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Abstract

Sensory information is represented in a spatio-
temporal code in the antennal lobe, the first pro-
cessing stage of the olfactory system of insects. We
propose a novel mechanism for decoding this infor-
mation in the next processing stage, the mushroom
body. The Kenyon cells in the mushroom body of in-
sects exhibit lateral excitatory connections at their
axons. We demonstrate that slow lateral excitation
between Kenyon cells allows one to decode sequences
of activity in the antennal lobe. We are thus able to
clarify the role of the existing connections as well as
to demonstrate a novel mechanism for decoding tem-
poral information in neuronal systems. This mech-
anism complements the variety of existing temporal
decoding schemes. It seems that neuronal systems
not only have a rich variety of code types but also
quite a diversity of algorithms for transforming dif-
ferent codes into each other.

1 Introduction

In recent years a lot of experimental evidence for
temporal coding of information has been collected
in olfactory [Laurent et al., 1998; Laurent, 1999;
Laurent et al., 2001], auditory [Jeffres, 1948; Lei-
bold et al., 2002; Lu et al., 2001], visual [v. Rullen
and Thorpe, 2001] and tactile systems [Ahissar et
al., 1997; Ahissar et al., 2000], as well as in the
hippocampus [Wallenstein et al., 1998; Fortin et al.,
2002].

The formation of spatio-temporal coding (some-
times also referred to as identity-temporal or
ensemble-temporal coding) in the hippocampus is
related to behavioral tasks following a temporal se-
quence [Fortin et al., 2002]. In the example of the
tactile system the sensory information from whiskers
is encoded in the identity of active neurons for ver-
tical localization but in a temporal code induced by
whisker swiping for horizontal information [Ahissar
et al., 1997; Ahissar et al., 2000]. Examples of
temporal encoding in the visual system are nu-
merous. We have, for example, temporal patterns
found in lateral geniculate nucleus [Reinagel and
Reid, 2000], temporal coding of contrast [Reich et
al., 2001] and general temporal codes in visual cor-
tex [Reich et al., 2000]. Temporal information pro-

cessing in the auditory system is mainly used for
sound location in a three dimensional environment
utilizing very precise spike timings [Jeffres, 1948;
Leibold et al., 2002] but there is also evidence for
non-trivial processing of the temporal structure of
sound stimuli in general [Lu et al., 2001].

In the olfactory system temporally structured ac-
tivity is generated even if the stimulus has no tem-
poral structure itself [Wehr and Laurent, 1999]. It
has been demonstrated that such temporal coding
plays a role in enhancing the discrimination of sim-
ilar odors [Stopfer et al., 1997; Laurent et al., 1998;
Teyke and Gelperin, 1999].

Several methods to decode temporal information
in neuronal systems have been proposed. The old-
est we are aware of [Jeffres, 1948] uses delay lines
and coincidence detectors to explain the mechanisms
of sound location. In more recent work Buono-
mano et al. showed that a random network of neu-
rons with excitatory and inhibitory synapses hav-
ing realistic properties is able to transform tem-
porally differing input into spatially different acti-
vation patterns [Buonomano and Merzenich, 1995;
Buonomano et al., 1997]. Even more recently, exper-
imental observations of the encoding-decoding pro-
cess in tactile systems indicate that temporal infor-
mation in these systems is gated through the tha-
lamus [Ahissar et al., 1997; Ahissar et al., 2000] to
yield a spatial rate code.

In this paper, we analyze the role of local excita-
tory connections for temporal decoding in the olfac-
tory system of insects using the locust as our main
model system.

The second information processing stage of the ol-
factory system of the locust, the antennal lobe (AL),
has been subject to a thorough theoretical analy-
sis [Rabinovich et al., 1998; Rabinovich et al., 2001;
Bazhenov et al., 2001b; Bazhenov et al., 2001a;
Laurent et al., 2001]. In the AL the dynamical in-
terplay of excitatory and inhibitory connections be-
tween projection neurons (PNs) and local interneu-
rons (LNs) produces sequences of activity that map
uniquely to the encountered odor [Stopfer et al.,
2003]. Odor identity as well as its concentration are
encoded in these sequences of activity.

The present work focuses on the next stage of
neural processing in which the information, encoded
in the complex dynamics of the AL, is projected



onto a larger screen, the mushroom body (MB). The
Kenyon cells (KC) in the MB seem to be coincidence
detectors for synchronized activity in the AL. It has
been shown that the resulting code in the MB is
sparse [Perez-Orive et al., 2002]. In addition to the
direct projection from the AL to the MB there is also
a global feed-forward inhibition mediated by lateral
horn interneurons (LHIs) that resets the activity of
the KCs in the MB every 50 ms. This reset mech-
anism cuts the spatio-temporal code of the AL into
snapshots of spatial activity patterns.

Our inquiry rests on a paradox. The KCs have lo-
cal excitatory axo-axonal connections to their near-
est neighbors but to date the function of these con-
nections is unclear especially because the global inhi-
bition stops the propagation of activity every 50ms.
Furthermore, if the connections were strong and fast
enough to affect neighboring KCs within one 50ms
cycle of activity this would lead to a non-sparse code
which is not observed.

Our main hypothesis is that if the lateral excita-
tion between KCs is sufficiently slow it can be used to
decode temporal information across activity cycles.
We show that lateral slow excitation can transform
a given sequence of activity in the AL into a spatial
representation in the MB that is significantly differ-
ent from the representation of any permutation of
that sequence. This way the temporal information
of the order of the sequence of activity snapshots in
the MB is conserved. This might otherwise be lost
during integration of MB activity in downstream ar-
eas.

2 Biological morphology

The olfactory circuits of the locust are known ac-
curately [Perez-Orive et al., 2002]. About 90000
olfactory receptor neurons in each antenna project
through ~ 900 glomeruli to the corresponding AL
containing ~ 830 projection neurons (PN) and ~ 300
LN. The PNs of each AL contact ~ 600 of a total of
~ 50000 KCs in the ipsilateral MB through the ca-
lyx. In return each KC receives input from ~ 10— 20
PNs. This pathway seems to be the only olfactory
input to the MB. There also seems to be no direct
feedback from the MB to the AL.

The KC of the MB are subject to a periodic global
inhibition due to the activity of LHIs which are ex-

cited by input from the PNs of the AL. The activity
of the LHIs exhibits an approximate phase shift of
~ 180° with respect to the average activity of the
PNs or - more or less equivalently - to the observed
local field potential in the calyx.

The KCs project to the «, 8 and 7-lobes through
axons which are densely packed in nerve fibers. It
has been known for some time that the axons have
chemical connections within these nerve fibers estab-
lishing a local hexagonal lattice structure within the
otherwise seemingly unconnected KCs [Leitch and
Laurent, 1996]. The type of connection has not yet
been determined unambiguously but they are sus-
pected to be excitatory. These connections are the
essential ingredient for the decoding mechanism sug-
gested in this work.

The output of the AL is the synchronous firing of
small groups of PNs. These groups of active PNs
evolve in a slow switching pattern. Typically in the
order of 200 PNs respond in groups of ~ 30 syn-
chronously firing neurons to each odor [Wehr and
Laurent, 1996; Laurent et al., 1996]. Recent experi-
ments indicate even larger group sizes in this activity.
This type of dynamical activity has been argued to
result from neural circuitry built on the principle of
winnerless competition [Rabinovich et al., 2001].

3 Functional principle

Our main hypothesis is that the KCs in the MB form
a device that transforms the dense spatio-temporal
code generated by the AL into a sparse spatial code.
The mechanism we suggest to perform this task only
requires a sufficient size of the MB and a local struc-
ture of slow excitatory connections. No specific con-
nectivity between the AL and the MB is necessary.
The basic mechanism for the transformation of
the spatio-temporal code is illustrated in figure 1.
The individual KCs act as coincidence detectors for
the synchronous PN input with some given thresh-
old. The coincidence detection responds to the spa-
tial part of the spatio-temporal code. The threshold
together with the known connectivity statistics de-
termines the average initial activity of the KCs in
response to an odor. If a given KC detects a coinci-
dence of sufficiently many PN inputs, it will fire an
isolated spike. This will excite the neighbors of this
particular KC through the local excitatory connec-
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Figure 1: Illustration of the transformation of tem-
poral into spatial information. If a coincidence detec-
tion occurs the local excitatory connections activate
the neighbors of the active neuron (yellow neurons
in the second row). Coincidence detection of input
is now more probable in these activated neighbor-
hoods than in other KCs. Which of the neighbors
might fire a spike however depends on the activity
of the PNs in the next cycle. It might be a differ-
ent neuron for an active group B of PNs (left side)
than for active group C (right side). In this way lo-
cal sequences of active KC form which depend on the
identity of active PNs (coincidence detection) as well
as on the temporal order of their activity (activated
neighborhoods).

tions. In the temporally next cycle of PN activity
these neighbors will be more receptive to input from
the AL than in their resting state, i.e., fewer coinci-
dent inputs than in the previous cycle will suffice to
trigger a spike in these neurons. Depending on the
input in the next cycle of PN activity it is therefore
likely to have a spike in a KC in the neighborhood
of the originally active KC. This will in its turn ac-
tivate its neighbors and so on. By this mechanism
small clusters of active neurons are formed whose
size and shape depend on the identity and tempo-
ral order of the input. It obviously is essential for
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Figure 2: Morphology of the computer model. Ex-
citatory synapses are shown as red lines, inhibitory
connections as black lines. Thickness and texture of
the lines hint to the strength of the connections.

the functionality that the local excitatory connec-
tions are effective longer than one activity cycle of
the PN input. Equally important is an adequate
connectivity statistics allowing the subsequent coin-
cidence detection in the activated neighborhood KC
of active KCs.

4 Numerical Simulation

Because the statistical properties of the connectiv-
ity between AL and MB play a crucial role in the
suggested function of the KCs the system was simu-
lated in a realistically sized network. We used a set of
158 x 316 = 50, 000 integrate and fire neurons to rep-
resent the KCs in the MB. These very simple neurons
are adequate for the KCs as they only need to pro-
duce a single spike on an infrequent basis. They are
connected in a hexagonal lattice by excitatory Rall-
type synapses (see Appendix A). The input from
the AL stems from 830 Hodgkin-Huxley type model
neurons which are induced to spike synchronously in
randomly chosen groups of 30 neurons. The active
PN neurons spike every 50 ms and the group of ac-
tive PN neurons is switched every 250 ms. The PNs
have a fixed probability p = 600/50000 to be con-
nected to each KC leading to about 600 connections
for each PN.

The feed-forward periodic global inhibition of the
LHIs is implemented by one Hodgkin-Huxley type
neuron with slow calcium dynamics. It receives input



from all PNs and inhibits all neurons in the KC lat-
tice. The morphology of the computer model is de-
picted in figure 2. Details of the neuron and synapse
models used are given in Appendix A.

Up to this point the simulation is just a crude im-
age of the real system without any specifics about its
biological functionality. It is common understanding
that the KCs in the MB work as coincidence detec-
tors. We adopted this view and chose the time scale
of the PN-KC connections to be 74y, = 1ms; namely,
small. This makes the KCs very sensitive to the rela-
tive timing of incoming input from the PNs and lets
them function as coincidence detectors. The synap-
tic strength of the PN-KC connections needs to be
carefully adjusted to account for the observed ini-
tial KC activity in an odor response. It turns out
that a constant synaptic strength of these connec-
tions cannot account for the activity level observed.
We, therefore, introduced an additive Gaussian jit-
ter on the synaptic strengths, in particular for a PN
(i=1,...,npn) to KC (j = 1,2,...,ngc) connection,
we use

| g+dg with probability p 1)
i\ o with probability 1 — p

where g is the (fixed) average value and dg;; are in-
dependent identically distributed (iid) Gaussian ran-
dom variables with mean 0 and standard deviation
o. For a detailed analysis see Appendix B.

To implement the functional principle described
above the local excitatory connections need to be suf-
ficiently slow to still take effect in the next cycle of
synchronized PN activity. We therefore tried connec-
tions with time scale 7xc = 30ms and 40ms. The
synaptic strength then again needs to be adjusted
carefully to be strong enough to allow the temporal
decoding described above and to be not to strong to
avoid excessive KC activity in form of propagating
waves. Appendix B explains the heuristics leading
to the values used in the simulation.

5 Results

To test the transformation principle we randomly
chose ensembles A, B, C' of 30 PN each and acti-
vated these ensembles in different temporal orders.
The same ensembles A, B, and C were used in all

simulations. If the mechanism was implemented suc-
cessfully the activation of A — B — C should lead
to a different activation pattern in the KC lattice
than B— A—Cor A—C — B.

In figure 3 the differences in the average activity
of all the KCs for input A — B — (' compared to
input A — C — B is shown for local synapses with
time constant 7y, = 40ms and synaptic strength
ksyn = 2.5 uS. (See the equations for synaptic cur-
rent in Appendix A.) Clearly, the activity is spe-
cific to the order of the presented sequence. Fur-
thermore the difference in activity occurs preferen-
tially at small clusters. The differences of activity
between the other two pairings are similar. With
stronger local synapses the overall activity and the
difference in activity for different input sequences
grow. Figure 4 shows an example for 74y, = 40ms
and kg = 2.7 uS.

For different activity sequences a,b,= 1,2,3, ...,
thatis A - B —- C, A — C — B, etc, we quan-
tify the differences in the average KC response using
the average response for each KC ¢ = 1,2, ..., nkc
over the time T' during which each sequence was pre-

sented to the KC. This average response of each KC

(@)
is 32(-‘1) = RZT where nga) is the number of spikes KC

1 fired during T. The average intensity of response
over all KCs to the presentation of sequence a is given
as

A2 =" (s1)2 (2)

i=1

The difference in the KC response to two sequences
a and b is indicated by

nKc

Ag? =D (s = sy (3)

=1

such that the relative difference per response inten-
sity is

2
Aab

Oap? = ——=2 .
Aa2+Ab2

(4)
This ratio lies between 0 and 1. In Figure 5 this ratio
is shown for some values of the strength and the time
scale of the local synapses in the KC lattice.

The total activity grows with increasing strength
of the local connections. At kg ~ 2.1uS (7 =
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Figure 3: Differences in the average activity of in-
dividual PN and KC for local synapses with time
constant 7eyn = 40ms and synaptic strength ke, =
2.5uS. (See the equations for synaptic current in
Appendix A.) All PNs and KCs are represented as
small dots. The PNs are shown in a single column on
the left side. The KCs are arranged on a 2d hexago-
nal lattice reflecting their axo-axonal neighborhood
structure. The average activity of the cells is shown
in a greyscale ranging from no activity (white) to
maximal activity (total 5 spikes, black). The PN
which are much more active than the KC and there-
fore darker. Superimposed on this image is the differ-
ence in activity in a color code. Here the scale ranges
from red (2 more spikes in A — C — B than in
A — B — () to green (2 more spikesin A - B — C
than in A — C' — B). Note that there is no differ-
ence in the average activity of the PNs. The average
activity in the sequence A — B — C per KC and
per ms is 0.13 £ 1.3 - 10~%. The average activity of
the active neurons is 1.2 £ 0.4 - 1073 spikes per ms
corresponding to 1.2 spikes in the whole 1000 ms pe-
riod. The number of active KC is 544. The average
activity is similar for the other sequences. The boxes
at the bottom and right side highlight and magnify
regions in the KC lattice that illustrate the results
most clearly.

~ PN

Figure 4: Differences in the average activity of in-
dividual PN and KC for local synapses with 7y, =
40ms and kegyn = 2.7uS. The arrangement is as in
figure 3 but the color coding here ranges up to 7 more
spikes for one sequence over the other. The greyscale
is from 0 spikes to 10 spikes. Even though the time
scale and strength of local synapses is clearly be-
low the propagating wave threshold ongoing input
from the PN leads to a driven propagation of wave-
fronts. The specificity to the input is not lost as the
shown large differences between the activity for in-
put A— B — C and A — C — B indicate. The
average activity per KC and per ms in this case is
1.1 4+5.3-107%. The average activity of the active
neurons is 1.8 1.3 - 1073 spikes per ms correspond-
ing to 1.8 spikes in the whole 1000 ms period. The
number of active KC is 3084. The average activity
is similar for the other sequences. Note that the col-
ored areas consist of individual active neurons. Thus
the size of the areas gives a good impression of the
total number of KCs involved in the response.

30ms) and kgyn ~ 2.6 uS (7 = 40ms) the critical
value for the onset of forced propagating waves is
reached resulting in an abrupt change in the slope
of the activity curve. Note the logarithmic scale
on the y axis in the upper panels in figure 5. The
earlier onset of forced propagating waves for faster
synapse time scales is explained by the fact that the
maximum of the typical EPSP elicited by the local
synapses is greater for the faster time scales. If plot-
ted versus the maximum of the EPSP the curves for
different time scales more or less coincide, see e.g.
figure 5, lower right panel.
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Figure 5: Overview over the dependence of the dif-
ference in average activity on the synaptic strength
of the local connections. Panel A shows the total
average activity. The three symbols correspond to
the three tested input sequences. Panel B displays
the total distance between the activities correspond-
ing to the three possible combinations of input se-
quences. Panel C shows the difference normalized
by the activity of the sequences versus the strength
of local connections and panel D shows the same data
versus the size of the maximal membrane potential of
a typical EPSP evoked by one of the local synapses.
Note that the distances between the activity pattern
generated by one of the input sequences and that
caused by another sequence are very similar for all
the possible combinations. It is also remarkable that
when displayed versus the EPSP size the data for dif-
ferent time scales of the local synapses collapse onto
the same curve. 7y = 40ms (filled symbols) and
30ms (open symbols).

It is remarkable that the distances between the ac-
tivities for sequences that differ in the last two groups
and those who differ at the beginning are of the same
order of magnitude for most of the time even though
one would naively expect that the identity of the first
group matters most.

There is a local maximum of the relative differ-
ence in activities for keyn ~ 2.75uS (7 = 40ms)
suggesting an optimal value for the strength of local
connections in the MB. Note, however, that this is
already in the regime of forced propagating waves
which might conflict with the concept of sparse cod-

ing.

6 Discussion

We have demonstrated that under biologically rea-
sonable assumptions the MB of the locust can func-
tion as a device to transform a dense spatio-temporal
code into a sparse spatial code. In particular it has
been shown that slow local excitatory connections
allow one to decode the temporal information in the
input. Underlying this transformation is a mecha-
nism to decode spatio-temporal neural information
that is based on coincidence detection and slow ex-
citation. It does not need any specific connectivity
between PNs and KCs.

While using several known properties of the bio-
logical system as an input this modeling study also
provides clear predictions about the necessary prop-
erties of the local connections in the MB. An exper-
imental test for the the mechanism suggested in this
study is to measure the EPSPs generated by the lo-
cal axo-axonal connections among KCs. The EPSPs
should outlast the duration of a resetting cycle by
the global inhibition of the LHIs. Furthermore, we
predict a range for the strength (maximal conduc-
tivity) of these connections.

Our interpretation of the sparse spatial code gen-
erated in the MB assumes integrators of the KC
activity in downstream neural circuitry. The for-
mation of local clusters suggests that it might be
advantageous for these integrators to receive input
that is local with respect to the axo-axonal KC lat-
tice structure. There are indications from stain-
ing experiments in cockroaches which might sug-
gest such a connectivity [Strausfeld and Li, 1999;
Strausfeld et al., 2000]. It is, however, an open ques-
tion on what time scale such downstream integra-
tors might operate. The mechanism suggested here
points to a long integration window because other-
wise the decoded temporal part of the information
might be lost.

One might hope that the formation of small clus-
ters of activity in the KCs of the mushroom body
might be detectable in optical or tetrode record-
ings. The clusters form with respect to the neigh-
borhood structure defined by the axo-axonal connec-
tions, however. This neighborhood structure does
not correlate well with the spatial arrangement of



the KCs one can see in experiments such that the
clusters cannot be seen directly.

There are several future directions for this re-
search. One important question is how learning can
be included into the current scheme. There are clear
indications that the MB is involved in learning and
memory of olfactory information [Heisenberg, 2003;
de Belle and Heisenberg, 1994; Hammer and Menzel,
1998; Dubnau et al., 2001]. Another project is to
move to more and more realistic input from the AL
including asynchronous input if no odor is present,
noise and eventually input from a realistic AL model.
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A Model components

All synapses in the system were represented by a
model first introduced by Rall [Rall, 1967; Rall, 1989]
and now is a standard model for synapses [Destexhe
et al., 1998]. The synaptic current into a postsynap-
tic neuron with membrane potential Vit (t) is given
as

ISynapse = _ksyn g(t) (Vpost (t) - Vsyn)a (5)

where g(t) satisfies

%(tt) _ T:yn (O(Vore(t) — Vin) — £ (1))

Vih = —20mV, and Viy,, = 0mV for excitatory and
Veyn = —92mV for inhibitory synapses. Vpre(t) and

Vpost (t) are the pre- and post-synaptic membrane po-
tentials and 75y, and kgyn are the time scale and the
strength of the synapse respectively. ©(u) = 0,u <0
and ©(u) = 1,u > 0 is the usual Heaviside function.

The PNs of the AL were represented by Hodgkin-
Huxley type model neurons previously developed for
simulations of the AL itself. The equations of these
conductance based model neurons are

dv (t)

Cdt

= —(Ina(t) + Ix (t) + Ica(t) + Ikca(t)
+ Il(t)) + Isynapse (1), (7)

where V (t) is the membrane voltage, C' = 1.0 uF is
the membrane capacitance, and the ion currents are
determined by

Ina(t) = m(t)3h(t)gna(V (1) — Vaa)

Ik(t) = n(t)*(V(t) — Vk)
Ica(t) = k(t)3l(t>90a1_¥v(2>/m
w(t)*

Ikca(t) = grca(V (t) — Vikea) , (8)

ko +w(t)t

and the leak current is

L(t) = g(V(t) = V). (9)

Isynapse is as given above. We used the following
values for the maximal conductances and reversal
potentials: g; = 0.1uS, gna = 50 1S, gk = 10uS,
gca = 0248, gkca = 0.15uS, Vi = =55mV, VN, =
50mV, Vx = =95mV, Vkca = —95mV, and the
constants are kg, = 0.15 and kc, = 24.42mV.

Each of the activation and inactivation functions
m(t), h(t), n(t), k(t), and I(t) satisfy first order ki-
netics equations of the form

d?g_]fﬂ = Ax(V(1)) = Bx(V(t)X(1),  (10)



where for X (t) = m(t), h(t), and n(t)

Ax (V) =ax(V)
Bx (V) = ax (V) + Bx(V)
V +42mV
1 —exp(—(V +42mV)/4mV)
V+15mV
1 —exp((V+15mV)/5mV)
ap(V) = 0.0426 exp(—(V 4+ 38mV) /18 mV)

am(V) =0.116

B (V) = —0.093

1.33
V) = 1+ exp(—(V +15mV)/5mV)
(V) = 001 V +30mV

1 —exp(—(V+30mV)/5mV)
Ba(V) = 0.166 exp(—(V + 35mV)/40mV). (11)

For k(t) and I(t) we have

)= 50

Bx(V) = 5155
V) = o T 271.1 mV)/718mV)
Be(V) =20 — 1= exp((vl—gio.l)/éi mV')
alV) = (v + 271,0 mV)/3.5mV)
V) =304 o o T T

(12)

The Ca induced K current activation is governed by
w(t) satisfying

dw(t) Ica(t) 2
— = 0.001( — A cow(t) +0.04¢5), (13)
and ¢y = 1.8.

The PNs are induced to spike by input received
from artificial input neurons which fire rectangular
spikes according to the chosen input pattern and are
connected to the PNs by Rall type synapses with
Toyn = 1.0ms and kgyn = 0.8 uS.

Using such an elaborated neuron model for the
PN, which are not the focus of interest in this study,
might seem like overkill but will allow to easily com-
bine earlier studies of the AL with the present one
in future work. Note that in investigations of the

AL appropriate neuron models are important for
reproducing the complex spatio-temporal dynam-
ics [Laurent et al., 2001; Rabinovich et al., 2001;
Bazhenov et al., 2001b; Bazhenov et al., 2001a].

The KC were represented by leaky integrate and
fire neurons (IF) described by

Cd‘cfi(t) = —I[(t) + ISynapse(t)a (14)
t
where

I(t) = a(V(t) = V2), (15)

Isynapse(t) is the synaptic input current given above,
g1 =03uS and V; = —60mV. If V(t) grows larger
than a given threshold Vipresh = —35mV it is instan-
taneously set to the firing voltage Viax = 50mV.
This voltage is fixed for the duration of the firing
time 7+ = 1.5ms and then released to develop ac-
cording to (14). The observed refractoriness of real
KC in the MB of the locust was implemented by
self-inhibition of these IFs through synapses with
Toyn = 45.0ms and key, = 8 S, Using a highly sim-
plified neuron model for the KCs seems to be legiti-
mate because of the simple sparse activity observed
in experiments [Perez-Orive et al., 2002]. It allowed
us to simulate the system in its full size because of
computational simplicity.

The LHIs were represented by a single neuron with
slow calcium dynamics only, in particular

v o1
7 = C (Il(t) + ICa(t) + IKCa(t) ISynapse)a
(16)
where

Il(t) = gl(V(t) + 65 mV)
V(t)

Iea(t) = gea k(1) 1) 7 exp(2V (1) /kca)

w(t)4
Tca(t) = grca ——N
KCa(t) IKCa ST (50

(V(t) + 70mV), (17)

and g; = 0.4uS, gca = 2.5uS, gkca = 2.01S, and
again kcy ~ 24.42mV. This neuron receives in-
put from all PN through excitatory synapses with
Toyn = 9.0ms and kgyn = 0.023 S and projects to
all KC with inhibitory synapses with 7sy, = 4.5ms
and kgyn = 1.0uS. We chose this type of neuron



model because the action of the LHI neurons results
in a with period 50 ms rather slow periodic inhibition
onto the KCs. The slow dynamics of our inhibitory
neuron reflects this slower time scale.

B Connectivity analysis

In order to build a realistic model, the parameters of
the model neurons and synapses have to be adjusted
to a meaningful regime. Calculating the probabili-
ties and expectation values for the number of connec-
tions to active neurons as well as the size and form of
typical EPSPs in the system allows us to adjust the
firing threshold of the model KC and the synaptic
strengths of the PN-KC connections to yield a real-
istic activity in the KC lattice. As the numbers of
PNs and KCs are fairly large the law of large num-
bers is in our favor and the calculation of expectation
values provides a very good estimates for the degree
of coincidence and the resulting activity in the KC
network for a given input.

The EPSP of Rall type synapses onto IF neurons
given a square pulse input of duration tg is

t 1 ’ /
{/ d’ %glEl e T (gt +gsynu(t))
0
+El 6%gsyn7'syn t S to
1
X e_é(glt+gsytxu(t))
E(t) - t 1 ! !
|:/ dt,%glEl ea(glt +gsynv(t ))
to
+E(t0) e%(gltO‘i‘gsynU(to)) t > tO
X e_%(glt"‘gsynv(t))
(18)
where
u(t) = t(l —+ et/Tsyn) + 27_Syne_t/7—syn (19)
v(t) = —(r(to) (Tsyn +t — to) + 5(to) Teyn) et 710}/ Tm
(20)
r(t) =1-— e~ t/Teyn 1)
s(t) = s(t) =1 — (t/7en + Ve /™ (22)

From this it is easy to obtain the maximal value of
the EPSP. Solving for this maximum being equal to
the threshold Vipresh = —35mV of the IF neurons,

led led
o
X 1e3 le3
S
. le2 le2
£
E 10 10
{=

1 1
0 1 2 3 4 5 6
nunmber of connections to active PN
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le4d le4d
Q
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S
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c
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total synaptic strength of input

Figure 6: Expectation value for the number of KC
with more than x inputs from active PNs (A) and
a stronger total input than 6 assuming synaptic
strengths of PN-KC synapses according to (1) with
g =0.16 and 0 = 0.02 (B).

one obtains a threshold @ for the total synaptic in-
put strength necessary to fire the neuron. Insert-
ing the parameter values C' = 1uF, g = 0.3 uS,
E; = —60mV, 1syn = 1'ms, tg = 2.5ms one obtains
0~ 0.49 uS.

The random connectivity between AL and KC im-
plemented in the model allows us to calculate the
probability distribution for the total synaptic input
strengths at the KCs. Let C = (¢;5), i = 1,...,npn,
j = 1,...,ngc denote the connectivity matrix be-
tween the PNs and the KCs and let C4 = (Cf})
denote the connectivity matrix of active PNs to all
KCs. The probability P( Z-cf} = z) for a given
KC to have x connections to the ny active PNs is
given by the binomial distribution b, , , where p is
the probability of each individual PN to be connected
to a given KC. To have more than # connections the
probability is the sum pg = Z% bn,p- The number
Ny of KCs which have more than 6 thus is distributed
with a binomial distribution by p,- These consid-
erations give the expectation values for Ny shown in
figure 6A.

Assuming identical synaptic strength for all



synapses, the number of excited KCs given a certain
input activity n4 jumps discontinuously as a func-
tion of the firing threshold . This does not allow
a meaningful adjustment of # to the experimentally
observed activity level in the KCs. If one assumes a
small jitter in the synaptic strength however, the pic-
ture changes dramatically. Let the synaptic strength
of the synapses be given by 1. The sum of synaptic
strengths of incoming PN input to any KC is then
distributed according to

na

D buap(k)(1 = @, (0 — kg))

nA
po =P ¢ >0) =
i=1 k=0

(23)

where @ 7 denotes the integrated Gaussian distri-

bution with mean 0 and standard deviation ovk.
And the number Ny of KCs having stronger input
than # is again a binomial distribution with nkc
and pg. The expectation value for Ny is shown in
figure 6B. The smooth variation of the expectation
value of Ny with varying 6 now allows us to adjust
0 (or equivalently g) to a value consistent with the
experimentally observed activity levels in the MB.

Aiming for an initial activity of ~ 100 spikes
and choosing the jitter of synaptic strengths to be
o = 0.02 uS we can calculate the appropriate mean
synaptic strength g by inverting above equation for
the expectation value of Ny with the 6 = 0.49 ob-
tained from the above consideration of the EPSPs.
This yields g ~ 0.16 which has been used consistently
in all simulations in this work.

The reasoning for the time constants and strength
of the local axo-axonal connections in the KC lattice
is along the following lines. The time scale needs
to be long enough and the connections need to be
strong enough for a significant contribution of local
connections to the ongoing activity of the KC ensem-
ble according to the mechanism described in section
3. On the other hand they have to stay below the
propagating wave limit to avoid over-excitation of
the system.

From the explicit solution for the EPSPs (18) one
can estimate the propagating wave threshold assum-
ing a maximum of two simultaneously active neigh-
bors. Choosing 40ms and 30 ms as example time
scales this allows synaptic strengths up to 4.7 uS
and 3.5 uS respectively. These values do not take
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into account the ongoing input from the AL how-
ever. Therefore, driven propagating waves already
occur for considerably smaller values.
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