) $\int_0^{a} f(x) \, dx - \int_0^{a} f(x) \, dx$ = F(b) - F(a)h Note how the xa

Note how the integration constant does not matter here.

Practical tips II

$$\int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a)$$

Example: "anti-derivative"
$$\int_{2}^{3} x^{3} dx = \left[\frac{1}{4} x^{4} \right]_{2}^{3} = \frac{1}{4} 3^{4} - \frac{1}{4} 2^{4} = \frac{81 - 16}{4} = \frac{65}{4}$$

More Examples

$$\int_{1}^{2} 2x \exp(x^{2}) dx = \left[\exp(x^{2})\right]_{1}^{2} = \exp(4) - \exp(1)$$

$$\int_{1}^{2} \frac{1}{x} dx = \left[\log(x) \right]_{1}^{2} = \log(2) - \log(1) = \log(2)$$

$$\int_{1}^{2} \sin(x) \, dx = \left[-\cos x \right]_{1}^{2} = -\cos(2) - \left(-\cos(1) \right)$$
$$= \cos(1) - \cos(2)$$