Short Course: Computation of Olfaction Lecture 3

Lecture 3: Modelling Insect Olfaction

Dr. Thomas Nowotny University of Sussex

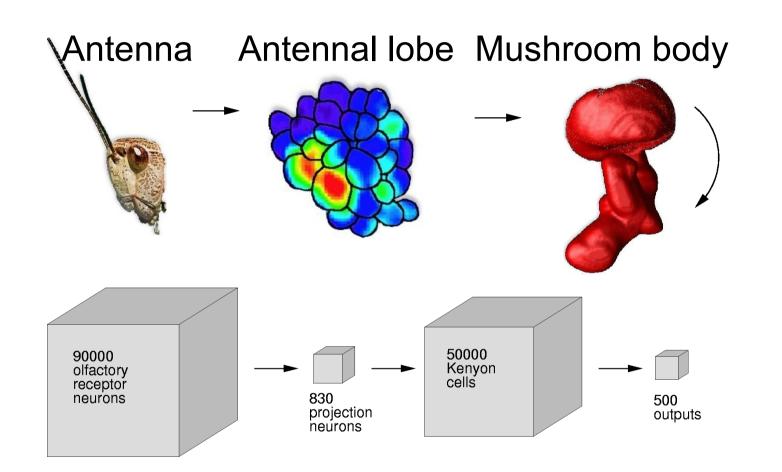
Models in insect olfaction

- Bazhenov et al. Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe Neuron, 2001, 30, 569-581
- Bazhenov et al. *Model of transient oscillatory synchronization in the locust antennal lobe* Neuron, 2001, 30, 553-567
- Linster et al. Computational diversity in a formal model of the insect olfactory macroglomerulus Neural Comput, 1993, 5, 228-241
- Linster & Smith Computational model of the reponse of honey bee antennal lobe circuitry to odor mixtures: Overshadowing, blocking and unblocking can arise from lateral inhibition Behav Brain Res, 1997, 87, 1-14
- Galán et al. Odor-Driven Attractor Dynamics in the Antennal Lobe Allow for Simple and Rapid Olfactory Pattern Classification Neural Comput, 2004, 16, 999-1012

Models in insect olfaction

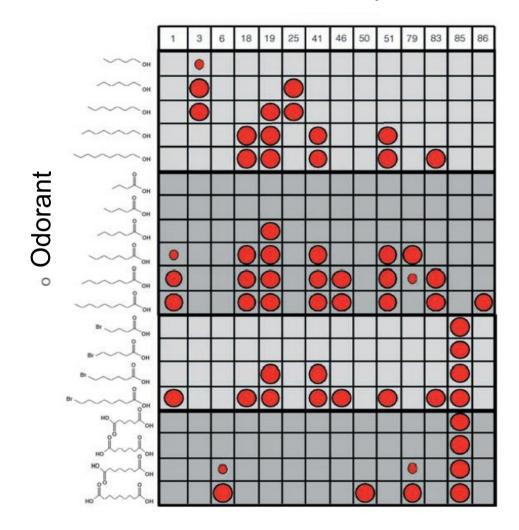
- Laurent et al. Odor encoding as an active, dynamical process: Experiments, computation, and theory Annu Rev Neurosci, 2001, 24, 263-297
- Huerta et al. Learning classification in the olfactory system of insects Neural Comput, 2004, 16, 1601-1640
- Nowotny et al. Self-organization in the olfactory system: Rapid odor recognition in insects Biol Cybern, 2005, 93, 436-446
- Nowotny et al. Decoding temporal information through slow lateral excitation in the olfactory system of insects J Comput Neurosci, 2003, 15, 271-281
- And many others

Reminder: Main olfactory pathway anatomy



Box volume ~ number of cells

Olfactory Receptors



Odorant Receptor

Odors evoke different, but overlapping patterns of receptor activity

From Linda Buck: Nobel lecture

Early processing

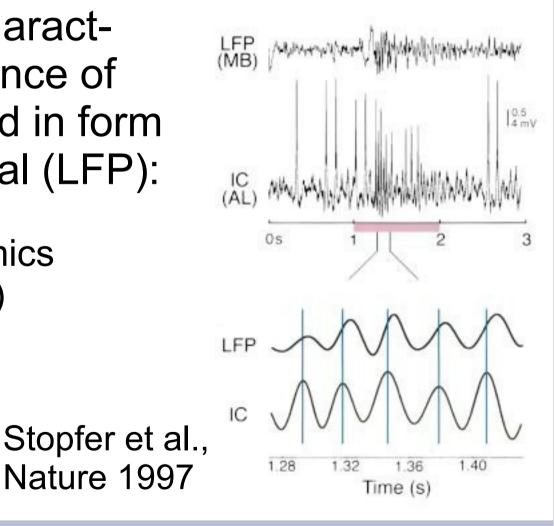
- Each olfactory receptor neuron expresses one receptor type
- All olfactory receptor neurons of the same type converge onto the same glomerulus
- Projection neurons receive inputs from one glomerulus

are encoded as overlapping patterns of projection neuron a

Local field potential

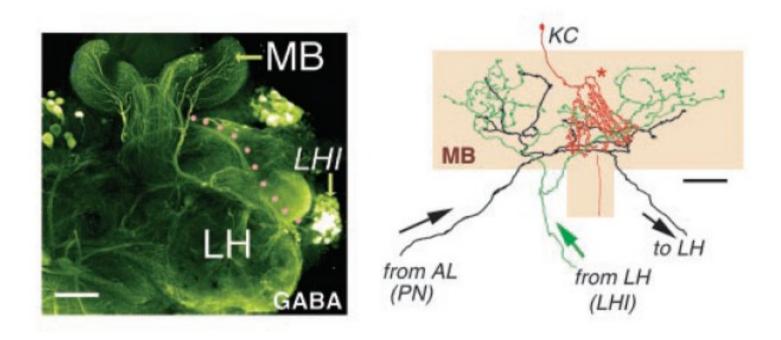
- There is a complex temporal dynamics in the AL
- One of the striking characteristics is the emergence of oscillations (measured in form of a local field potential (LFP):

(we will talk about dynamics more in the next lecture)

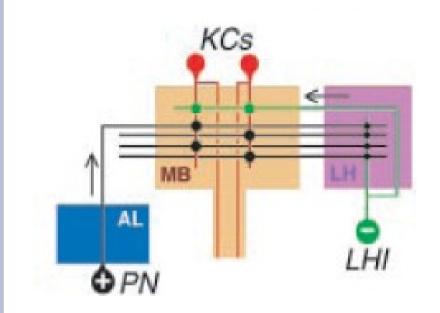


Feedforward inhibition

However, the complex activity in the AL is transmitted in a peculiar way:

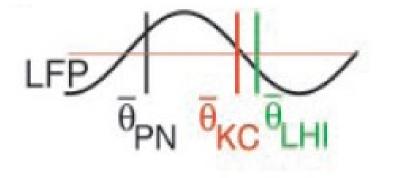


AL dynamic patterns transmitted in "snapshots"



The Local Field Potential corresponds to a periodic 20 Hz inhibition onto KCs in the MB

Perez-Orive et al., Science (2002)

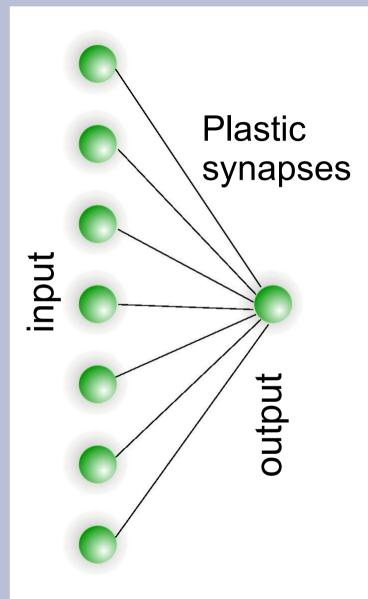


This "cuts the activity into snapshots". These are likely processed separately (!)

We have seen, that we can take the simple view for now that the task of the downstream system from the AL is the classification (recognition) of "snapshots" of activity patterns.

This is a classical task in machine learning/ artificial neural networks!

A classical pattern recognition solution



A simple perceptron rule:

Train A to respond to odor X (call it class 1)

... and hope that A does not respond to *any other odor* (call it class -1)

What do you mean: "hope"?

McCulloch-Pitts neuron

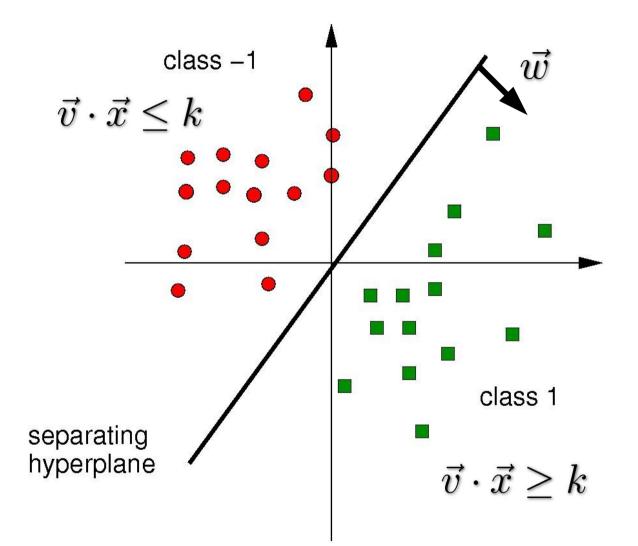
$$z(t) = \Theta\left(\sum_{j} v_{kj} y_j(t-1) - \theta\right)$$

"Hebbian" connections

$$v_{kj}(t) = \begin{cases} 1 & \text{with } p_+ & \text{if } y_j = 1, \, z_k = 1 \\ 0 & \text{with } p_- & \text{if } y_j = 1, \, z_k = 0 \\ v_{kj}(t-1) & \text{otherwise} \end{cases}$$

- Firing can be guaranteed for the right input.
- We have no control over the response to unknown inputs

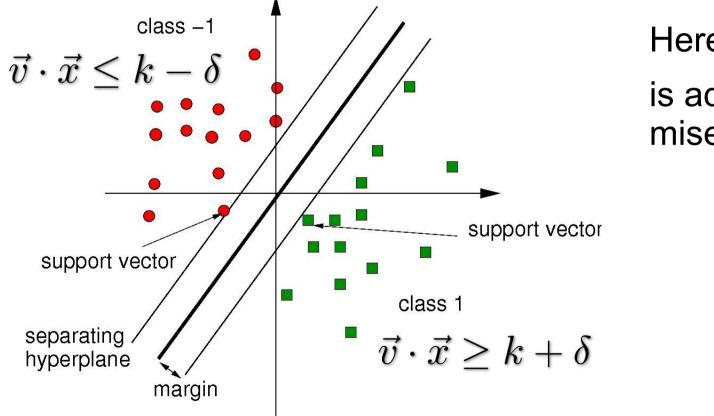
The perceptron is a linear classifier



The hyperplane is adjusted through the training and Hebbian learning

Support Vector Machines (SVM)

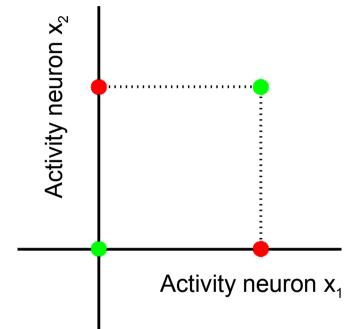
Cortes and Vapnik 1992,95: Support vector machine:



Here the hyperplane is adjusted to maxi-

mise the margin

Linear Classification can fail



There is no line that can separate green from red.

Dimension = number of neurons

Thomas Cover, 1965

"Classification is much more probable if the input is first cast into a high-dimensional space by a non-linear transformation."

Cover, T. (1965). Geometric and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE T Elect. Comput., 14, 326.

This can be done by using a non-linear "Kernel function" instead of the scalar product $\vec{w} \cdot \vec{x}$. When used like this it is known as the "**kernel trick**".

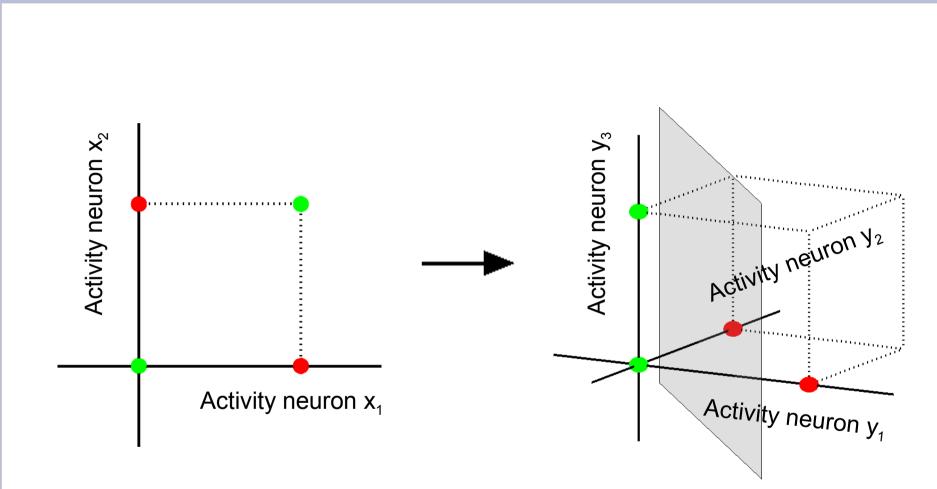
M. Aizerman, E. Braverman, and L. Rozonoer (1964). "Theoretical foundations of the potential function method in pattern recognition learning". Automation and Remote Control 25: 821–837

A related concept: MLP

If used with a large hidden layer, multi layer perceptrons (MLP) can also be seen as a related concept. The extra layer and nonlinear response of the neurons in it are the kernel/ nonlinear transformation.

See: F. Rosenblatt (1962) "Principles of Neurodynamics". New York: Spartan books.

Nonlinear trafo / kernel / hidden layer "trick"



Dimension = number of neurons

Typical kernels (transformations) used

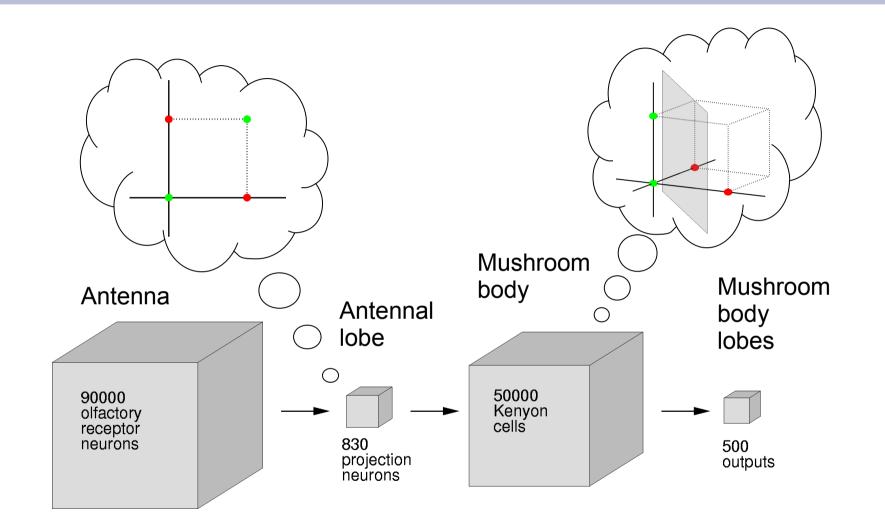
Polynomial (homogeneous): $K(\vec{w}, \vec{x}) = (\vec{w} \cdot \vec{x})^j$

Polynomial (inhomogeneous): $K(\vec{w}, \vec{x}) = (\vec{w} \cdot \vec{x} + 1)^j$

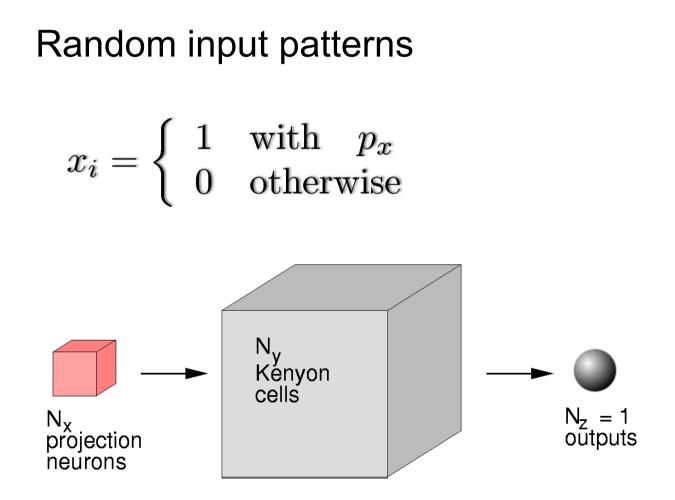
Radial Basis Function (general): $K(\vec{w}, \vec{x}) = K'(\|\vec{x} - \vec{w}\|)$

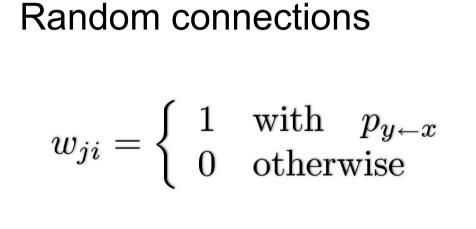
Gaussian RBF: $K(\vec{w}, \vec{x}) = \exp(-\gamma \|\vec{x} - \vec{w}\|^2)$

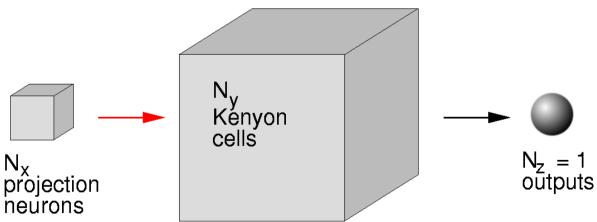
Hypothesis: The locust uses this idea



But we will use a *random kernel* (random connections)

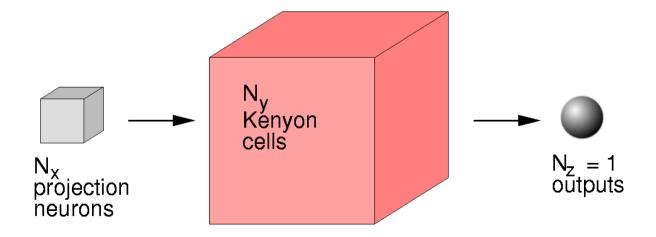




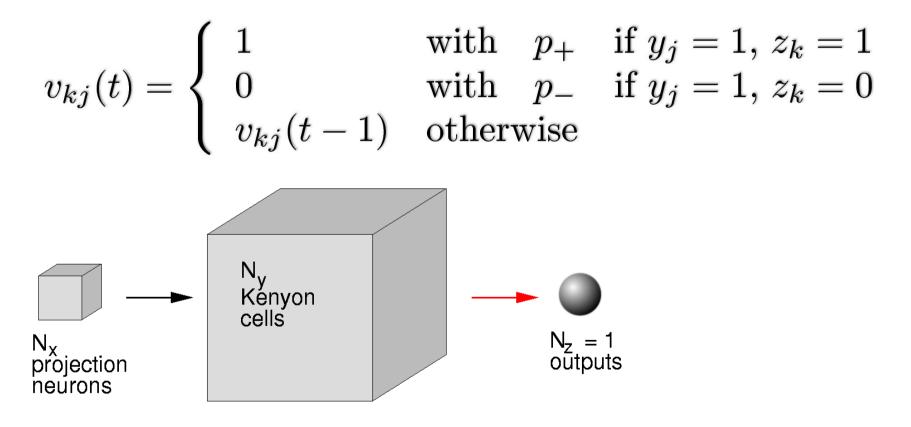


McCulloch-Pitts neurons

$$y_j(t) = \Theta\left(\sum_i w_{ji} x_i(t-1) - \theta\right)$$



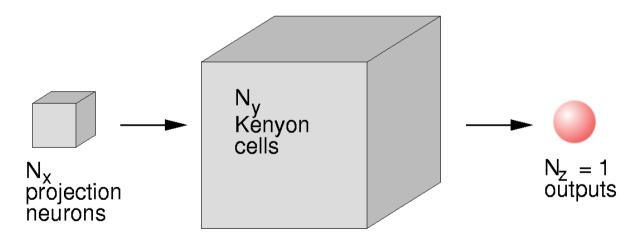
"Hebbian" connections



McCulloch-Pitts neuron

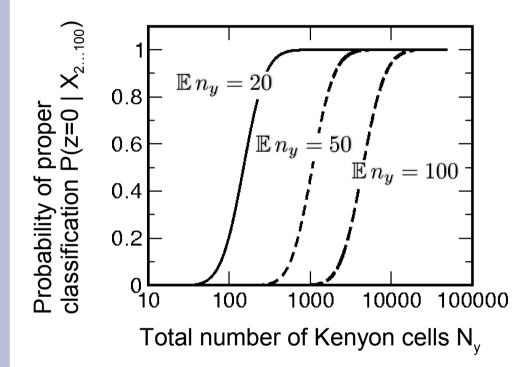
$$z(t) = \Theta\left(\sum_{j} v_{kj} y_j(t-1) - \theta\right)$$

Induce a spike for 1 trained pattern Don't do anything for 99 others



Example result: Classification needs sparse code

... and nature uses it!

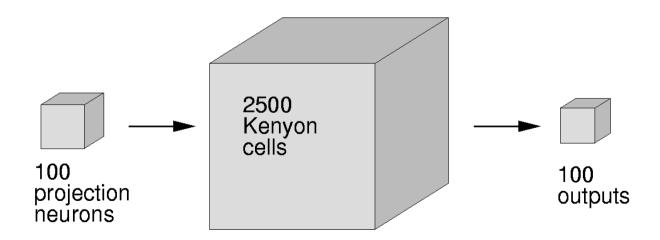


"Have many, but only use a few"

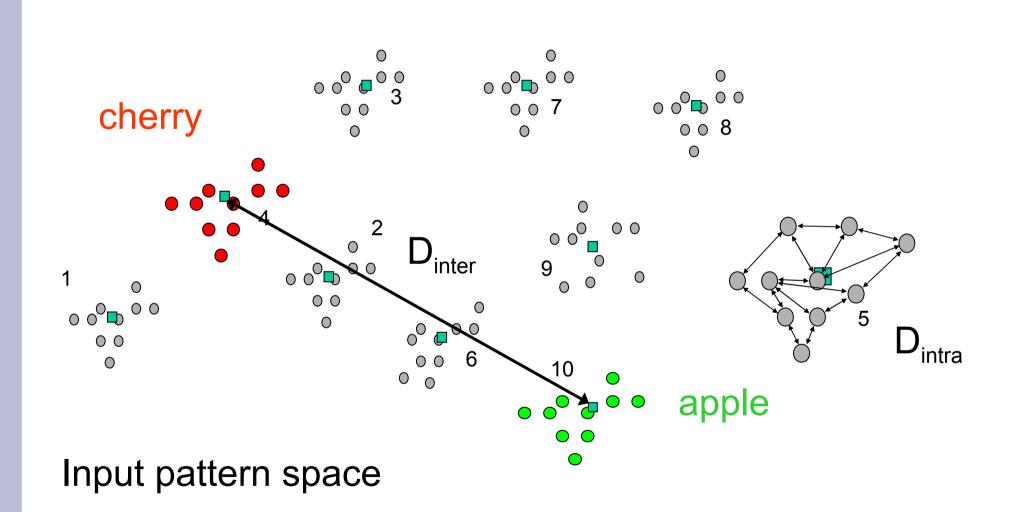
Perez-Orive et al., Science (2002)

Classify classes of inputs

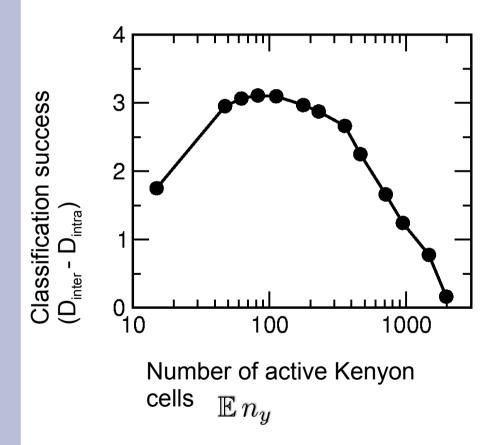
- 10 classes of inputs, 10 patterns each class
- "Winner-take-all" ouputs: The output neuron with the strongest input spikes
- Simulations in "Drosophila size"



Classes of input patterns



There are "optimal design parameters"



 \exists Optimal $\mathbb{E} n_y$ of active Kenyon cells

Summary: Connectionist model

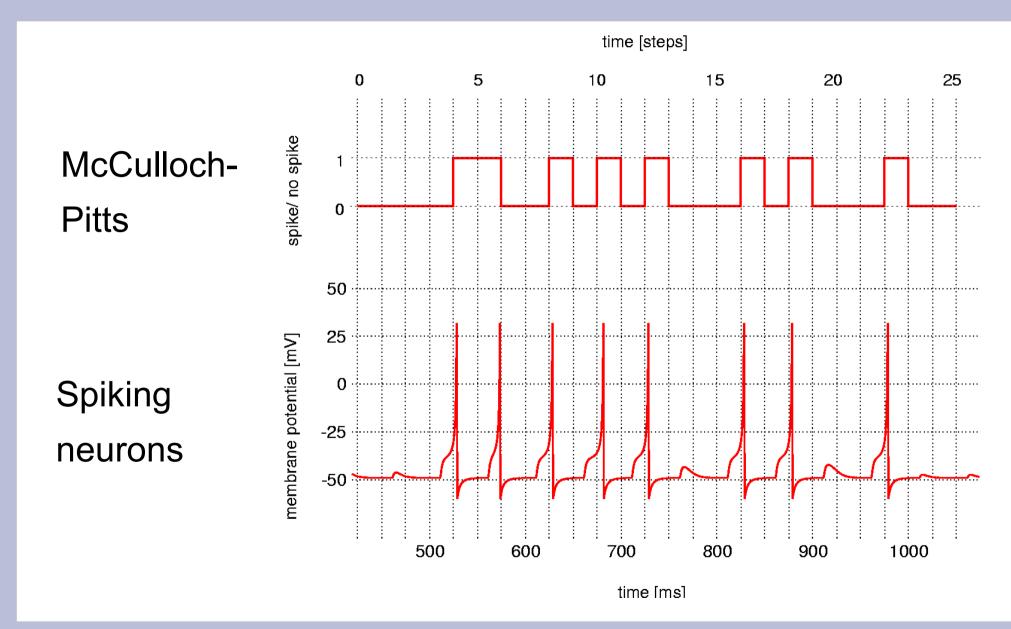
- Random connectivity is enough for classification
- This suggests support vector machines with random kernels and local, "Hebbian" learning
- An optimal, sparse level of activity is postulated and observed in biology
- These systems are freely scalable & our analysis provides the parameters of choice
- These systems are extremely robust

Shortcomings

- The winner-take-all competition between output neurons has to be implemented artificially
- Gain control in the MB has to be implemented artificially

These issues can be resolved with more realistic spiking neuron models.

Spiking neuron models



The figure on the last slide and the movies wer generated with the "Rulkov Model":

The membrane potential is a discrete mapping from one time step to the next:

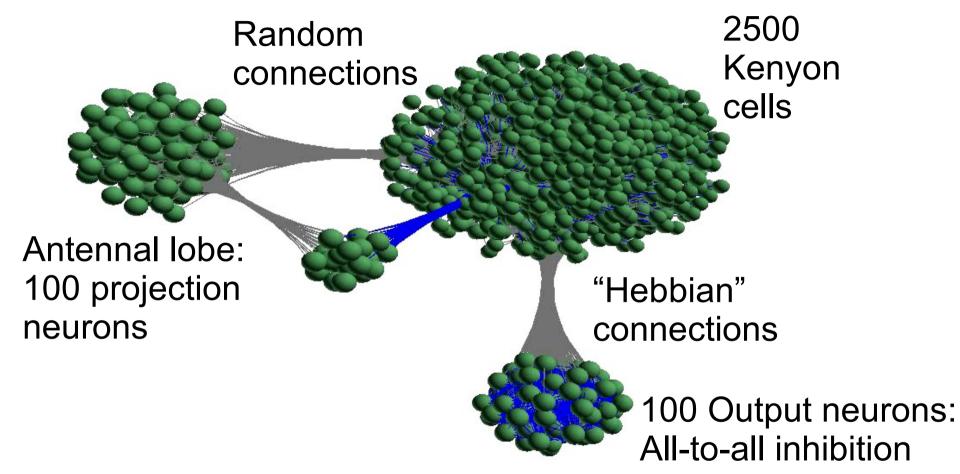
$$V(t + \Delta t) = \begin{cases} \frac{\alpha V_s^2}{V_s - V(t) - \beta I_{\text{syn}}} + V_s y & \text{if } V(t) \leq 0\\ V_s(\alpha + y) & \text{if } (0 < V(t) < V_s(\alpha + y))\\ -V_s & \wedge (V(t - \Delta t) \leq 0)\\ \text{otherwise} \end{cases}$$

We will go into more detail in the lab session.

Spiking neuron model

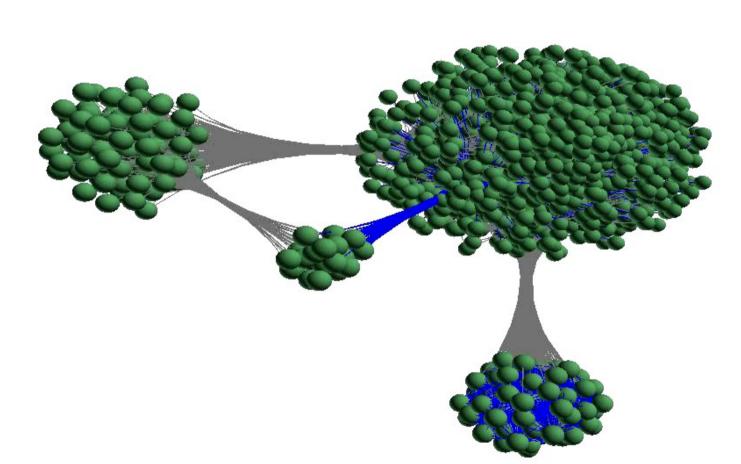
- Unlike in the previous models, we now implement competition in the MB lobes by all-toall inhibitory synapses
- Learning is now entirely unsupervised
- The system does not even know that there are classes and how many there are.

Process of recognition: Naïve locust



Created with neuranim http://sourceforge.net/projects/neuranim

Experienced locust



Created with neuranim http://sourceforge.net/projects/neuranim

Quantification

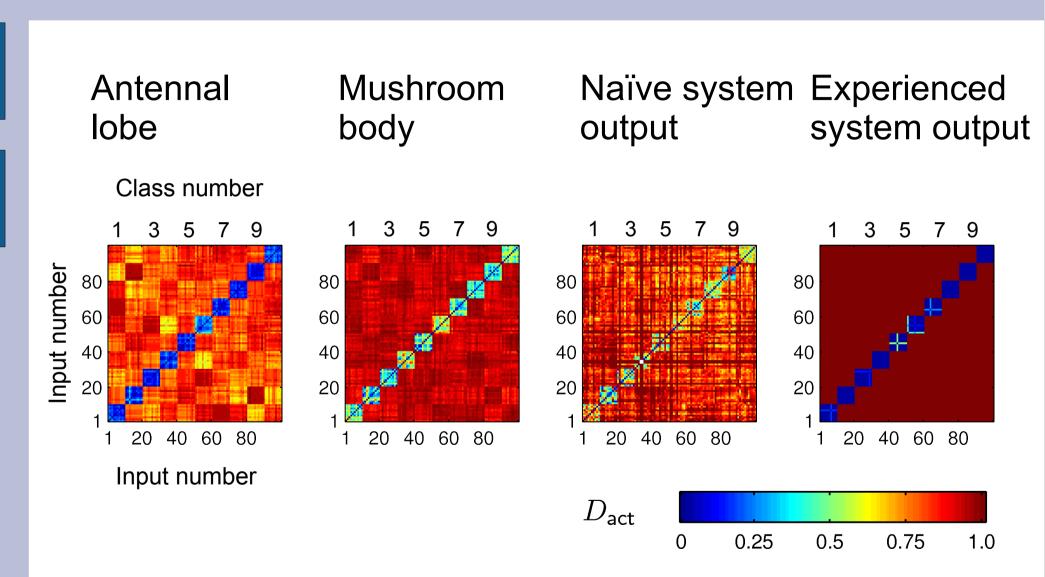
AT

Pairwise Humming distance of patterns normalized by activity:

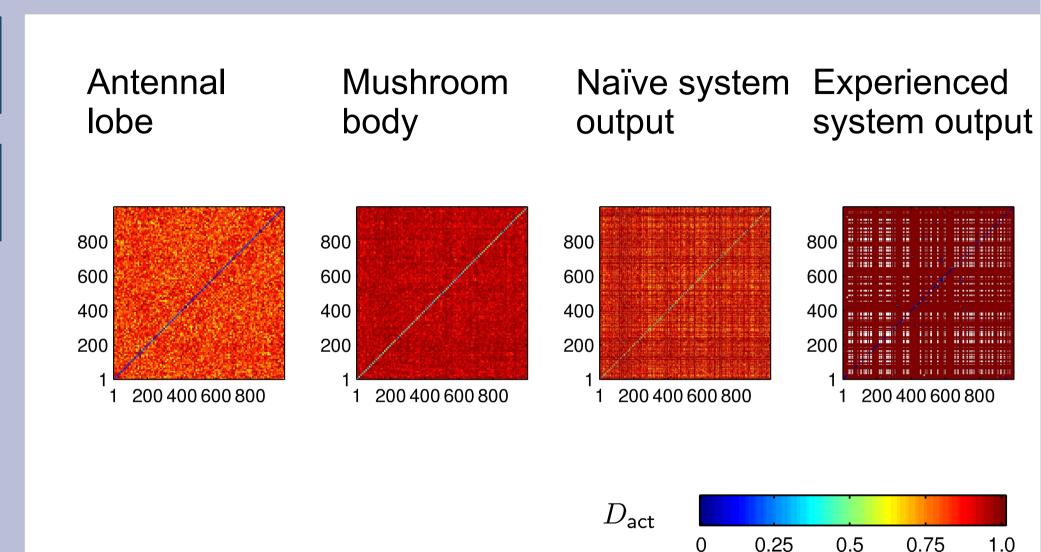
$$egin{aligned} |\mathbf{z}| &= \sum_{k=1}^{N} |z_k| \ D_{ ext{act}}(\mathbf{z}^{(i)}, \mathbf{z}^{(j)}) &= rac{|\mathbf{z}^{(i)} - \mathbf{z}^{(j)}|}{|\mathbf{z}^{(i)}| + |\mathbf{z}^{(j)}|} \end{aligned}$$

Note: D_{act} is between 0 and 1.

Quantitative Analysis



Quantitative Analysis



Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

0

0.75

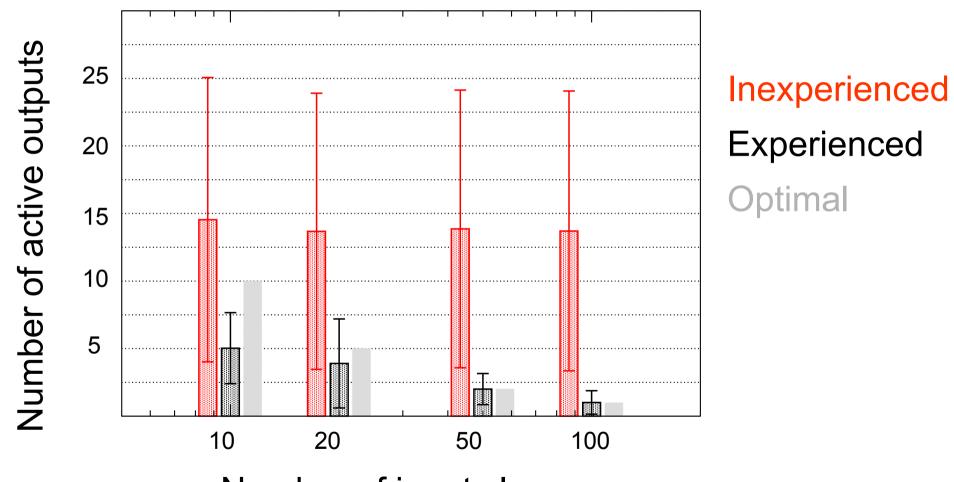
1.0

0.5

Self-organization of output responses

- In principle, all or any of the output neurons can respond at any given time
- Which do, and which don't depends on the competition between them.
- A priori it is unclear how many will respond

Automatic detection of input set structure



Number of input classes

Summary

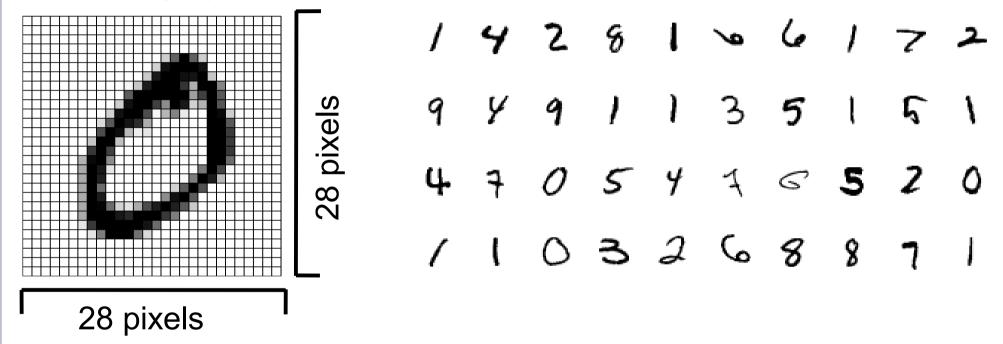
- More realistic biophysical models demonstrate that the system can *self-organize* to recognize odors
- The system detects the structure of the input pattern set autonomously

Benchmarking

- To address criticism that synthetic data is hard to judge we benchmarked against a standard pattern recognition problem:
- MNIST data set of handwritten digits

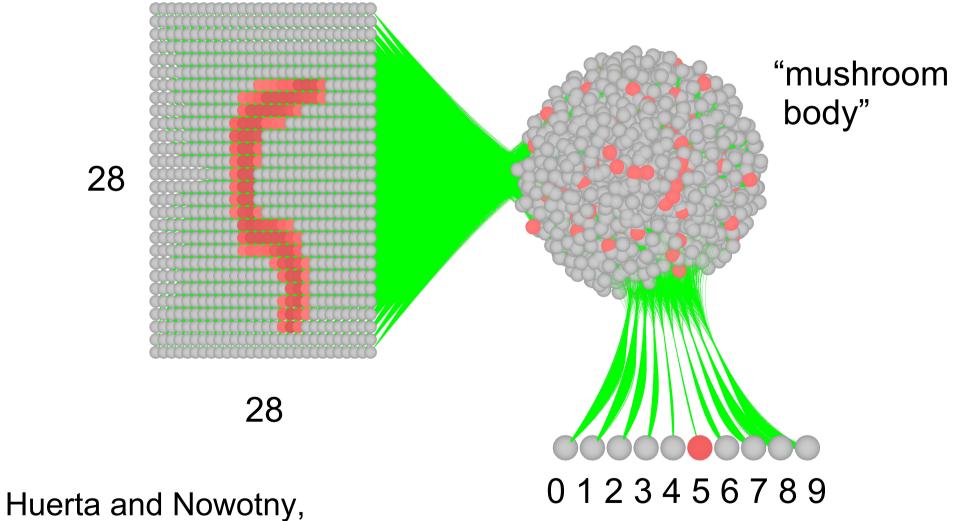
Benchmark: MNIST database

256 level grayscale



- Centering (x and y) & size normalisation
- 60000 training
- 10000 testing

Using the 'locust olfactory brain for digit recognition



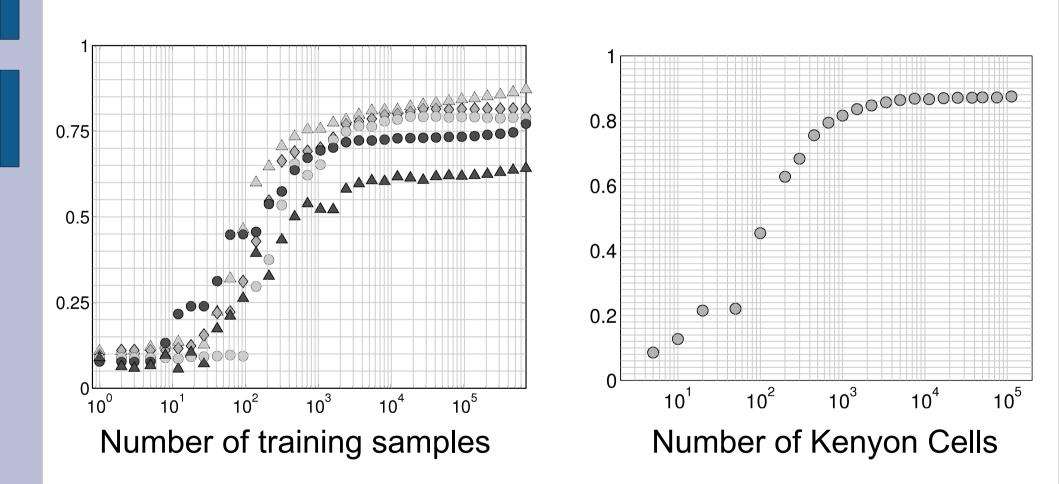
Neural Computation (2009)

Note ...

This is actually not as strange as it may seem at first glance:

The mushroom bodies have been implicated in vision as well as in olfaction, they are likely a multi-modal "learning centre"

Classification performance



Last step: hardware acceleration

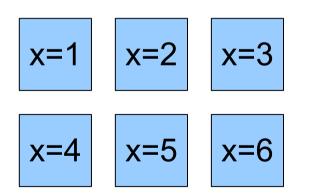
The model is numerically demanding (on the order of 60000 cells and a million synapses).

If we want to use it for applications we will need to parallelize its operation to optimize the speed.

We have built a prototype on a GPU in the NVidia CUDA framework.

NVidia CUDA

- "Common Unified Device Architecture"
- Allows main stream developers to use massively parallel graphics chips for general purpose computing



Code split into "kernels" A set of kernels form a "grid"

Grids are executed partially in parallel, partially in series

Lastly: Implementation of the system on NVidia CUDA

TESLA S1070 GPU 256 thread processors 1.5 GHz

Kenyon Cell Kernel

- Download incoming c
- 1000x
 - * Download inputs
 - * calculate 1000 ouputs
 - * write back outputs

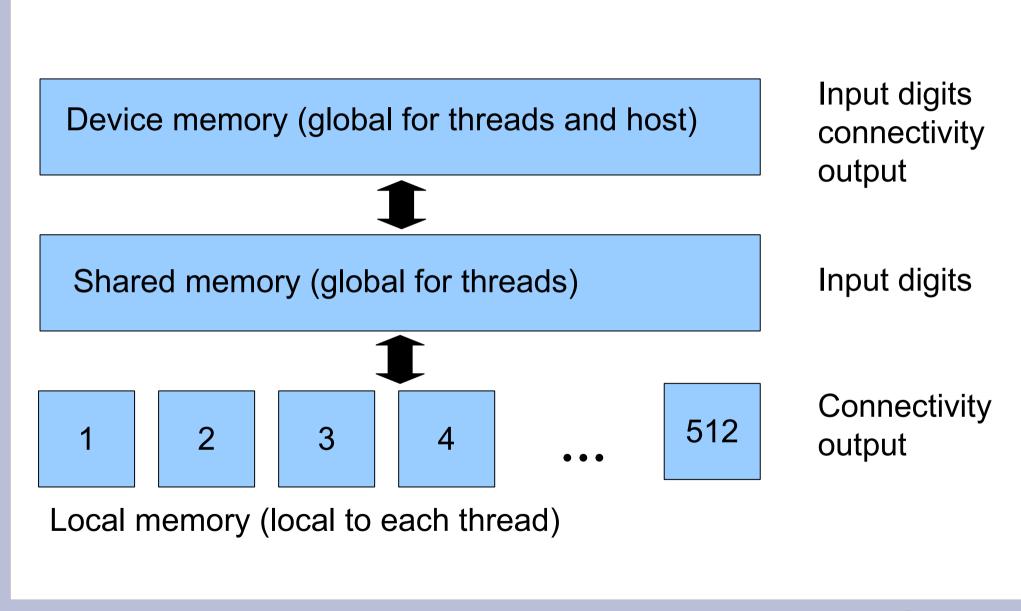
Output Neuron Kernel

- Download KC patterns
- 1000x
 - * Calculate output
 - * write back output
 - * adjust synapses

512 parallel invocations, 50000 total

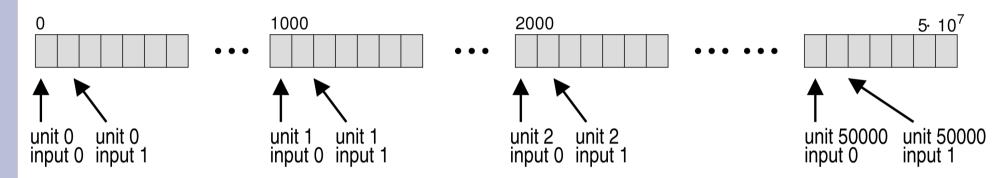
500 parallel invocations

CUDA memory hierarchy

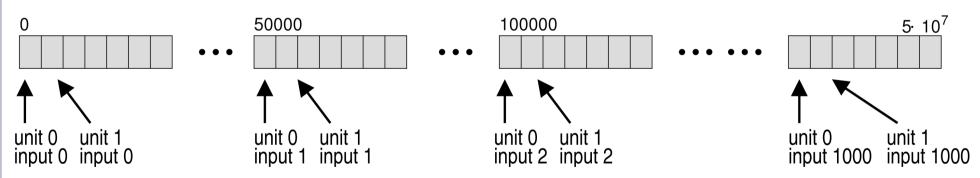


Memory usage models

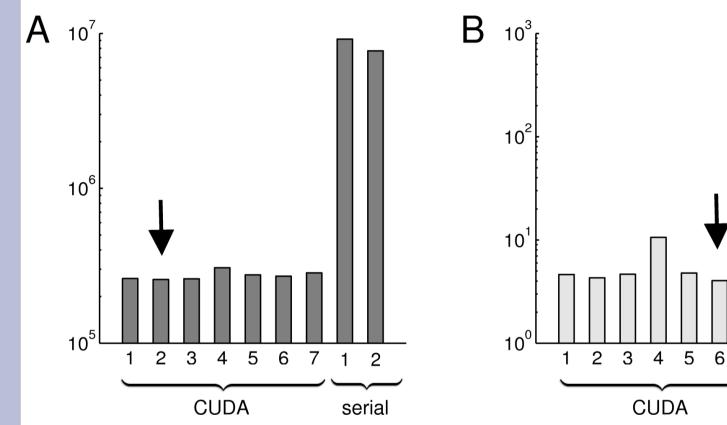
Device memory ordered by input locally and unit globally



Device memory ordered by unit locally and input globally



Summary of Timing results



Constant time requirement (loading digits, connectivity, preprocessing, testing) Time requirement proportional to number of digits trained

7

1

2

serial

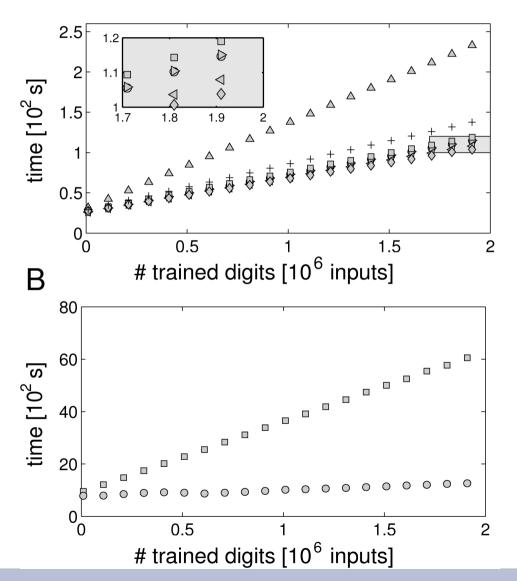
7 CUDA implementations

- KC as bits in array of bytes; input number locally
- Every 8th thread sets bits in a local byte-size buffer, copies this to device memory; unit number

locally

- As 1 but 32 bit integers
- As 2 but 32 bit integers
- KC as byte-sized integers directly to the device memory; input number locally
- As 5 but reverse ordering scheme
- As 5 but 32 bit integers

Timing trials



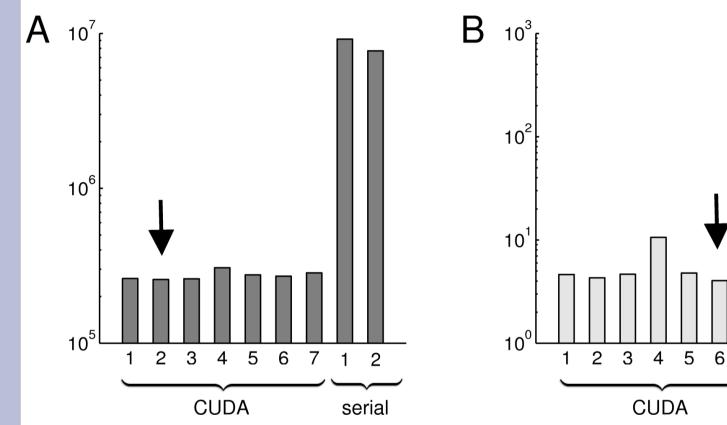
CUDA

Worst: Assembling 32bit locally

Best: Direct bytes to device; unit locally Host

Good: Unit local Bad: Input local

Summary of Timing results



Constant time requirement (loading digits, connectivity, preprocessing, testing) Time requirement proportional to number of digits trained

7

1

2

serial

Discussion: CUDA implementation

- 30 fold speed increase for KC evaluation (hidden layer)
- 6 fold speed increase overall
- Optimization of memory access is extremely important
- Things will become truly interesting when a full classifier can be done in one kernel grid invocation (that fits onto the device)

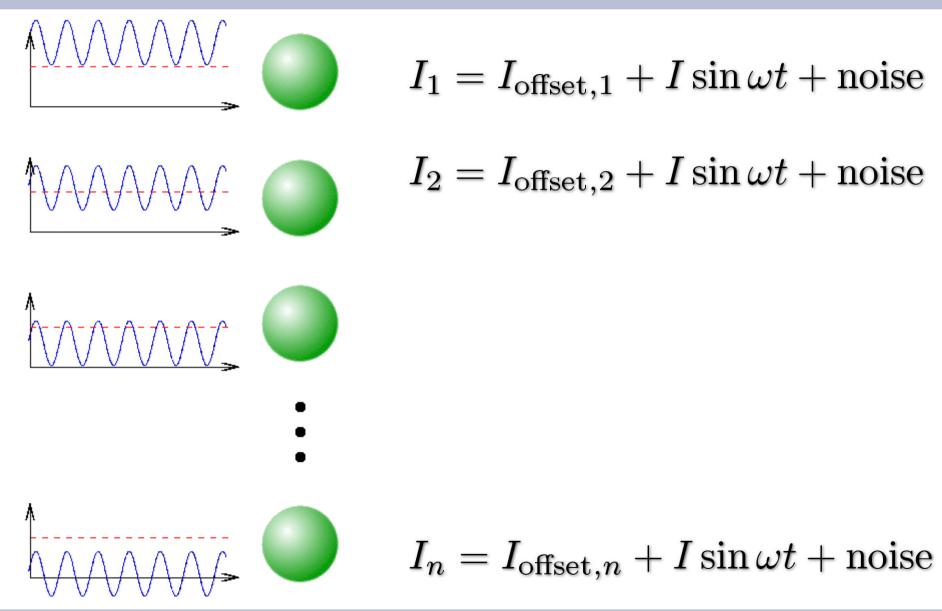
Brody & Hopfield

Model of olfactory processing

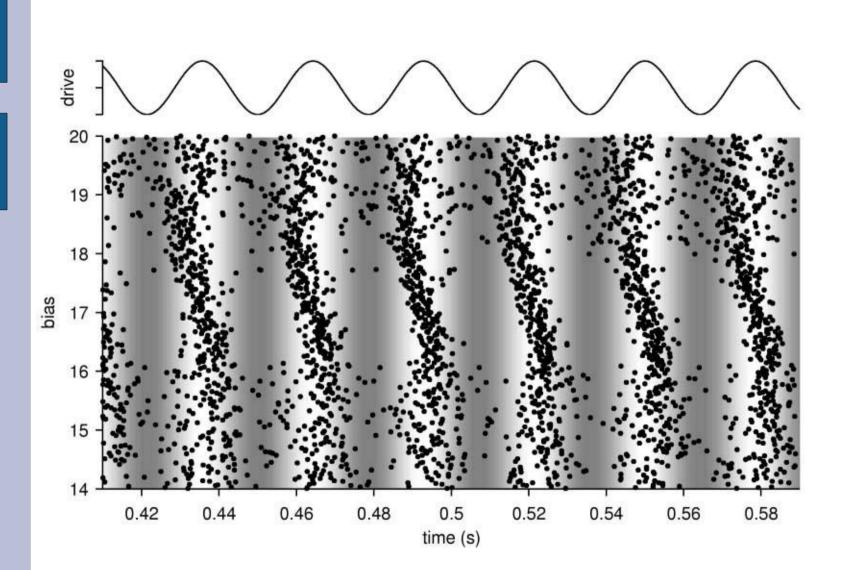
Hopfield's model of olfaction

- This is not the Hopfield model
- This model is based on what Brody and Hopfield call "Many Are Equal"
- This is based on a fundamental mechanism of synchronization by sub-threshold oscillations

Synchronziation by sub-threshold oscillations



Synchronization by sub-thresold oscillations

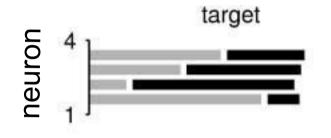


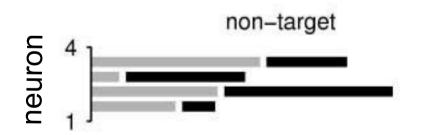
with Brody & Hopfield, Simple Networks for Spike-Timing-Based Computation, with Application to Olfactory Processing, Neuron **37:** 843-852 (2003)

Recognition by coincidence detection

- This implies that neurons that receive the same constant input current fire at the same time
- Coincidence of spikes implies identical input.

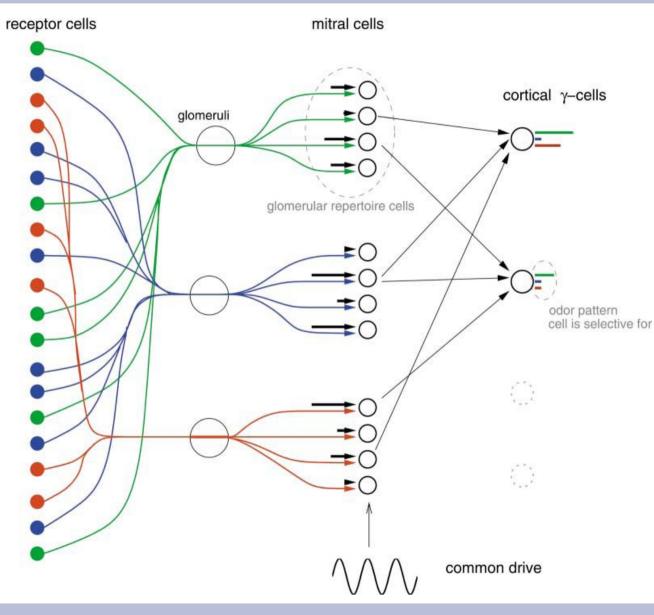
Key – lock principle





- Grey constant bias current in each "mitral cell"
- Black input current evoked by an odor input
- If the input "is right", all neurons receive the same input current and thus spike synchronously

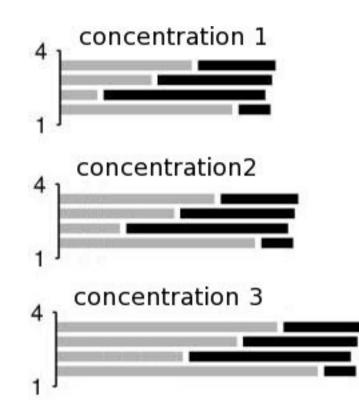
Hopfield's olfaction model



- The cortical cells connect to the mitral cell with the "correct bias"
- Odors are detected when the cortical cell gets synchronized input
- 400 ORN types, each odor excites 200

Discussion

Odors are recognized reliably across a large range of concentrations



Discussion

- Odors are recognized against a stronger background odor
- Odors in a mixture can be recognized separately (if the set of active glomeruli does not have too much overlap)
- Odors in a binary mixture with fully overlapping glomerulus set can sometimes be recognized as well (?)

You can look at these points more with the Exercises.

