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Abstract

It is claimed that there are pre-objective phenomena, which cognitive
science should explain by employing the notion of non-conceptual repre-
sentational content. It is argued that a match between parallel distributed
processing (PDP) and non-conceptual content (NCC) not only provides a
means of refuting recent criticisms of PDP as a cognitive architecture; it
also provides a vehicle for NCC that is required by naturalism. A connec-
tionist cognitive mapping algorithm is used as a case study to examine the
affinities between PDP and NCC.
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1 Introduction

Cognitive scientists are quick to point out that there are phenomena which resist
analysis and explanation if one is restricted to the mechanistic, physicalist ap-
proaches of the traditional natural sciences. Such phenomena are “intentional”,
exhibit “aboutness”, are “other-directed”, etc., and as such must be explained
in normative terms. Traditional cognitive science offers a naturalistic means of
explaining such intentional phenomena, by appealing to representations and their
attendant duality of vehicle (the physical manifestation of the representation, or,
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bluntly, syntax) and content (the significance of the representation, the way it
presents the world as being; bluntly, semantics). This appeal is made in order
to explicate both how it is that physical systems can be intentional, and how
intentionality can be a part of the physical order.

However, there are several kinds of phenomena that appear, prima facie, to
be intentional, but that also resist analysis and explanation by the traditional
methods and tools of cognitive science. First, there are the intentional phenomena
that seem to be pre-objective in that they are prior (in some vague notion of
“prior”) to “objective” adult human cognition: the mental life and behaviour
of infants and animals, for example (the notion of pre-objectivity is clarified in
section 2). Next, there are the phenomena surrounding real-time perception and
action integration. And there is the very notion of change within intentional
systems, be it evolution, morphogenesis, development, learning, or a change of
conceptualization. 1 Call these aspects of intentional systems the recalcitrant

phenomena.
If one further assumes that the traditional techniques of cognitive science are

the only ones available for (scientifically) explaining intentional phenomena, then
a dilemma is forced: either these recalcitrant phenomena are, despite appear-
ances, non-intentional; or they cannot be (scientifically) explained at all. Some
might (as I do) find neither of these options acceptable; what is one to do?

I wish to reject this dilemma by rejecting one of the two premises that forced
it. The premises are:

1. that traditional cognitive science cannot explain these recalcitrant phenom-
ena; and

2. that traditional cognitive science is the only means of scientifically explain-
ing intentional phenomena.

This rejection will be effected by sketching out an alternative intentional ac-
count that can accommodate the recalcitrant phenomena. Which premise it is
that one will see me as rejecting depends on how strong a reading one gives “tra-
ditional”. On the strong reading of “traditional”, the approach I am taking is
sufficiently radical to be considered a rejection of traditional cognitive science’s
monopoly on scientific intentional explanation (2). On a more catholic under-
standing of what traditional cognitive science comprises, the approach I advocate
here is an extension of the basic notions of content and representation; it was the
appearance that cognitive science could not account for pre-objectivity, develop-
ment, etc., (1) that was mistaken.

But we need more than just any account of the recalcitrant phenomena; we
need an account that will explicate how these phenomena are related to the (more
or less) conceptual, objective kinds of intentionality with which cognitive science
has traditionally been concerned. I think the best account of the relationship be-
tween these two types of intentionality is itself given in intentional terms. Thus,
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what becomes central in cognition is an intentional understanding not of objec-
tivity and pre-objectivity independently, but of the development of objectivity:
intentional processes that, in general, increase the objectivity of the contents in
a system. 2

2 Content, systematicity, and objectivity

The intentional explanatory strategy that dominates cognitive science typically
understands psychological states in terms of attitudes (belief, desire, knowledge,
intention, etc.) toward contents (that there is a door ahead, that 2 + 2 = 4,
etc.); such attitude/content pairs are appealed to in intentional psychological
explanation. For example, one might explain why an agent opened a door (i.e.,
show that the agent’s opening the door wasn’t just an accident; if circumstances
had changed slightly – if the door were one foot over to the right, say – the agent
would still have opened the door) by claiming that the agent intended to open

the door; one could explain the possession of this intention as being the result
of the agent’s desire to be in the next room and its belief that opening the door

will help one get into the next room. I will call explanations that appeal to such
attitude/content pairs content-based explanations, or CBEs.

Although its extreme simplicity might make the above example of content-
based explanation more caricature than characterization, I hope that it at least
suggests how attitudes and contents can figure in intentional explanation. Unlike
much AI-inspired cognitive science research, where the emphasis has been on the
attitudes in general and the attitude of knowledge in particular, the focus in
this research is on content. The proposal is that a solution to the problems of
explaining the recalcitrant intentional phenomena lies in a proper understanding
of the notion of content, and how it relates to the explanation and design of
intelligent systems.

2.1 Non-conceptual content is pre-objective, unsystem-

atic content

I join others [Crane, 1992, Cussins, 1990, Davies, 1990, Evans, 1982, Haugeland, 1991,
Peacocke, 1992] in arguing that a distinction should be made between conceptual
and non-conceptual contents. 3 For several reasons, much of the work in AI has
concentrated by default on the case of conceptual content, but there is reason to
believe that understanding non-conceptual content is essential to understanding
(and therefore to designing) intentional systems in general; see [Cussins, 1990] .

Some ways of representing the world (contents) are objective or near-objective,
some are not. A way of representing some aspect of the world is objective if ,
e.g., it presents that aspect of the world as something that could exist while
unperceived. Strawson [Strawson, 1959] maintained, as did Evans [Evans, 1982]
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after him, that at least in the case of thinking about spatio-temporal particulars,
truly objective thought is manifested in the possession and maintenance of a
unified conceptual framework within which the subject can locate, and thus relate
to any other arbitrary object of thought, the bit of the world being thought about.

If this is a correct understanding of objective thought, then it has important
implications for the understanding of pre- (or non-, or sub-) objective representa-
tion. Pre-objective representation involves contents that present the world, but
not as the world, not as something that is or can be independent of the subject.
The Piagetian case of an infant’s perceptual/motor interactions with its environ-
ment before attaining the stage of object permanence is a plausible example of
a subject that is employing a pre-objective mode of thought. The infant tracks
an object (thus suggesting that there is some intentional relation between the
infant and the object) when it is perceptually occurrent, yet when the object is
occluded from view, the infant loses interest in the object (perhaps dropping it),
and is in fact startled if the obstruction is removed to reveal the object. Since
the very notion of an object essentially involves the notion of somehting that can
exist even though occluded, the infant is not thinking of the object as an object.
The contents of the infant’s thoughts concerning the object do not present the
object as something objective, as something that could exist while unperceived.
According to the Strawsonian/Evansian line I am taking, then, the infant’s lack
of objectivity must be manifested in the lack a unified framework of thought: the
infant is unable, in general, to locate objects in such a framework. I will call such
pre-objective contents non-conceptual contents (NCC’s); conceptual contents, on
the other hand, are objective.

It is a consequence of this way of understanding the conceptual/non-conceptual
distinction that conceptual contents will necessarily be systematic, will meet
Evans’ Generality Constraint [Evans, 1982, page 104]. That is, for any con-
ceptual contents (ways of thinking of properties) F and G, and any conceptual
contents (ways of thinking of objects) a and b, if a subject knows what it would
be for a to be F and for b to be G, then it must know what it would be for a to
be G and for b to F . This is a direct consequence of the necessity, for there to be
objective, conceptual thought, of a unified framework within which to locate all
properties and particulars. Non-conceptual contents, on the other hand, are not
systematic. In the case of NCC, the mode of thought is pre-objective; a unify-
ing framework is not present, and there are, therefore, properties and particulars
which cannot be related in the proper way. The idea of non-conceptual content,
then, implies that one can represent the world with proto-concepts that do not
universally recombine with all other possessed proto-concepts.

For example, consider an infant which cannot, as before, think of a particular
object (a glass, say) as existing unseen, but can represent its mother as being
behind, out of view (on the basis of hearing her voice or feeling her arm, say).
The contents of such an infant will violate the Generality Constraint, since the
infant may be able to think (something like) glass in front of me and mother

4



behind me but not glass behind me. The infant’s contents are not fully objective,
and are therefore non-conceptual. To ascribe conceptual content to the infant in
this case would mis-characterize its cognitive life, and would not allow prediction
or explanation of the infant’s behaviour.

2.2 The graded nature of content: degrees of objectivity

This example brings up another, important aspect of content: it can be more or

less conceptual, more or less objective; meeting the Generality Constraint can be
a matter of degree. Thus, there is not just the simple distinction between one level
of content which is non-conceptual, and one level which is conceptual. Rather,
there are numerous degrees of conceptuality/non-conceptuality. This notion of
graded abilities of infants is at least as old as Piaget; but what is being discovered
now is that the development of objectivity has a richer texture, worthy of its own
intentional account, than even Piaget imagined. For example, Hood and Willatts
[Hood and Willatts, 1986] have observed that some (i.e., five-month-old) infants
that lack our full notion of object-permanence can represent objects that are un-
perceived, but only under certain conditions (i.e., in the dark). This is just one
instance of an intermediate stage between no notion of object permanence at all,
and the full, objective notion which we take ourselves to possess. The develop-
ment of objectivity isn’t just one single, boot-strapping, mechanistic jump from
a non-intentional system to a fully conceptual one; rather, it is a complex inten-
tional phenomenon which needs explanation, and which constrains the possible
explanations of the relatively objective form of cognition that it yields.

Much of this discussion concurs, at least in part, with a recent survey of object-
permanence in infants, by Harris [Harris, 1989]. At one point, he considers the
well-known “A not B” error in infants: an infant that has previously found hidden
objects at a place A will search at A, even when it witnesses the act of hiding
the object at B. Harris examines the failure of the various attempts that have
been made to capture the content of the mental states of such infants. He finally
suggests that these contents cannot be given a conceptual explanation. Why not?
Because they fail to meet the generality constraint, and do so to varying degrees:

These very orderly data create a problem for any purely conceptual
or cognitive interpretation. Consider, for example, the idea... that the
infant does not appreciate that an object can be in only one place at
a time, and fails to rule out A as a possible hiding place. Are we
to say that the 8-month-old baby can rule out A for 3 seconds but
no longer, the 9-month-old baby for 5 seconds but no longer, and so
forth? If the baby has come to understand that an object can only
be in one place, why does it not apply this knowledge to delays of any

length? [Harris, 1989, page 115, emphasis mine]
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After suggesting a particular account of the data which does take non-systematicity
seriously, he remarks:

As soon as we talk in these terms, we are beginning to talk about
the efficiency with which the baby processes the information, rather
than simply proposing conceptual rules that the baby either under-
stands or does not understand. We are admitting, at the very least,
that a conceptual interpretation will not work.

Thus, Harris recognizes that conceptual accounts of the infant’s mind won’t
do, since an account must take seriously this failure to meet the Generality Con-
straint. But then Harris (understandably) concludes that this means that in-
tentional accounts in general won’t do; a non-intentional, mechanistic account
(he specifically considers the proposals made in [Diamond, 1988]) is the best we
can do. Although incorrect, his conclusion is understandable, since the option
of non-conceptual intentional analysis is not in common cognizance. One of the
purposes of this paper is an attempt to redress this lack of awareness. I reiter-
ate: one need not give up intentional explanations of the recalcitrant phenomena,
providing one analyzes them in terms of non-conceptual content.

3 Content & vehicle: The NCC/PDP connec-

tion

In the cognitive scientific explanatory scheme, contents need vehicles. Naturalism
requires that we show how our intentional and non-intentional characterizations
of an organism cohere; the hypothesis of cognitive science is that we should do this
by finding a computational characterization (vehicle) which marches in step (see
section 3) with our non-conceptual intentional account (content) [Cussins, 1987,
Fodor, 1985]. There is reason to believe that such a computational architecture
will differ substantially from classical, purely symbolic notions of computation,
which are typically meant to correspond to objective, conceptual contents.

There are those few who not only maintain that there is a significant differ-
ence between symbolic representation and the kind of representation one finds in
parallel distributed processing (PDP) 4 models of cognition, but who also connect
this difference with a difference in the kind of content carried by each of these
forms of representation (e.g.,[Haugeland, 1991, Cussins, 1990] ); I count myself
as among this number. The general idea is that whereas symbolic representations
carry conceptual, systematic content, composed of elements corresponding to ob-
jects and properties, PDP representations carry non-conceptual, non-systematic
content that is composed of elements that do not correspond to orthodox objects
and properties. The previous section tried to give you some idea of what non-
conceptual content is, and why cognitive science should bother with the idea.
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This section discusses why one might think parallel distributed processing and
non-conceptual content are a natural match. The next section tries to make pre-
cise some of these affinities by citing examples involving a particular connectionist
cognitive mapping network: the Connectionist Navigational Map.

In a way, some authors (e.g., [Fodor and Pylyshyn, 1988, Davies, 1990, Ramsey et al., 1991]
), although they draw some conclusions that are radically opposed to the ones pro-
posed here, have done a lot of this section’s work for me. Their arguments against
the compatibility of PDP and the propositional attitudes implicitly assume that
all content is conceptual content. “[Conceptual] content”, the arguments go, “can
only be carried by representational vehicles that do not lack property X 5. But
PDP vehicles lack property X. Therefore, PDP representational vehicles cannot
carry [conceptual] content.” Rather than concluding from these arguments that
PDP is uninteresting and irrelevant to cognitive science, one can instead conclude
that these arguments establish PDP (and NCC) as a radical alternative to the
orthodox: if PDP representations do not carry systematic, conceptual content,
then (since they must carry some kind of content) they must carry some other,
non-systematic kind of content. Non-conceptual content.

From the point of view being developed here, then, PDP and NCC need each
other:

• PDP needs NCC. If there is no NCC, and if the arguments that attempt
to show the incompatibility of PDP and conceptual content are right, then,
despite appearances to the contrary, PDP representations carry no (expli-
cable) content at all. Thus, PDP cannot be a cognitive architecture: it
cannot naturalize intentional characterizations.

• NCC needs PDP. As stated before, naturalism demands that a character-
ization of an organism at the level of content, which we cannot directly
understand to be manifested by a non-intentional characterization of that
organism, be shown to “march in step” with a characterization (in cogni-
tive science, this characterization is computational) of that organism that
we can understand to be so manifested. One of the principal attractions
of Fodor’s Language of Thought approach to cognition is the Represen-
tational Theory of Mind (RTM) which underlies it [Fodor, 1987]. RTM
attempts to explain how intentional phenomena could be realized in the
physical world by showing how the physical (characterized in terms of clas-
sical computational states) and the intentional (characterized in terms of
conceptual semantics) march in step. To be naturalized, then, NCC will
require a computational architecture with which it can march in step. Per-
haps PDP is such an architecture; there might be others (in which case,
Cussins [Cussins, 1990, page 431] is right: PDP needs NCC more than the
converse).

However, it is not wise to rely too heavily on these arguments that others
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have provided, as they establish too much: that PDP could never carry concep-
tual content. Since I want to explore the possibility that PDP could provide the
architecture for an explanation of the development from NCC to objective, con-
ceptual representation, the full conclusions of these arguments should be avoided
if possible. My position is that, unlike classical cognitive architectures, PDP
architectures can be appropriate for both non-conceptual and conceptual con-
tents – depending on the stage of development of the architecture. I thus make
a distinction between architectures that are necessarily systematic, and ones for
which particular configurations result in contingent systematicity. The basic in-
sight is that there are non-systematic intentional phenomena, so cognitive science
should favour the latter type of architecture, which can accommodate both types
of intentionality.

Even if this position is taken, there remains an alternative, related argument
against PDP as a cognitive architecture to be found in Fodor and Pylyshyn’s
paper. This argument does not assume that systematic, conceptual contents can
be carried only by representational vehicles that are necessarily systematic, but
allows that contingently systematic vehicles can do the trick. The argument takes
the form of a dilemma: either PDP can attain the (contingent) systematicity
required for conceptual content, or it cannot:

• Horn 1: if PDP can achieve systematicity, then it is uninteresting to cogni-
tive science; it is a mere implementation of the classical architecture (struc-
tured representations and operations sensitive to that structure);

• Horn 2: if PDP cannot achieve systematicity, then it cannot model hu-
man competence, such as the productivity of language (e.g., the ability to
understand arbitrary novel sentences).

Some might wish to reject Horn 2, and deny that human behaviour is ever
such that it must be understood to be the product of systematic mental processes;
I need not make such a bold claim here. Rather, I concede that PDP’s success
as an architecture for all of human cognition requires that it be able to construct
systematic representations: PDP must be able to attain (contingent) system-
aticity. 6 Otherwise, we would have an unattractive, inexplicable schism in our
understanding of cognition: the (necessarily) non-systematic, PDP-modeled phe-
nomena, incomensurable with the (necessarily) systematic, classically-modeled
phenomena. But the best theory will be the one that does not leave the tran-
sition from non-systematic subjectivity to systematic objectivity a mystery, but
explains it. The existence of developmental data provides an extra, crucial con-
straint on our cognitive architectures. The point being made is not just that one
should prefer architectures whose existence can be explained to those which are
miraculous; one should also prefer, ceteris paribus, architectures for which there
is a better explanation of its development to those with a worse explanation.
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The advantage of a non-conceptual approach to cognitive architecture is that the
explanation of systematicity is itself intentional; in a classical system, such an
explanation, if there is one, must remain non-intentional and mechanistic, with
all the attendant disadvantages in terms of explanatory power, generalizability,
etc.

Thus (to get back to the dilemma), Horn 2 cannot be denied; it is Horn 1
which should be resisted. The supporter of PDP in general could do this in a
number of ways (although only the first response is appropriate here):

1. First and foremost: agreement in a special or limiting case is not the same
as implementation; a PDP architecture that meets the classical constraints
in the special case of systematic adult human behaviour is no more irrel-
evant to cognitive science than a quantum theory that meets Newtonian
constraints in the special case of macroscopic conditions is irrelevant to
physics (after Smolensky [Smolensky, 1988] );

2. Even if PDP’s contingent systematicity did render it a strict implemen-
tation of classical architectures, that would still allow it to facilitate the
construction of theories with explanations and predictions considerably dif-
ferent from theories built on other classical architectures. To be a member
of the class of classical architectures, one need only meet two very gen-
eral constraints: possess structured representations and structure-sensitive
operations. Thus, theories based on PDP architectures would be just as
relevant to cognitive science as those based on architectures like SOAR
[Rosenbloom et al., 1992] or ACT* [Anderson, 1983], which also respect the
classical constraints. There is no reason to believe that just because two
architectures meet the classical constraints that all the theories specifiable
in terms of one architecture will also be specifiable in terms of the other.
If PDP is mere implementation theory because it meets the classical con-
straints, so are SOAR and ACT*. But surely Fodor and Pylyshyn don’t
want to claim that SOAR and ACT* are therefore irrelevant to cognitive
science;

3. Also, “mere” implementation theory isn’t that irrelevant to cognitive sci-
ence. As said before, naturalism demands that the content-involving in-
tentional level be shown to “march in step” with the computational archi-
tecture. A computational architecture which met this demand would be of
reduced value if it could not be shown to cohere with a non-computational,
physiological characterization of the organism whose psychology we were
striving to understand. In this respect, not all implementations are created
equal: we should prefer the one that can be understood to be instantiated
by the organism;

4. Last (though least likely), PDP might be able to achieve systematicity
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(model our generative, productive, etc., behaviour) other than by meet-
ing the classical constraints, pace Fodor and Pylyshyn’s claim that theirs is
the only game in town.

In summary, Fodor and Pylyshyn were right to admit that PDP might be able
to achieve contingent systematicity, but they were mistaken in failing to realize
that such a characteristic is not a detraction, but a desideratum; “It’s not a bug,
it’s a feature!”

4 A case study of PDP/NCC affinities

With the forgoing by way of introducing the notion of non-conceptual content
and the theoretical issues concerning its connection with parallel distributed pro-
cessing, the remainder of this paper employs the development of a particular PDP
network in order to illustrate the fact that the contents of at least some PDP
representations are best viewed as non-conceptual. This is done by giving five
examples of how such contents cannot be understood to be conceptual; a sixth
example demonstrates (in a modest way) the transition from representations with
non-conceptual contents to those with conceptual contents (the kind of transition
required for the “development of objectivity” mentioned in the title). But first,
the network architecture itself is described.

4.1 The Connectionist Navigational Map

The Connectionist Navigational Map (CNM; [Chrisley, 1990] ) is a computational
architecture being developed with the aim of providing an autonomous robot with
the ability to learn and use spatial maps for navigation. One component of this
architecture, the predictive map, allows the robot to predict what sensations it
would have if it were to move in a particular ego-centrically specified manner (e.g
“rotate π/4 radians to the right”, “move forward 10 feet”). Of course, this re-
quires the robot to have some kind of representation of its current location, since,
in general, the mapping from actions to sensations is dependent upon where one
is in the world. That is, the mapping from sensations and actions to sensations
is one-to-many, since more than one place can have any given sensory signature.
Thus, the spatial environment, and therefore a model of it, can be seen instead
as a function from current location and current action to predicted sensations.
The input consists of a state representation, or location code, corresponding to
the current location a of the robot, and an action representation representing the
move m being made. The output of the network is a vector that is supposed to
be equal to the sensation vector the robot would receive from its senses if it were
actually at the place that is reached by making the move m at location a.

Of course, there is more structure to space than a simple, direct mapping
from locations and actions to sensations indicates (see figure 1). Specifically,
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CURRENT LOCATION ACTION
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PREDICTED SENSATION

T MAPPING

D MAPPING

Figure 1: The PDP architecture of the predictive map (locations × actions 7→

sensations) formed by composing a topological mapping T (locations ×

actions 7→ locations) with a descriptive mapping D (locations 7→ sensations).
Arrows indicate directed, full inter-connection between layers of units.

location and action determine a new location, which itself determines the sensa-
tions of the robot. Thus, it might be easier for a robot to learn (or a theorist
to analyse) a predictive map if its structure reflects this regularity of the spatial
environment. The predictive map of the CNM is a composition of two mappings:
a topological mapping T (from locations and actions to states) and a descriptive
mapping D (from locations to sensations). In actual use, the location output
of the T mapping, after a given action, is used as the location input to the T
mapping for the next action. 7 Thus, if a constantly north-facing robot considers
moving forward and then moving right, it can use the map to predict what sen-
sations it would have after those moves by calculating D(T (T (a,move-north),
move-east)), where a is a location representation corresponding to the robot’s
initial location before the actions, and move-north and move-east are action
representations with the intuitive interpretation.

The predictive map can be realized in a hybrid system, with the topolog-
ical mapping realized symbolically, and the descriptive mapping realized by a
PDP network. It is argued in [Chrisley, 1991] that this kind of hybrid structure
is attractive for the purposes of engineering a working system; however, if the
primary motivation for constructing the system is to understand pre-objective
representations, and how a robot can make the the transition from pre-objective
to objective representations of space (as it is in this paper), then a uniform,
sub-symbolic architecture for both mappings should be employed.
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Figure 2: The region of the “grid world” used in the simulations. Only the details
for the locations on the used route are shown. Arrows indicate the direction of
travel along the route. The four-bit binary vector at each location indicates the
description or sensation vector associated with that location.

4.2 The experimental setup

Although the CNM is intended for actual robots moving in real space, it can be
of use here in making concrete some of the connections between NCC and its
computational vehicles. The experimental situation used here is a deliberately
impoverished one: a developing (learning) agent moving through a simulated
“grid world”; the part of the world simulated has only 36 cells or locations (6 by
6). Each location has a 4-bit vector associated with it, which can be understood
to be the sensations the agent has when at that location (see figure 2). As
in its normal use, the CNM is to provide a means for this agent to improve its
navigation of its space (and thus increase the objectivity of its contents concerning
that space) through sensory prediction. This situation is grossly impoverished
with respect to real-world cognitive map building, but the simplifications are not
only acceptable, but necessary, given the nature of this discussion: explication of
the affinities between NCC and PDP.

The agent has only four actions available at any location, those of moving
into each of the adjacent locations (orientation is not modeled: the agent can be
thought of as always facing north). It is assumed that the developing agent has
some adult or teacher, not providing the agent with input/output patterns to be
learned, but actually guiding the agent through the territory along a route that
starts and ends at some privileged location, called the lair. 8

The adult traverses the route, taking the developing agent along. The devel-
oping agent stores the sequence of actions taken and the sensations that result.
Note that sometimes the same action yields different sensations, and that differ-
ent actions sometimes result in the same sensations. When the agent returns to
its lair, it iteratively learns the route, not by actually moving, but by reviewing
9 the day’s events in the following manner:
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• First, generate a training set:

1. Assume some arbitrary representation or code for the initial location
(the “lair”). Store this code, and the code for the first action taken, as
an input pattern; store the sensations that were observed after taking
that action as the target output for that pattern.

2. Propagate the current input pattern into the T mapping.

3. Use the output of the T mapping, along with the next action on the re-
membered route, as the next current input pattern. Store this pattern
into the training list as an input pattern, as well as storing the next
remembered sensation as the target output pattern for that input.

4. Go to 2 until finished with the remembered route.

• Then, learn with the current training set: adjust the weights of the T and D
mappings according to the gradient of the error (difference between target
and actual outputs).

• After some period of learning with one training set (in the simulations
described, the time was 10 epochs) , a new training set is created, in the
same manner as before (steps 1-4), and the agent trains with the new set
(for another 10 epochs).

In the simulation used for the examples, this was repeated 18 times, at which
point the network had learned the route. That is, starting with the code for the
lair and the initial action taken, the T mapping would produce a new code that
not only yielded the correct predicted sensations via the D mapping, but which
also, in conjunction with the representation for the next action taken, produced
a code via the T mapping which could itself yield both the right sensation vector
and location code, and so on, iteratively.

The T mapping was realized by a network which comprised 8 inputs (4 for
the location code, and 4 for the action code; action codes were the 4 unit vectors,
one for each of the 4 directions the agent could move), 4 hidden units, and 4
outputs (a location code). The D mapping was implemented by a network with
4 inputs for a location code, and 4 outputs for a sensation vector at that location.
A modified version of Fahlman’s “Quickprop” algorithm [Fahlman, 1988] was
used for learning (although the network was simply recurrent, back-propagation
through time was not necessary).

In analysing the representational contents of this network, the activity pat-
terns of the location, action, and sensation vectors were the vehicles chosen for
consideration. This bypasses several very important issues (Don’t weights serve
as representational vehicles in the CNM? Shouldn’t the representational vehicles
include aspects of the network’s environment?, et al.) which cannot be considered
here.
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4.3 CNM representations cannot be analysed conceptu-
ally (examples 1-5):

Of course, it is relatively easy to find something that cannot be analysed as carry-
ing conceptual content; one only has to pick up a stone. But that’s because a stone
can’t be analysed as carrying any kind of content. The examples that follow are
meant to show why a particular PDP network that is, unlike a stone, intuitively
a representational, content-involving system, cannot be understood conceptually,
but is best analysed as containing representations with non-conceptual content.

4.3.1 Example 1: Perspective-dependent representations

A good way to see the connection between one kind of systematicity and objec-
tivity is to examine the limitations of the CNM T mapping. It is a consequence
of the non-systematicity of T mappings that are learned just for the sake of
navigating a few routes that their place representations will not be objective.

Let’s forget, for the moment, about the particular route mentioned in 4.1, and
consider the nature of T mappings in general. For example, suppose that the T
mapping is non-systematic in that not all representations are mapped to four new,
distinct representations. Suppose that only a few (enough to provide competence
on the particular routes travelled) locations around the lair are systematically
represented in the T mapping. This situation is illustrated in figure 3. Location
codes are represented by circles: e.g. the circle marked “L” denotes the location
code L which the agent is using to represent the lair; the code T (L,move-east)
is denoted by a circle that is pointed to by an arrow from the east (that is, right)
side of the circle marked “L”, etc.

It might be that this non-systematic topology is a direct product (albeit sub-
optimal one) of the CNM’s attempt to account for the data it has already en-
countered; perhaps there is something about what is in the space, like a pit at
the place ten units east of the lair, which makes this sub-optimal, non-systematic
topology quite practical in that context. Or it could be that the non-systematicity
in regions not close to the lair is a mere by-product of developing a systematic
T mapping for the area near the lair (perhaps like flattening a lump in a car-
pet merely moves the lump to some other part of the carpet). The reasons for
the lack of systematicity are irrelevant for the purposes of this paper. What is
important is that we have a case where there is enough systematicity to get a
notion of representational content going, but not enough to be able to speak of
full Generality and objectivity.

In order to see why this non-systematic representation of space is non-objective,
we have to notice a few constraints on objective space in general:

1. If one moves (in a very abstract sense of “moves”) in a straight line from a
location a, one will be located at a location b 6= a;
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. . .L XY

Figure 3: An example of local systematicity but global non-systematicity in the
T mapping. Each circle represents a location code; “L” indicates the code that
is being used to represent the lair; arrows indicate the T relation between codes
(see text). In such a case, some, if not all, location codes (such as the one marked
“X”) will not represent any objective place.

2. Moving in distinct directions from the same place will take one to distinct
locations

3. For every simple movement m there is an inverse m−1 such that T (T (a, m), m−1) =
a;

The T mapping illustrated in figure 3 is incapable of representing a space that
meets these constraints. For example, once one iterates enough times through the
T mapping, to calculate the representation for the location one gets to by, say,
starting at the lair and executing move-east ten times, the resulting location
code, X (represented by the circle marked “X” in the diagram), is such that:

1. T (X,move-east) = X, which violates constraint 1;

2. T (X,move-east) = Y = T (X,move-south), which violates constraint 2;

3. T (Y,move-east) = X, and move-west = move-east−1, yet T (X,move-
west) 6= Y , which violates the third constraint.

In such a case, the T mapping breaks down to such an extent that one cannot
interpret the resulting location code, X, as a representation of the place ten units
east from the lair. 10 Thus, the network cannot, as things stand, represent the
location in question at all. This alone is sufficient to establish that, in such a case,
even the location codes that can be understood to represent locations (i.e., those
codes near the lair code, L) do not represent objective, conceptual locations, since
truly objective locations are part of an arbitrarily extendible space, while these
locations are not. These codes, unlike X, can support a sizeable, though limited,
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region of intentional spatial activity; for these codes, unlike for X, there is enough
systematicity to determine a referent. But there isn’t enough systematicity for
that referent to be represented as an objective, perspective-independent place, a
part of a purely objective space. Thus, the location codes, even those near (and
including) L, carry non-conceptual content. Similarly for the action vectors: truly
conceptual, objective movement should be arbitrarily iterative.

The fact that the violation of these constraints implies a non-objective rep-
resentation of space can be shown in the following. The only way an agent with
such a CNM configuration could represent (at this stage of development of its T
mapping) the place ten units east would be by actually moving to that location.
Upon moving east ten times, its location code for its current location would, by
hypothesis, be of no use (e.g., it would not allow any successful predictions of
the result of any action the agent might take). Keeping the T mapping fixed,
the agent would have to co-opt the T mapping for its new locale, by using L
to represent not the lair, but the current location, and altering the D mapping
accordingly. The location codes would have to undergo a change of referential
significance (of a kind that would be impossible within the context-invariant re-
strictions of a classical architecture; see 4.3.3, below). But this means (assuming
that the non-systematicity of the T mapping crops up when iterating move-west
as well) that the agent will no longer be able to represent the space around the old
lair; after the change, the lair will be just as unrepresentable, mutatis mutandis,
as the current location was before moving.

Thus, the agent’s ability to represent a place is dependent on the agent’s per-

spective: in this case, its actual proximity to that place. Like the infant without
the concept of object permanence, the agent would lack the notion of location

permanence, to some variable extent. The CNM can represent places (i.e., it
doesn’t treat all qualitatively identical places as the same place, but individu-
ates locations using some notion of non-locally-observable, relational properties).
But since objective places do not disappear when one moves away from them,
the network cannot be representing places as objective, perspective-independent
places. Thus, the contents of the location codes of the network at such a stage
in its development must be pre-objective, non-conceptual.

Another, brief way of putting the point: the relations between objective places
are independent of both what is located at those places, and of our abilities to
move between those places, whereas a non-systematic T mapping typically is not
independent of these. 11

4.3.2 Example 2: Non-systematicity

In some absolute sense, the above example of perspective-dependent representa-
tions already demonstrated the non-systematicity of such representations. But it
demonstrates an asymmetry between the places that it can represent and those
it cannot, whereas the Generality Constraint (cf. section 2) was meant only to
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impose systematicity among contents that the agent can actually entertain. Nev-
ertheless, the CNM also exhibits this kind of non-systematicity among the places
it can represent.

Perhaps the easiest way of seeing this is to consider the fact that the network’s
choice of codes to use in the T mapping will constrain the possibilities for the D
mapping. For example, suppose that the T mapping has very similar codes for
two places. Now one of the main features of PDP representation is that all of
the representation vectors exist within a common relational space. The ability
for PDP networks to generalize in an interpolating (and extrapolating) fashion
stems from the fact that the requirement of producing a particular output vector
for a given input vector will severely constrain the possible output vectors for
any nearby input vector. Thus, networks cannot, in general, assign arbitrarily
dissimilar outputs to arbitrarily similar inputs. This means it will be difficult for
the D mapping to assign different sensory properties to similar location codes.
There will be some predicational combinations (of sensory properties to locations)
which will be difficult or impossible, violating the Generality Constraint. Thus,
PDP’s generalization ability is, in this sense, inherently non-systematic, as it
violates the independence of subject and predicate.

4.3.3 Example 3: Context-sensitivity I

A third way of motivating the link between PDP and NCC focuses on the method-
ology of content ascription in both symbolic and PDP architectures. In symbolic
architectures, the compositional nature of the semantics encourages theorists to
make their primary semantic ascriptions on the atomic level. They assign (con-
ceptual) contents to the atomic symbols; familiar recursive rules then determine
the content of any molecular representation from the contents of its atomic con-
stituents, together with their mode of combination. So block-57 and block-23
are assigned particular blocks as referents, is-above is assigned the “above” re-
lation, and is-above(block-57, block–23) is assigned the value true if the first
block is above the second block, and false otherwise. The procedure is to assign
a semantic value to the atomic symbols12, and then, given the compositional rules
which determine the semantics of complex expressions, try to build a system that
uses these symbols so that the conceptual ascriptions, to both the atomic and
molecular symbols, are warranted. The compositional relations are built-in and
guaranteed; what has to be achieved is a complex function of operation, both in-
ternal and interactive with the environment, that bestows on the atomic symbols
the content optimistically assigned to them.

In contrast, the primary locus of PDP content ascriptions is the propositional
level. For example, consider the following system. An autonomous robot receives
sonar input from the 360◦ ring in its two-dimensional plane of action. Its percep-
tion and action are coordinated by a PDP network which has learned, not only
to associate different sonar signatures with obstacles, but also to associate with
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the input an appropriate avoidance behaviour depending on both the type of sig-
nature (person vs. chair) and the position of the obstacle signature in the input
ring (immediately to the left, straight ahead ten feet or so, etc.). In giving an
intentional analysis of this network, a theorist might note that a certain pattern
in the hidden units is always present when the network classifies the input as
chair that is in front and within three feet. The hidden unit pattern in question
is assigned the content there’s a chair less than three feet in front or something
similar. But there is no guarantee that there is any isolable part of this hid-
den unit representation that corresponds, in all situations, to the concept chair

or the relation being less than three feet in front. For example, a hidden unit
vector with the content there’s a chair over ten feet behind might be completely
orthogonal to the one about the chair being close and in front. The situation
is the converse of the one for typical means of content ascription to symbolic
systems: the content ascription is warranted, but the structure of the represen-
tation is in question. Thus, even if a hidden unit pattern in a more advanced
PDP system were ascribed a content that involved a particular object, such as
the chair bumped into two minutes ago is now behind, there would be few, if any,
constraints on what hidden unit pattern is carrying the content concerning the
chair that the robot bumped into two minutes ago. In fact, it might be that there
is no context-invariant part of the hidden unit pattern that corresponds to the
chair at all. The object/property decomposition is not built-in.

It is this difference in content ascription, I believe, that is responsible for two
different kinds of context-sensitivity in PDP representations that makes PDP
especially suited for NCC. I visualize these two kinds of context-sensitivity as
functions from (sub-total 13 ) representations to (sub-propositional) contents,
and call them one-to-many and many-to-one context-sensitivity, respectively.

The first kind of context-sensitivity is manifested in the fact that the same
(sub-total) representation will carry many different contents, depending on the
context. As said before, the fact that the locus of the primary content ascrip-
tions for PDP representations is at the propositional level means that there is
no built-in semantic relationship between propositional and sub-propositional
representations, and therefore there is nothing to prevent the same sub-total rep-
resentation from being a constituent in two quite different representations, even
two that have no overlapping content: the chair is ahead and the person is behind,
say. In such a case, the content of the sub-total representation must be different
in the two contexts, since there is no sub-propositional content common to both
contexts that could be assigned to the representation. Note that this context-
sensitivity is ruled out for symbolic representations, since the atoms are typically
assigned context-invariant contents, and the contents of molecular symbols are
determined from these atoms in a context-independent manner.

In our case of an agent learning with the CNM, this kind of context-sensitivity
could arise if the same code were used for two different places simultaneously.
That is, a case where, say, there are two regions of the the space that are suffi-
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ciently similar that the CNM can use the same representation for two places, one
in each of the similar regions. This will result in a lack of systematicity. If two
place representations are not co-referential, then they must have different content
(since content determines reference). If these contents were conceptual, and met
the Generality Constraint, then it should be possible to arbitrarily combine these
contents with predicational contents; it should be possible for the network to have
a D mapping for one of the representations that is different from the D mapping
for the other. But since the representations are identical in this case, there is no
such possibility. The contents of the representations are not independent of each
other, so they are not representing the places as conceptual, objective places;
they must be representing them non-conceptually.

In the context of other networks, this one-to-many type of context sensitivity
can imply non-systematicity in a different way. Since the content of a given sub-
total representation depends on the context of the propositional representation
in which it finds itself, it is possible that the sub-total representation might
warrant the assignment of a particular content (e.g. is green) only in the context
of propositions involving food, say, and not predators (to use a slightly more
biological example). Thus, the way that the system is representing is green

does not meet the Generality Constraint, since the system cannot represent the
proposition the predator is green even though it can represent other propositions
involving greenness and predators. Thus, the content of the representation in
question must be non-conceptual. Not that we didn’t already suspect, or even
know, that PDP representations are not necessarily systematic; but this provides
another way of seeing why non-guaranteed systematicity, and therefore NCC, is
so fundamental to PDP representation: it is bound up with the means of content
ascription used for them.

4.3.4 Example 4: Context sensitivity II

It’s a familiar point that very often, one has to change oneself in order to main-
tain a stable link with a particular aspect of a changing environment. If one
wants to continue to point to an airplane that is moving across the sky, then
one will have to move one’s arm, head, and torso. This basic idea underlies the
second, many-to-one kind of context-sensitivity: several different sub-total rep-
resentations being assigned roughly the same (conceptual) content. This is the
phenomenon illustrated by the now-familiar coffee example described by Smolen-
sky [Smolensky, 1988] . There the same conceptual object, coffee, is represented
by different hidden unit vectors, depending on whether the coffee is being thought
about in the context of a cup, can, or spilled on the floor. Just as I have to alter
my bodily configuration in order to continue to indicate the airplane as its posi-
tion changes, so also the network must alter its hidden unit activations if it is to
continue to represent coffee as the context changes.

This phenomenon is again a direct result of the fact that the locus of primary
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content ascriptions to PDP representations is at the propositional level. Since
the representation/content relation is fixed only at the propositional level, the
sub-total representation required for representing a particular sub-propositional
content will, in general, vary from propositional context to propositional context,
depending upon the other particular sub-propositional contents to be represented.
This yields the many-to-one relationship.

The upshot of this second type of context-sensitivity is that typically, a net-
work will not be able to adopt an adequate representation of a particular sub-
propositional content in any arbitrary propositional context. The same con-
straints that require a change of representation will sometimes outstrip the rep-
resentational capacities of the PDP system. Therefore, the content of such PDP
representations cannot be represented in all contexts, as (we have seen) a unified,
conceptual framework requires; the content in question must be non-conceptual.
Although there is no reason why a symbolic representational system could not
employ a many-to-one relationship (though it would be difficult to dream up
ways to exploit the relationship), the fact that the choice of symbol to use is
not dictated by the context means that this case of context out-stripping repre-
sentational capability could never occur; conceptuality is guaranteed (as long as
the context-invariant semantics for the atoms are justified, which they probably
never are). 14

In the context of the CNM, such examples are common. Just consider a
network that is simultaneously learning two routes that happen to intersect at a
few points. There is nothing that necessitates that the network use the same code
for the place in both contexts; as a matter of fact, it might facilitate learning the
sequences to have the representations distinct. Since the representations have to
play different roles in the different route contexts, finding one representation that
can do both might be difficult (but see 4.4). 15

4.3.5 Example 5: Sub-symbolic computation

Another reason for linking PDP with NCC falls out as a result of attempting to
discover what it is that makes PDP representation an interesting representational
genus, an alternative to symbolic representation. This is a question which Hauge-
land [Haugeland, 1991] has addressed. He argues that one might look in one of
three possible places in order to find what it is that sets PDP representation
apart:

1. the syntactic properties of the representations;

2. the relation between the representations and what they represent;

3. what the representations represent.

I would add a fourth place to look:
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4. the contents of the representations. 16

I disagree with Haugeland that 3 is the place to look, since I feel that PDP and
classical systems could very well be representing the same things, even if they are
doing so with very different contents. And the connectionist community has, in
general, avoided purely syntactic (type 1) distinguishing criteria (since symbolic
representations can also be, e.g., continuous); rather, most settle on distribution

as the important aspect of PDP representation, and the best recent analysis of dis-
tributed representation, by van Gelder [van Gelder, 1991], sees distribution as su-
perposition, a type 2 criterion. 17 Perhaps contents are merely a relation bewteen
representations and the environment; perhaps 4 is subsumed by 2: I don’t know.
But it does seem that the standard account, along the lines of 2, that is offered as
a way of distinguishing PDP representation from other types, is inadequate. For
example, one can construct symbolic cognitive architectures out of distributed,
superpositional representations [Touretzky and Hinton, 1988, Smolensky, 1987].
The fact that one can use distributed representations to construct non-classical
architectures only raises the question: what is it that unites the set of representa-
tions (that may or may not be a subset of the set of distributed representations)
that are characteristic of viable, non-classical cognitive architectures? I think it
is by answering this question that we can see what it must be about PDP-based
architecture, in addition to distribution (for I do think that distribution of a sorts
is necessary for PDP to be interesting), that makes it a significant alternative to
classical cognitive architecture.

Even if one admits that classical, symbolic representations can be distributed,
it must be conceded that they would be of a very particular kind of distributed
representation, a kind for which:

1. there is a conceptualized domain of objective values (objects, properties/relations,
propositions, etc.) to be represented;

2. there is a scheme for assigning to certain configurations of the representa-
tional elements (symbols) these conceptual values as their contents; and

3. the computational operations of the system only manipulate the elements
in groupings that correspond to these symbols.

Understanding symbolic representation in this way, we leave open the pos-
sibility of sub-symbolic representation: representations for which, relative to an
appropriate conceptual semantic interpretation (1), and despite the fact that
there might be identifiable symbols (configurations of elements that correspond
to a conceptual object or property) (2), there nonetheless exist computational
operations for which there is no conceptual interpretation for them, nor for the
sub-propositional alterations that such operations make to the representations on
which they act. For example, there might be no conceptual-level interpretation
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for an operation that changes the weights of the CNM predictive map after one
epoch of learning. This is not to say that there is no level of description above the
level of talk about numeric weight changes which can account for what’s going
on after each epoch of learning in the predictive map. Such activity is indeed
intentional, with representational significance, and therefore has a characteriza-
tion beyond that of mere mechanism. It’s just that this characterization must be
non-conceptual, for the reasons given.

Another way of seeing that the operations of the CNM are sub-symbolic, and
therefore admit of non-conceptual interpretations, is to attempt to think of the
D mapping as a predication: the assertion that something has the property of
stimulating the agent in a particular way. Changes in the D mapping weights
are therefore changes in what is predicated. But to what are these predications
being applied? As we saw in the first example, they aren’t objective, conceptual
places. Thus, the change in predication cannot be understood as the retraction of
some objective, conceptual predications and the assertion of others. The change
has non-conceptual significance only.

The claim is that it is this property of PDP representations, that they are sub-
symbolic, that they can underwrite a non-conceptual understanding of a system,
which distinguishes them for the purposes of cogntive architecture construction.
It is this sub-symbolism which sets PDP representations apart as an alternative
to other forms of computation, at least for my (perhaps narrow) concerns.

Now we are in a position to see why distribution (at least in one sense of
the term) is necessary for PDP if it is to provide an alternative cognitive ar-
chitecture through sub-symbolic computation. Take distribution, not in van
Gelder’s sense of superposition, but in a content-based variation of an earlier
notion [Hinton et al., 1986]. Call it “dual distribution”: 1) several elements are
involved in carrying each content and 2) each element being involved, at some
point, in carrying several contents. 18 For purposes of illustration, consider the
case of a system that has both conceptual and non-conceptual content. The
possibility of sub-symbolic operations requires that the conceptual contents be
represented by sets of elements (that is, it requires many-to-one distributed repre-
sentation 19 ); if all representations of conceptual contents (symbols) were atomic,
then there could be no way for an operation to make a representational change
that has no conceptual interpretation. Now it may seem that sub-symbolic rep-
resentation does not, strictly speaking, require the converse: that each element
be used in representing more than one content (i.e., that it does not require one-
to-many distributed representation). But if this were the case, then sub-symbolic
operations, in addition to not having any conceptual interpretation, might not
have any meaningful interpretation at all. To see why, consider the following. If
the system employs only many-to-one distributed representation and no one-to-
many distributed representation at all, then any given element (or a given value
for a variable) is involved only in the representation of one particular content.
The representations for any two contents will be entirely disjoint. Thus, any
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representational operation that alters any proper subset of the elements of a con-
tent’s representation will produce a non-content-bearing representation (which
is really no representation at all). But such a system would not really provide
an interesting alternative to symbolic representation, since, inter alia, any truly
sub-symbolic operation would be rendered semantically void. Thus, one-to-many
distribution is necessary after all, if the representational system is to have any
interest. The type of representation that PDP is offering as an alternative to
symbolic representation is an alternative in that it comprises dual distribution
and sub-symbolic operations. 20

4.4 The development of objectivity: Cognitive maps (ex-
ample 6)

In example 4 we saw that having many-to-one context-sensitivity might be nec-
essary, given how difficult it is to find one representation that can fulfil multiple
roles in multiple contexts. But if a network can find such a common represen-
tation, then the objectivity and systematicity of its contents will be increased
dramatically. Such a situation is depicted in figure 4.

At one point in the route learned by the agent in our example (solid lines),
the trail doubles back. That is, the route involves going to (4 2) from the north,
going east to (5 2), going west back to (4 2), then going south to (4 1). The thing
to note is that the first time at (4 2), the network uses the code .002 0.00 .176
.122 to represent the location, while the second time there it uses the different,
but very similar code .025 0.00 .021 .012. Although the network, at earlier
stages of development, used functionally distinct vectors for this purpose, the
network has, through learning, forced these two representations together to such
an extent that they are functional equivalents in the local context.

This yields a kind of generalization. Starting with the code for (4 3), the T
mapping produces the first code for (4 2). But since this is functionally equivalent
to the code used for the second appearance at (4 2), the network gives the correct
result (in terms of both sensation and location vectors) when the agent moves
south from the first (4 2) context (dotted line), instead of east, as it has always
done before. A form of spatial generalization has occurred; the CNM is more
than just a means of memorising a list of action/sensation sequences.

It was argued before that lack of systematicity is an indication of lack of ob-
jectivity. Thus, if it is claimed that figure 5 illustrates a case in which there has
been an increase in objectivity, one might expect it to illustrate a correspond-
ing increase in systematicity. It does indeed; systematicity is another “side-
effect” of the convergence of many-to-one representations into a functional clus-
ter. Since the “before (5 2)” and “after (5 2)” representations have merged into
the same functional cluster, we now have a degree of systematicity of the form:
T (T (a, m), m−1) = a, where a =(4 2), m = move-east, and m−1 = move-west.
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.002 0.00

.176 .122

.025 0.00

.021 .012

(4 3)

(4 2)

(4 1)

(5 2)

.999 .713 1.00 .991

.982 .687 .192 .999

.969 .417 .201 .998

1.00 .902 .999 .998

Figure 4: An illustration of how an increase in the objectivity of location repre-
sentations yields generalization in the CNM. Selected locations on the route are
labelled with each location’s actual associated sensation vector (top four bits),
the sensation vector that the agent (using the predictive map) predicted that
the location would have (bottom four bits), and the code that the T mapping
produced for the location (four numbers in between). Note that location (4 2) is
represented by two diagrams (in the dashed box), one for each of the two (“before
(5 2)” and “after (5 2)”) contexts. Location (4 1) has two codes depicted: the top
one is produced by travelling from (4 2) via (5 2) (solid lines); the (functionally
equivalent) bottom one is the result of moving from (4 2) to (4 1) directly (dotted
line).
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At the beginning I argued that the development of intentionality may it-
self require an intentional analysis. I also cited evidence that suggests that this
developmental process may have a complex, fine-grained structure, rather than
being manifested in a single, inexplicable leap from mere mechanism to com-
plete conceptuality. Thus, the appropriateness of an architecture for grounding
this intentional characterization will depend upon its ability to march in step
with the fine shades of increasingly perspective-independent contents that best
characterize the development of objectivity. I think the example just considered
suggests that this is another reason why PDP architectures, such as the CNM,
and non-conceptual content are a natural match.

5 Classical cognitive architecture and NCC

In closing, it should be pointed out that this exploration of the connection be-
tween PDP and NCC will still be of value even if, in addition to PDP’s suitability,
and the arguments of section 3 notwithstanding, some simple variations on clas-
sical architecture also turn out to be suitable for non-conceptual content. The
value will remain, since in such a situation, one might still be able to appeal to
other advantageous properties of PDP to isolate it as the cognitive architecture
of preference. In any case, the work that has been pursued here, of finding a
match between PDP and some kind of content is a necessary condition for it to
be a successful cognitive architecture.
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Notes
1See [Woodfield, 1993] for a discussion of, and pointers to other work on, the philosophical

problems that arise for the notion of conceptual change
2Thus, my motives and ends are distinct from those of, e.g., Plunkett [Plunkett, 1992] and

Bates & Elman [Bates and Elman, 1992], who also seek to apply PDP to developmental phe-
nomena, but who, I think it is fair to say, are not primarily interested in an intentional (e.g.,
content-involving) account. Rather, their work focuses on the provision of the mechanisms

underlying developmental behaviour.
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3I should point out that none of the cited authors characterize non-conceptual content in
exactly the same way, nor does my notion exactly agree with any one of theirs. But the
differences are largely irrelevant for the purposes of this paper.

4For terminology buffs: I continue to use the designation “Parallel Distributed Processing”
or “PDP” instead of, e.g., the less passé “connectionism” because it gives a better indication
of what is central to the relevance of such networks to this research.

5Where X is, variously: necessary systematicity; structured representations and operations
sensitive to that structure; isolable, causally efficacious syntactic entities that mirror conceptual
contents; or whatever.

6And there is work [Chalmers, 1990, Elman, 1990, Pollack, 1990, van Gelder, 1990] that sug-

gests that PDP can achieve such contingent systematicity. Of course, it is clear that there could
be a PDP implementation of a systematic architecture. But this would be as insufficient for
cognitive science (in the broad, recalcitrant-phenomena-involving sense of “cognitive science”
being used in this paper) as any other classical architecture, and for the same reasons. That
is, it would not be able to account for the non-systematic phenomena, and it would leave in-
explicable the transitions between non-systematicity and systematicity – the development of
objectivity.

7Thus, if the predictive map is to be implemented in a PDP network, it must be a recurrent
network. In the simulations discussed here, it is implemented as a simple recurrent network
[Elman, 1990]

8Thus, the cognition under investigation here is at least partly social, in that it relies upon
the cooperation of multiple agents, and the interaction between agents and the social technology
of routes.

9One can think of this review in a literal sense; perhaps it could take place during dreaming?
10Furthermore, one will not be able to understand it as representing any objective place, nor

will one be able to understand any other location code as representing the place ten units east
from the lair.

11One might think, then, that the way to increase one’s objectivity is to make one’s T mapping
of a region more and more independent of what one believes to be located in that region. This is
to equate objectivity with Generality and systematicity, as I have been doing so far. But there is
another view of what objectivity is: the ability arbitrarily to change one’s T mapping, depending
on whether one is thinking of the movement of, e.g., oneself, air, or light. That is, perhaps
objectivity isn’t Evans’ “thinking from no point of view”[Evans, 1982, page 152], nor Nagel’s
“view from nowhere”[Nagel, 1986], but rather Smith’s “view from somewhere”[Smith, 1992],
or, perhaps better, “a view from anywhere”[Cussins, 1990, note 103, page 428]. This latter
view of objectivity would seem to give even more pride of place to non-systematic architectures
such as PDP.

12This is typically done with a large degree of wishful thinking; the comments in [McDermott, 1981]
continue to be germane.

13By sub-total representations I mean sets of hidden units that are strictly less than the set
of all hidden units in the system. All I mean to achieve by using this term is an emphasis that
I am not talking about representations with complete, propositional contents (which in simple
systems might not vary their contents across contexts), but rather constituent sub-patterns of
such representations.

14Of course, there can be a many-to-one relationship between symbolic representations and
referents; one can represent, in a production system say, the same block with either of the
representations block-57 or The block X such that is-above(X, block-23) (assuming that
block 57 is the only block above block 23). But this would not be a many-to-one relationship
between vehicles and contents; the contents of the two representations are different, even though
their referents are the same.

15Why isn’t this case the same as the one in the previous note, i.e., a case of many-to-one
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vehicle/reference, but not many-to-one vehicle/content? Perhaps the best way to view these
CNM representations is as having distinct contents, such as place X in the context of route

A and place X in the context of route B? There is not enough space here to fully refute this,
but let me just say that if one went all the way down this slippery slope, there would be
no possibility of valid inference. For example, consider the inference from the wall is grey

and the wall is in front to there is something which is both grey and in front. This is of
the form P (a), G(a); ∃x : P (x) ∧ G(x). By the reasoning being used against the many-to-one
vehicle/content view of the CNM, one would have to conclude that the wall is being represented
by distinct contents, since it is being represented in two different contexts. But this would mean
the inference would be of the form P (a), G(b); ∃x : P (x) ∧ G(x), which is invalid. We do not,
in general, want to individuate contents as finely as the contexts in which they appear.

16Haugeland does talk about the “content” of a representation, but by this, he means what
it represents, and not what I have been taking “content” to mean in this paper.

17What is superposition? Roughly, if R1 represents i1 and R2 represents i2, and R1 and
R2 use the very same representational resources, then the representations of i1 and i2 are
superposed; but the details are irrelevant here. The point is that superposition is a relation
between representational vehicles and what they represent and is thus a criterion of type 2.

18This is different from superposition in that (at the least) it does not require representations
to represent more than one item at the same time.

19This is not to be confused with many-to-one context-sensitivity, discussed earlier.
20van Gelder argues briefly (and, I think, successfully) that dual distribution is not sufficient

for an interesting representational alternative. Something more, I claim, is needed. The notion
of superposition that van Gelder puts forward certainly seems compatible with sub-symbolism,
but I do not know if it is necessary for it, as dual distribution is.
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