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ABSTRACT

A discrepancy is noted between the error measure implied by standard
objective functions used for the training of back-propagation networks
and their actual error in performance. Specifically, if one uses such a
network for pattern classification, with one output node per class, and
the most active output node indicating the network’s classification of the
input, then standard objective functions will 1) ascribe non-zero error to
network states that are classifying correctly and 2) modify the network
more than is necessary to account for incorrectly classified input, thus
violating the "minimal disturbance principle.” It is hypothesized that
objective functions that lack these two characteristics will more closely
reflect the actual recognition error and thus their use will result in better
performance (i.e., fewer classification errors). Several such functions are
presented, and a few are benchmarked against standard error functions on
phoneme recognition tasks. Two of the methods show a consistent
improvement in performance on a small (BDG) task, but result in worse
performance for a large (all consonants) task.

1. Introduction

It has already been suggested (Kohonen, Chrisley, Barna, '88, inter alia) that
the performance of back-propagation (BP) networks as pattern classifiers
would be enhanced if the well-known discrepancy between minimization
of an error function and minimization of classification errors could be
somehow explicitly addressed. That is, BP uses an objective function,
which determines an ideal response to the current input, and then
compares the actual response to the ideal response in order to calculate
error. Change in the weights of the network is then related to the error
thus calculated. It is our hypothesis that if the objective function used
results in an error value that more closely models actual recognition error,
then minimization of that error will result in better actual performance
(i.e., fewer classification errors).

Specifically, we first propose that an objective function that always yields a
zero error value for correct classifications will improve overall
performance by minimizing classification errors further than could be
done with a standard objective function. Our second proposition is that
the target output for incorrect classifications should be chosen so that the
minimum necessary change in the network is made. Both proposals can
be seen as applications of Widrow, Winter, and Baxter's "minimal
disturbance principle” (MDP):












Notice that if p is greater than zero, the targets are simply:
dt = the average of ot and o¢, plus 9/2;
d¢ = the average of ot and o¢, minus 9/2;
di = oi.

Initial results on the BDG task of this idea under a few parameter choices,
however, were not competitive with standard methods.

Possible variations on this idea include using a metric other than the
Euclidean in order to determine closeness (see 4.3. below), and using a
value for o different than the one used in recognition. We also tried a
slightly related idea: when incorrect, set the target to one for the unit that
should have been greatest, zero for the unit that (incorrectly) was greatest,
and set all the other targets to be equal to the actual outputs. Again, initial
results on the BDG task of this idea under a few parameter choices,
however, were not competitive with standard methods.

4.3. Use weight commitment to find closest output

A different way of construing the MDP in the incorrect case is to
minimally disturb the weights that have already been committed and are
thus storing information about previous samples. That is, choose a target
output that might not be closest in Euclidean distance, but that will assign
most of the blame to uncommitted weights (those whose absolute values
are near zero), and proportionately less blame to weights with higher
absolute values. One could use the same method as described above,
except that instead of using the unweighted Euclidean metric, one uses the
weighted metric defined by:
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where:

o is the actual output vector;

t is the target vector;

d(x, y) is the distance between vectors x and y;

Li is the number of nodes in the ith layer of the network;
N is the number of layers in the network;

and the weights w are defined by:






between learning after every sample and only learning after an entire
epoch of samples. The targets are intialised to some value (the unit
vectors, for example). Then, after each sample that is classified correctly,
the targets are modified to be closer to the actual outputs:

di(t+1) = dj(t) + nfoj(t) - dj(D)],

where d is the target output vector, o is the actual output vector, and n is a
constant that determines what proportion of the distance the target will
move toward the actual output. A value of 0.5 for n will average the two
vectors. We have generally found that the reciprocal of the number of
samples per epoch is a good first guess for the best value of n. Some results
of using this on-the-fly method are described under Experiments, below.

If there is a wide variance in the correct responses for a particular class, it
might be advantageous to have two or more targets for one class, to
account for the clusters in the correct output vectors. This would be much
better than trying to use one vector for all the clusters. Either one could do
clustering once, at the beginning of learning, clustering samples by their
input values, or one could cluster periodically during learning, using
output values produced by the samples. One could even use LVQ or LVQ2
as a means of doing this.

5. Experiments

5.1 The BDG task

We benchmarked the performance of three error function methods on a
phoneme recognition task involving 3600 samples of the stop consonants
/b/, /d/, and /g/. The architecture for the network was the TDNN as
described in (Haffner '88) and originally mentioned in (Waibel). Although
the reader should consult those works for details of our network, we will
summarize here the connectivity:

Input Layer 1 Layer 2 Output Total
Units 241 104 27 3 375
e | 6 | s | s | s
Fan-in 0 49 41 10
Connections 0 5096 1107 30 6233
Physical 0 392 123 6 521
connections

Table 1. Network architecture figures for the BDG task. Taken from
(Haffner, Waibel, Sawai, and Shikano '88; page 8).
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