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Abstract

In this paper we introduce and apply the concept of local evolvability to investigate the
behaviour of populations during evolutionary search. We focus on the evolution of GasNet
neural network controllers for a robotic visual discrimination problem, showing that the evo-
lutionary process undergoes long neutral fitness epochs. We show that the local evolvability
properties of the search space surrounding a group of statistically neutral solutions do vary
across the course of an evolutionary run, especially during periods of population takeover.
However, once takeover is complete there is no evidence for further increase in local evolv-
ability across fitness epochs. We also see no evidence for the neutral evolution of increased
solution robustness, but show that this may be due to the ability of evolutionary algorithms

to focus search on volumes of the fitness landscape with above average robustness.
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rithm, Evolutionary Robotics, Solution Robustness.

1 Introduction

In this paper, we investigate the dynamics of evolutionary search on the large, noisy, heteroge-
nous fitness landscape underlying an evolutionary robotics experiment. We show that the evo-

lution of successful controllers can be characterised by long fitness epochs during which the best



individuals in the population move along statistically neutral networks, interspersed by short
periods of fitness increase. By defining local evolvability measures of the search space surround-
ing solutions, we investigate whether the properties of a set of statistically neutral solutions
change during the course of an evolutionary run. We also investigate the difference between
the statistically neutral solutions generated during the evolutionary process, and statistically

neutral solutions encountered over a non-adaptive neutral walk.

1.1 Local evolvability and the transmission function

Evolvability is loosely defined as the capacity to evolve, alternatively the ability of an individual
or population to generate fit variants (Altenberg, 1994; Marrow, 1999; Wagner and Altenberg,
1996). Evolvability is therefore more closely allied with the potential for fitness than with fitness
itself; two equal fitness individuals or populations may have very different evolvabilities (Turney,
1999). Closely related definitions of evolvability explicitly make the link with increase in solution
complexity over time (Nehaniv, 2000), and the evolution of the genotype-to-phenotype mapping
(McMullin, 2000).

It has also been argued that there may be trends for evolvability to increase during evolution
(Altenberg, 1994; Wagner and Altenberg, 1996; Dawkins, 1989; Turney, 1999). However, as
evolvability is more directly related to fitness potential than fitness itself, long-term change
cannot be due to straight fitness selection. Thus any trend towards change in evolvability
can only be understood through some higher order selection mechanism, by which evolution
tends to retain solutions, or their descendants, with more evolvable genetic systems (Dawkins,
1989; Kirschner and Gerhart, 1998, argue for such mechanisms under which evolvability may be
selected for).

Researchers in both biology and evolutionary computation often link evolvability with the
properties of the search space. For example, Burch and Chao (2000) show that the evolvability
of RNA viruses can be understood in terms of their mutational neighbourhood, while many
evolutionary computation researchers (see e.g. Ebner et al., 2001; Marrow, 1999) argue that
changing the properties of the search space (through such mechanisms as adding neutrality)
can affect evolvability as evidenced by the speed of evolution. The interest in evolvability for
evolutionary computation practitioners is thus tied closely to work on properties of the search
space which influence the ease of finding good solutions in the space (Weinberger, 1990; Hordijk,
1996; Jones and Forrest, 1995; Naudts and Kallel, 2000).



In this paper, we identify the local evolvability of solution(s) as some measure based on the
fitness of offspring from those solution(s). We define a set of four metrics of local evolvability

(see Smith et al., 2002a, for further details):

E, = P(F,> Fp) (1)
E, = <F,> (2)
E, = <F,>™100 (3)
E; = <F,>%% (4)

where F), F, are the fitnesses of the parent and offspring solutions, and < F, >75,100 0,25
the expected fitnesses over the top and bottom quartiles of the offspring solutions. Thus FE,
is the probability of offspring solutions being of greater or equal fitness to the parent, Ej} the
expected offspring fitness, F, the expected fitness over the top quartile of offspring fitnesses,
and F, the expected fitness over the bottom quartile of offspring fitnesses.

The four metrics can be similarly defined over some population, e.g. a population of solutions
at some time-point during evolution, as the local evolvability calculated over offspring from all
individuals in that population. In Smith et al. (2002a) we have used the metrics calculated
over samples of equal fitness solutions to derive fitness evolvability portraits for the set of NK
(Kauffman, 1993) and terraced N K landscapes (Newman and Engelhardt, 1998). The metrics
are plotted against fitness, and used to describe the ruggedness, local modality and neutrality
of the spaces.

This tight definition of local evolvability in terms of the search space surrounding solutions
(or populations of solutions) allows us to track the behaviour of populations during evolution.
In particular, we focus on a population of solutions that are indistinguishable from each other
in terms of their fitness, investigating whether they move to areas of the search space that are
distinguishable in terms of their local evolvability properties. See section 6 for experimental

details on calculating the evolvability metrics.

1.2 Adaptive evolution on neutral networks

In the neutral theory of molecular evolution, Kimura (1983) argues that the majority of genotypic

mutations may be selectively neutral. There is increasing evidence for such neutral evolution



in a number of fields, including RNA secondary structure (Griiner et al., 1996), bacteria (Elena
et al., 1996), evolvable hardware (Vassilev and Miller, 2000), and digital organisms (Adami,
1995). Evolution on fitness landscapes with high levels of neutrality is typically characterised by
periods during which fitness does not increase, or fitness epochs, interspersed by short periods
of rapid fitness increase, i.e. epochal evolution (van Nimwegen et al., 1997; Crutchfield and
van Nimwegen, 1999) or punctuated equilibrium (Eldredge and Gould, 1972; Gould and Eldredge,
1977).

During fitness epochs, genotype structure may not be conserved, as the evolving population
moves through networks of connected equal fitness solutions, or neutral networks. Eventually, a
portal genotype of higher fitness may be discovered, and the population moves up to the higher
fitness neutral network; the time spent in neutral evolution is related to the size of the network
and the number of portal genotypes (argued by van Nimwegen and Crutchfield, 2000, to be an
entropy barrier, very different to the fitness barrier of low fitness genotypes that must be passed
to escape from local optima). Despite the undirected nature of the neutral movement, genotypic
change may lay down structure required for the final portal genotype to be discovered.

Recent work describing the population dynamics of evolving populations on neutral networks
has argued that with large enough populations and mutation rates, the population will tend to
move towards volumes of the neutral network where solutions have more neutral neighbours than
on average across the neutral network, i.e. the neutral evolution of robustness (van Nimwegen
et al., 1999). Similarly, Wilke (2001) shows epochal evolution in the average fitness of the
population, despite the highest fitness in the population remaining constant; the fitter genotypes
move neutrally to flatter areas of the search space containing more neutral neighbours. Thus
the average population fitness increases despite the highest fitnesses remaining fixed; evolution
of populations can be adaptive even during neutral fitness epochs. As in the evolution of
evolvability, any adaptation during neutral movement can be explained through higher-level
selection, in which solutions (or their descendants) of greater robustness are likely to be retained
in the evolutionary population.

Having defined our metrics of local evolvability over the fitness distribution of solution off-
spring, we are now in a position to investigate the behaviour of populations evolving along
neutral networks in an extremely noisy genotype-to-fitness mapping space, in which the initial
genotype translates to an intermediate neural network phenotype, with the final fitness measur-

ing how well this network performs over time in controlling a robot engaged in solving a visual



shape discrimination task.

2 An evolutionary robotics search space

One of the new styles of Artificial Intelligence to have emerged recently is evolutionary robotics
(Cliff et al., 1993; Nolfi and Floreano, 2000; Floreano and Mondada, 1994; Husbands and Meyer,
1998). The evolutionary process involves evaluating, over many generations, whole populations
of robot control systems specified by artificial genotypes. These are interbred using a Darwinian
scheme in which the fittest individuals are most likely to produce offspring. Fitness is measured
in terms of how good a robot’s behaviour is according to some evaluation criterion.

Artificial neural networks (ANNs) have been successfully used in a large number of evolu-
tionary robotics experiments (for an overview see Nolfi and Floreano, 2000). Typically, external
sensory data is used for the network input, and the network output is used to control the robot
motors. Other styles of control architectures have also been used for evolutionary robotics ex-
periments, notably genetic programming (Koza, 1992), classifier systems (Holland, 1975) and
evolvable hardware (Thompson, 1998). In previous work, we have investigated the use of non-
standard neural network architectures, focusing on developing control structures that produce
successful solutions in fewer evaluations using artificial evolution (Husbands et al., 1998). In
experiments on a variety of robotics tasks, we have shown that a particular style of network, the

“GasNet”, is particularly amenable to evolutionary search.

2.1 The GasNet architecture

The GasNet is an arbitrarily recurrent ANN augmented with a model of diffusing gaseous mod-
ulation, in which the instantaneous activation of a node is a function of both the inputs from
connected nodes and the current concentration of gas(es) at the node. Thus in addition to
the standard electrical activity ‘lowing’ between nodes, an abstract process analogous to the
diffusion of gaseous modulators such as Nitric Oxide is at work (Philippides et al., 2000). In
this process, the virtual gases do not alter the electrical activity in the network directly but
rather act by changing the gain of transfer function mapping between node input and output in
a concentration dependent manner.

The network underlying the GasNet model is a discrete time-step, recurrent neural network

with a variable number of sigmoid transfer function nodes. These nodes are connected by either



excitatory (with a weight of +1) or inhibitory (with a weight of -1) links with the output O},
of node 4 at time-step n determined by a continuous mapping from the sum of its inputs, as
described by the following equation:

O = tanh {kf (Z w;i0f ' + ng) + bl} (5)

JEC;

where C; is the set of nodes with connections to node 7 and wj; = £1 depending on whether the
link is excitatory or inhibitory and multiplies the input from node j (which is the output from
node j from the previous time-step). I7 is the external (sensory) input to node ¢ at time n, and
b; is a genetically set bias. Each node has a genetically set default transfer function parameter
k?, which can be altered at each time-step by the concentration of the diffusing virtual gas at

node ¢ to give k.

2.2 Gas diffusion in the networks

In order to incorporate the gas concentration model, the network is placed in a 2D plane, with
node positions specified genetically. The GasNet diffusion model is controlled by two genetically
specified parameters namely the radius of influence r around the emitting node, and the rate of
build up and decay s. Spatially, the gas concentration varies as an inverse exponential of the
distance from the emitting node with a spread governed by r, with the concentration set to zero
for all distances greater than r (equation 6). This is loosely analogous to the length constant of
the natural diffusion of Nitric Oxide, related to its rate of decay through chemical interaction.
The maximum concentration at the emitting node is one and the concentration builds up and
decays from this value linearly as defined by equations 7 and 8 at a rate determined by s. The

governing equations are:

e2/T x T(t) d<r

C(d,t) = (6)

0 else
H (e emittin

I EC ; g
H [H (4=te) — H (=L)]  not emitting
0 z<0

HiIz) = { z 0<z<1 (8)
1 else



where C(d,t) is the concentration at a distance d from the emitting node at time t. t. is the
time at which emission was last turned on, ¢, is the time at which emission was last turned
off, and s (controlling the slope of the function T') is genetically determined for each node. To
summarise, within a radius of » from the node, gas builds up (and decays) linearly to a maximum

of 6—2d/'r

in s time-steps. The total concentration at a node is then determined by summing the
concentrations from all other emitting nodes (nodes are not affected by their own concentration,

to avoid runaway positive feedback).

2.3 Modulation by the gases

There are two virtual gases in the network, gas 1 and gas 2, which increase and decrease k' (see
equation 5) respectively in a concentration dependent fashion. Both the type of gas emitted by
a node and the conditions under which it emits are specified genetically. Nodes emit either (a)
gas 1, (b) gas 2 or (¢) no gas, and emission occurs when either (a) the node activity increases
beyond the electrical threshold 0.5, or (b) the local concentration of gas 1 increases beyond the
threshold 0.1, or (c) the local concentration of gas 2 increases beyond the threshold 0.1. The
concentration-dependent modulation is described by equations 9 to 12, with transfer parameters

updated on every time-step as the network runs. Thus we have:

k' = Plind?] 9)

)

P = {-4.0,-2.0,—1.0,—0.5,—0.25,0.0,

0.25,0.5,1.0,2.0,4.0} (10)
ind} = f (ind) +CI(N —ind?) — Cyind) (11)
0 <0
fl@) = ¢ |z] 0<z<N (12)
N  else

where P[i] refers to the ith element of set P, ind} is node 7’s index into the set P of possible
discrete values k}' can assume, NN is the number of elements in P, ind? is the genetically set
default value for ind;, CT" is the concentration of gas 1 at node 7 on time-step n and C3' is the

concentration of gas 2 at node i on time-step n. Both gas concentrations lie in the range [0, 1].

n

v, with a

Thus, the concentration of each gas is directly proportional to any change in ind
corresponding change in £'. Although the change in k7 is non-linear these values represent a

smooth change in the slope of the transfer function. Since the transfer functions can change



throughout the lifetime of the network, this system provides a form of network plasticity not

seen in most other ANNs.

2.4 Visual shape discrimination
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Figure 1: Screen shot of the simulated arena and robot. The bottom-right view shows the robot position
in the arena with the triangle and square. Fitness is evaluated on how close the robot approaches the
triangle. The top-right view shows what the robot ‘sees’, along with the pixel positions selected by
evolution for visual input. The top-left view shows the instantaneous activity of all nodes in the neural

network. The bottom-left view shows the robot control neural network.

The evolutionary task at hand is a visual shape discrimination task; starting from an arbi-
trary position and orientation in a black-walled arena, the robot must navigate under extremely
variable lighting conditions to one shape (a white triangle) while ignoring the second shape (a
white square). Fitness over a single trial was taken as the fraction of the starting distance moved
towards the triangle by the end of the trial period, and the evaluated fitness was returned as

the average over 16 trials of the controller from different initial conditions:

1 1=16 DF
F=— S i1-= 13

where DZF is the distance to the triangle at the end of the ith trial, and Df the distance to



the triangle at the start of the trial, and the ¢ trials are sorted in descending order of 1 — g—i.
Thus good trials, in which the controller moves some way towards the triangle, receive a smaller
weighting than bad trials, encouraging robust behaviour on all 16 trials.

Success in the task was taken when an evaluated fitness of 1.0 was obtained over thirty
successive generations of the evolutionary algorithm. In the work reported here, fitness evalua-
tions are carried out in a verified minimal simulation (Jakobi, 1998), see figure 1 for screen-shot
of a fitness evaluation in simulation. Evolved controllers have been successfully transferred to
the real robot (Husbands et al., 1998). As in many problems requiring controllers to provide
sensor-to-motor mappings over time, fitnesses are extremely time consuming to evaluate (in the

work presented here, evaluating a sample of 10° fitnesses takes around 24 hours on a Pentium

IT 700MHz machine) and inherently extremely noisy.
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Figure 2 shows the distribution of fitnesses from a single controller over 10,000 evaluations.
It should be emphasised that the environmental noise for the robot controllers is not simply
variation in the received fitness score, but is a crucial feature of the robot minimal simulation
model. Controllers must evolve to be robust to such noise, so as to successfully transfer to the
real world; two controllers may be of equal fitness when evaluated in a noiseless environment, but
may be of very different fitnesses in the full noise model. Although the level of noise in the model
is higher than that found in the real world, to successfully evolve robot controllers in simulation
able to operate successfully in the real world this noise is necessary (Jakobi, 1998). Since we are
interested in the properties of landscapes defined by genotype-to-fitness mappings that are used

in real problems, we need to develop ways of understanding these kinds of landscape.



2.5 The solution representation

The neural network robot controllers were encoded as variable length strings of integers, with
each integer allowed to lie in the range [0,99]. Each node in the network was coded for by
nineteen parameters, controlling such properties as node connections, sensor input, node bias,
and all the variables controlling gas diffusion as described in sections 2.2 and 2.3. Both the robot
control network, an arbitrarily recurrent ANN, and the robot sensor input morphology, i.e. the
position of the input pixels on the visual array, were under evolutionary control. Thus mutation
of solutions (section 2.6) is able to produce offspring with varying network architecture, network
node properties and sensor morphology. In all experiments, the GA population were initially
seeded with networks containing ten neurons. For further details see Husbands et al. (1998);

Smith and Philippides (2000).

2.6 The evolutionary algorithm and mutation operator

A distributed asynchronously updating evolutionary algorithm was used, with a population of
100 solutions arranged on a 10 x 10 grid. Fitness was awarded on the fraction of the distance
moved towards the triangle over a series of 16 runs with different initial conditions, see equation
13. Parents were chosen with probability proportional to their fitness ranked in ascending
order over the mating ‘pool’ consisting of a randomly chosen grid-point plus its eight nearest
neighbours. The parent solution was mutated to create the offspring solution which was placed
back in the mating pool, replacing a solution chosen with probability proportional to their
fitness ranked in descending order over the mating pool. One generation was specified as 100
such breeding events. Figure 3 shows the pseudo-code for the evolutionary algorithm.

Three mutation operators were applied to solutions with probability 4% during evolution
(for the experiments detailed here, u = 4). First, each integer in the string had a ;% probability
of mutation in a Gaussian distribution N(0,10) centred on its current value (20% of these
mutations completely randomised the integer). Second, there was a u% chance per genotype
of adding one neuron to the network, i.e. increasing the genotype length by 19. Third, there
was a u% chance per genotype of deleting one randomly chosen neuron from the network, i.e.
decreasing the genotype length by 19. It should be noted that the value of y = 4 used in
these experiments is a much larger level of mutation than typically used in artificial evolution

optimisation (and certainly much larger than in biological evolution). However, lower levels
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- Initialise population of 100 solutions on 10x10 grid.

- Evaluate each solution fitness.

- Repeat until success criterion met, or MaxGenerations reached:
- Repeat 100 times for 1 generation:

- Select solution at random.

Create mating pool of solution plus 8 nearest grid neighbours.

- Pick parent P through ascending rank-based selection on mating pool.

Create offspring 0 through mutation of P, and evaluate fitness.

Place 0 in solution grid, replacing mating pool solution picked

through descending rank-based selection.

Figure 3: Pseudo-code for the asynchronously updating evolutionary algorithm.

of mutation produce extremely slow evolution of successful solutions (Smith et al., 2002b); in

section 6.1 we see that the number of neutral mutations at this mutation rate is still significant.

3 Statistical neutrality

In section 1.2 we discussed the possible adaptation of populations during neutral movement
fitness epochs. However, as we have seen in the previous section, the fitness landscape defined
by the GasNet controllers is inherently extremely noisy; neutrality in such a landscape is not
trivial to define. Even the repeated evaluation of the same controller produces a wide range of
possible scores (figure 2), so how can we identify different solutions of equal fitness?

In this paper we use the concept of statistical neutrality, based on solution fitness distribu-
tions. Two solutions are defined to be statistically neutral if it is likely that the two distributions
of fitnesses are drawn from the same distribution. More precisely, two fitness distributions are
defined to be statistically neutral if we fail to reject the null hypothesis that they are not signifi-
cantly different. Such a probabilistic definition of neutrality seems practical for the noisy fitness
landscape we are investigating, and owes much in spirit to the “nearly neutral” theory (Ohta,
1992), where small fitness differences may be swamped by finite population sampling effects.
Even if real underlying fitness differences exist between our statistically neutral solutions, they
are unlikely to be observed by the evolutionary process.

In practice, we generate small distributions of fitnesses for each sample in the population, and

11



compare with the fitness distribution from some test solution. If the Student t-test (Press et al.,
1992) probability for the sample and test distributions being drawn from the same distribution
is not smaller than some value vg, we argue that the sample and test solutions can be considered
to be statistically neutral. Although this statistical definition of neutrality will not identify every
solution correctly - some solutions of equal fitness may be rejected while others of different fitness
may be included, we argue that it has merit when considering the neutrality of solutions in noisy
fitness landscapes. In the experiments carried out in the next section we take vg = 0.1, i.e. two
solutions are said to have different fitnesses if there is less than 10% probability of their fitness
distributions being drawn from a single distribution. The two solutions are statistically neutral

otherwise.

4 Fitness epochs in GasNet evolution

In previous work, we have shown the amenability of the GasNet architecture to evolutionary
search for good robot controllers (Husbands et al., 1998; Smith and Philippides, 2000). An ongo-
ing project aims to explain the observed evolutionary speed difference in terms of the properties

of the underlying fitness landscapes of the GasNet and other neural network architectures.
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Figure 4 shows a typical GasNet evolutionary run, with the population best and mean
evaluated fitnesses plotted over time. Both fitnesses climb quickly from an initial near-zero
random performance, with a long period of apparent stasis (albeit a noisy stasis), before the
best fitness reaches 100% around generation 480. In terms of robot controller behaviour, the
period of apparent stasis corresponds to approaching the first white object seen in the arena, thus

hitting the triangle on approximately 50% of evaluations (the selective fitness shown in figure
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4 is below 50% due to the weighting on evaluations, see section 2.4). The high fitnesses seen
after generation 480 correspond to approaching the triangle on every single evaluation, while
the lower fitnesses seen in the first few generations correspond to ballistic behaviours such as
“move straight forward”. Other GasNet evolutionary runs show similar behaviour; long periods
of apparent stasis interspersed with short periods of fitness increase, although in many cases

there is more than one period of apparent stasis.

4.1 Apparently neutral fitness epochs
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Figure 5: (a) Best and mean fitness of the population over generations from the same evolutionary run
shown in figure 4, with fitness evaluated in a simulated environment without sensor and motor noise. b
The best fitness found in the population from the same evolutionary run, with fitness set as the mean

evaluated fitness over ten evaluations in a noisy environment.

In figure 5(a) we show the best and mean fitnesses over the same evolutionary run shown in
figure 4, with fitness evaluated in a noiseless environment. It appears to be the case that fitness
reaches a static level very quickly, around generation 10, then stays constant until generation
477 with a few short-lived higher fitness ‘blips’. However, although the noiseless environment
fitness evaluation scenario lends support to the hypothesis that the apparent stasis period is
indeed a fitness epoch, it is not nearly the full story. In figure 5(b), we show the best fitness

found in the population over time, with the fitness of every individual calculated as the mean
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fitness over ten evaluations in a noisy environment. Two points need to be made. First, the
best fitness in the population in a noisy environment is clearly increasing after the generation
at which the noiseless environment reached apparent fitness stasis, up to at least generation 60.
Second, the best fitness over the period from generations 100 to 477 appears to remain constant,
and there is also some evidence for the neutral period to start earlier, around generation 60.
Although figure 5 strengthens the hypothesis that the fitness of the best solutions really does
not change over long periods of the evolutionary run, we need to apply the notion of statistical

neutrality to see whether this really holds up.

4.2 Statistically neutral fitness epochs
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Figure 6 shows the fraction of the population at each generation that is statistically neutral
with respect to a single test solution picked at random from the best genotypes between gener-
ations 200 and 400. Solutions were considered statistically neutral if 15 fitness evaluations were
not significantly different to 15 evaluations from the test solution (Student t-test, P > 0.1).
Solutions statistically fitter and less-fit than this test solution were identified as those solutions
not statistically neutral, with higher or lower mean fitnesses respectively. Table 1 shows the total
number of statistically neutral (and statistically fitter and less-fit) solutions over the population
run. Three points can be made. First, from generation 32 onwards, a large number of fit solu-
tions arose that were not significantly distinguishable from each other in terms of their fitnesses.
Second, the proportion of these solutions in the population increased rapidly over generations
32 to 75, comprising approximately 70% of the population until around generation 480. Third,

the numbers of solutions distinguishably fitter than this group was extremely small (32 out of
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47,800 genotypes over the first 478 generations), which is plausibly due to the sampling error in

evaluating the inherently noisy fitness of the solutions.

N (fraction)

Number of solutions over evolutionary run 52,500
Number statistically neutral w.r.t test solution 30,235 (0.576)
Number statistically fitter than test solution 3,328 (0.063)

Number statistically fitter than test solution before generation 478 32 (0.001)

Number statistically less-fit than test solution 18,937 (0.361)

Table 1: The number of the evolutionary population that was statistically neutral, fitter or less-fit with
respect to a single test solution picked at random from the best individuals between generations 200 and
400 over the evolutionary run shown in figure 4. Solutions were considered statistically neutral if 15
fitness evaluations were not significantly different to 15 evaluations from the test solution (Student t-test,
P > 0.1). Solutions statistically fitter and less-fit than this test solution were identified as those solutions

not statistically neutral, with higher or lower mean fitnesses respectively

A final point remains to be cleared up. Why does the best fitness of the population increase
markedly up until around generation 60 (figure 5(b))? This again is plausibly due to sampling
error; as the number of solutions on this statistically neutral fitness band increases (figure 6),
the expected best fitness increases monotonically. Figure 7 shows the expected highest fitness
drawn from the fitness distribution of a single genotype (figure 2), against the number of drawn
samples. As the number of statistically neutral fitter genotypes increases from 1 to 70, the
expected best fitness increases from 0.21 to 0.29; consistent with the fitness increase seen in the
real evolutionary population.

We are now in a position to give a preliminary description of the evolutionary run: From the
initial random population we quickly evolve fixed ballistic solutions that approach the triangle
on some of the evaluations. Around generation 32 we see the first emergence of controllers able
to approach bright objects, so finding the triangle on 50% of evaluations. Controllers showing
this behaviour rapidly take over the population, leading to a long fitness epoch. Finally, on
generation 477 we see the evolution of controllers able to approach the triangle on significantly
more than 50% of evaluations. This innovation leads rapidly to 100% fitness.

So we see that the evolutionary run does indeed show fitness epochs, during which the
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population is mainly comprised of solutions which are not distinguishable from each other in
terms of fitness. But what is the population doing during this period - is it stuck in some local

fitness optimum or moving in the search space along neutral networks?

5 Genotypic change during a GasNet fitness epoch

The key feature distinguishing a population diffusing along a neutral network from that stuck
at a local optimum is the movement of the population in genotype space, typically measured
through the Euclidean distance moved by the population centre-of-mass, or centroid, over time.
This approach is complicated by the variable length encoding scheme used in this paper (see
section 2.5 for details of the solution representation), in which the neural network controllers
can add and delete nodes in the network.

The approach taken here is to analyse the centroid movement over only those genotypes in
the population of a certain length; in this section we focus only on those genotypes encoding
solutions of nine nodes, i.e. genotypes of length 171 (applying the same results to other length
solutions produces comparable results). In particular we can compare the observed centroid

movement with the population movement over landscapes of known fitness.
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5.1 Movement of the population centroid

Figure 8 shows the Euclidean distance moved over time by the centre-of-mass of all genotypes
of length 171 in the population for three different fitness landscapes. Each subplot shows the
distance moved by the centroid over one generation (solid line), and the distance moved over
ten generations (dotted line), scaled by both the genotype length and possible range of each
genotype locus (remember from section 2.5 that each locus on the genotype is an integer in the
range [0,99]). Figure 8(a) shows the distance moved by the centroid for the same evolutionary
run analysed in the previous section, while for comparison figures 8(b) and 8(c) show the distance
moved by the population under the same evolutionary algorithm, but evolving in a flat landscape
and in the neighbourhood of a local optimum respectively (for the local optimum movement
analysis, the evolutionary population was seeded with mutated copies of the optimal solution in

a landscape where fitness was simply evaluated as the mean of the genotype locus values).
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Figure 8: The Euclidean distance moved over time by the centre-of-mass of all genotypes of length
171 in the population for three different fitness scenarios (a) The GasNet evolutionary run analysed in
the previous section; (b) Evolution on a flat landscape where each solution receives the same evaluated
fitness; (c) Evolution in the neighbourhood of a locally-optimal peak. The distance moved over the last

generation and over the last ten generations are plotted.

The main point to note from figure 8 is that the centroid movements for the GasNet evolution
(figure 8(a)) are roughly 50% of the flat landscape evolution (figure 8(b)), but significantly
greater than the movement seen in the locally-optimal landscape. This is backed up by the
average movements shown in figure 9. It is likely that the sharp jumps in the centroid movements
seen in figures 8(a) and 8(b) are likely to be due to the varying length nature of the mutation

operator; evolution in fixed length flat landscapes (figure not shown) does not show such sharp
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From this we argue that the distance moved by the length 171 population centroid (and
indeed all other length centroids analysed) is consistent with the hypothesis that the population
is moving significantly during the statistically neutral fitness epoch, and not stuck in a local

optimum.

5.2 Visualising the population centroid

Although it is not possible to accurately visualise the population centre-of-mass over our high di-
mensional fitness landscape, we can plot the neural network robot control solution corresponding
to this centroid. Figure 10 does just that for the length 171 population centroids on generations
100, 200, 300 and 400.

It should be stressed that the networks shown in figure 10 are not necessarily viable robot
control solutions, rather they are the ‘average’ network defined by the mean centroid of all other
network genotypes. The main point to note is that the network structures are very different; the
population movement shown in the previous section does not merely alter connection weights and
other node properties, but massively changes the entire network structure. The period during
the fitness epoch is certainly not spent circling some local fitness optimum. The population
is moving neutrally through significant volumes of the search space. In the next section we
focus on whether there is adaptation of the population during this neutral movement, through

application of the local evolvability measures to the statistically neutral population.
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Figure 10: The centre-of-mass for the length 171 solutions plotted as individual networks over genera-

tions. See section 2.1 for details of the neural network control architecture.
6 Local evolvability over fitness epochs

In section 1.1 we defined four metrics of local evolvability based on the fitness distributions of
offspring surrounding a solution, or population of solutions. In this section we calculate these
metrics for the statistically neutral populations identified in section 4.2, plotting the metrics
over generations. From this we can focus on the question of whether solutions that are indis-
tinguishable in terms of fitness show differences in terms of the properties of the surrounding
search space.

We calculate the local evolvability metrics as follows. Over each generation, each individual
in the statistically neutral population was identified, and the fitness distribution calculated

through saving the fitness of 1,000 offspring created through 1, 000 applications of the mutation
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operator (section 2.6) to that individual. Each of the offspring was also tested to determine
whether they were statistically neutral (or statistically fitter or less-fit) with respect to the
parent solution. The local evolvability metrics at each generation were calculated by combining
the offspring fitness distributions from each individual in the statistically neutral sample at that
generation. Thus we can determine the number of neutral or greater fitness offspring E, (from
the numbers of statistically neutral, fitter or less-fit offspring), the expected offspring fitness
E,, and the expected upper and lower quartiles of the offspring fitnesses, E, and E; (from the

combined offspring fitness distributions).
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Figure 11: The local evolvability metrics plotted against generation, calculated over the statistically
neutral populations identified in section 4.2. The grey band (generations 32 to 75) shows the period of
takeover by the statistically neutral population, while the dot-dash line at generation 477 is the end of the
fitness epoch, at this time-point fitter genotypes were evolved. (a) The highest and expected offspring
fitness, Ep; (b) The probability of each offspring being of equal or higher fitness, i.e. a non-deleterious

mutation E,.

Figure 11 shows the highest and expected offspring fitnesses, and the probability of obtaining
non-deleterious mutations over time. Figure 12 shows the expected fitnesses over the top and
bottom quartile of offspring fitnesses. The first point to note is that there is clearly some variation
in the local evolvability metrics over generations. This is a significant point; solutions that are
indistinguishable from each other in terms of their evaluated fitnesses may be distinguishable

from each other in terms of the local properties of the surrounding search space over the course
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of an evolutionary run.
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Figure 12: The local evolvability metrics plotted against generation, see figure 11 for details. (a) The
expected offspring fitness over the top quartile of offspring fitnesses, E?°; (b) The expected offspring

fitness over the bottom quartile of offspring fitnesses, E3°.

The second main point to note is that the change in local evolvability for the statistically
neutral solutions is more marked at the beginning and end of the fitness epoch than during
the epoch, i.e. both during takeover of the population at generations 32-75 (grey band), and
after the discovery of fitter solutions at generation 477. In particular, we see that the expected
offspring fitness and highest offspring fitness (figure 11(a)), and the expected fitness over both
the top and bottom quartiles of offspring (figures 12(a) and 12(b)) show evidence of increase
during the takeover period. It is possible that this is in part due to the same statistical sampling
error described in section 4.2; as the statistically neutral solutions take over the population, the
expected fitness will increase due to the increased number of samples. However, the expected
fitness increases could not be due to this effect, so it is likely that the population has moved to a
“better” area of space with higher local evolvability, i.e. solutions have greater fitness offspring
on average. During the fitness epoch there is little evidence for increase in local evolvability, but
once the high fitness solutions have been discovered on generation 477, there is a sharp increase
in the highest offspring fitness and expected upper quartile offspring fitness, with a decrease in

the probability of non-deleterious mutations and the expected fitness over the bottom quartile.
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We can now give a much fuller description of the behaviour of the population during evolution
than that given earlier. During the takeover of the evolutionary population on generations 32-
75, there is some evidence for increase in local evolvability as shown by the increase in highest
and expected offspring fitnesses. However, once takeover has occurred, there is no evidence for
change in local evolvability - the population is not moving neutrally to better volumes of the
search space. Once the fitter portal genotypes are discovered on generation 477, the number of
solutions on the statistically neutral network drops dramatically, and there is evidence that the
remainder are not as robust as during the fitness epoch. So overall we see little evidence for an
increase in local evolvability during the neutral fitness epoch, except in the early stages during
takeover of the evolutionary population. Following the arguments for adaptation on neutral
networks given in section 1.2, we might find this result surprising: why do we not see neutral

evolution of robustness?

6.1 Evolutionary algorithms and evolution of robustness

It is often argued that population evolutionary algorithms provide robustness “for free” (see e.g.
Eigen, 1987; Huynen and Hogeweg, 1994; Thompson, 1997), in the sense that the evolutionary
search process identifies solutions more insensitive to mutation than on average across the space.
This might explain why we did not see evidence for the neutral evolution of robustness in the
previous section; the evolutionary algorithm may already have discovered extremely robust areas
of the search space.

Figure 13 shows the probability of obtaining equal offspring from the statistically neutral
sample over the evolutionary run (figure 13(a)), and the fraction of attempted mutations which
were accepted as statistically neutral over a neutral walk (figure 13(b)). The neutral walk
was generated as follows. From a starting solution, the best individual in the population on
generation 100, the mutation operator was applied successively, and only statistically neutral
mutations accepted. The fraction of accepted mutations asymptotically approaches the degree
of neutrality over the neutral network (van Nimwegen et al., 1999). Figure 13(a) shows this
asymptotic neutrality plotted; as can be seen the neutrality over the fitness epoch is over three
times the neutral walk asymptotic value, although after fitter solutions are discovered on gener-
ation 477 this ratio drops sharply. It appears that the evolutionary population shows far greater

robustness than on average across the space.
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Figure 13: The fraction of statistically neutral mutations over (a) the evolutionary population, and (b)
the population sampled over neutral walk. The neutral walk was started from the best individual in
the evolutionary population on generation 100, with successive mutations being accepted if the mutated
solution was statistically neutral with respect to the solution at the start of the walk. A number of
walks were carried out, and all showed similar behaviour. Asymptotically, the fraction of accepted steps
converges to the degree of neutrality across the neutral network (van Nimwegen et al., 1999); plotted
across (a) we see that this average neutrality is far lower than the neutrality seen in the evolutionary

population.

7 Discussion

The literature dealing with the dynamics of artificial evolutionary search on “real” problem
spaces, in the sense of problems not primarily defined for analysis, is not well developed. Major
exceptions include the work on RNA folding landscapes (see e.g. Reidys et al., 2001; Griiner
et al., 1996), evolvable hardware experiments (see e.g. Thompson et al., 1999; Vassilev and
Miller, 2000) and the evolution of digital organisms such as Avida (see e.g. Wilke et al., 2001).
In this paper we have investigated in detail a single evolutionary run on an evolutionary robotics
fitness landscape, evolving neural network controllers for a robotic visual discrimination problem.

Through the use of statistical neutrality of solutions, i.e. solutions that are indistinguishable
in terms of evaluated fitness, we have investigated the behaviour of a set of selectively neutral

solutions over the course of an evolutionary run. We have shown that the evolutionary run
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does show a long fitness epoch during which the majority of solutions in the population are
statistically neutral with respect to each other. During this period the population moves signifi-
cantly in genotype space; fitness is conserved but genotype structure is not. By defining a set of
local evolvability metrics (Smith et al., 2002a) we have investigated the regions of search space
surrounding the statistically neutral sample, showing that although they are indistinguishable
in terms of their fitnesses, there is variation in the search space through which they move. In
particular, we saw variation at the boundaries of the fitness epoch, both during takeover of
the population by the statistically neutral population and once fitter genotypes are discovered,
however we saw no evidence for change in local evolvability during the bulk of the fitness epoch.
Finally, through statistically neutral walks, we showed that the evolutionary population occupies
volumes of the search space that are far more robust than on average across the space.

The evolution of robustness may turn out to be a fundamental organisational principle in
understanding the dynamics of evolutionary search. The pressure on solutions to produce more
and more viable offspring may be important in all phases of evolution, during both neutral
fitness epochs and hill-climbing episodes, and population-based evolutionary search is extremely
good at exploiting this pressure in order to drive the population towards robust areas of the
fitness space. The argument that such evolution of robustness can occur during fitness epochs is
an attractive idea, however it may well be the case that in many noisy real world problems we
do not see further neutral evolution of robustness from a population already produced through
evolutionary search.

Our concluding remarks are on the relationship between local evolvability and evolvability.
Although evolvability is typically discussed in terms of change over time, in some sense that
change must start from the current location of the solution in the search space. In the absence
of a rigorous definition of evolvability, the properties of the local search space seem as good a

place as any to start trying to identify solution evolvability.

Acknowledgements

The authors would like to thank the three anonymous reviewers, Andy Philippides, In-
man Harvey, Lionel Barnett and all the members of the Centre for Computational
Neuroscience and Robotics (http://www.cogs.sussex.ac.uk/ccnr/) for constructive discus-

sion. We would also like to thank the Sussex High Performance Computing Initiative

24



(http://www.hpc.sussex.ac.uk/) for computing support. TS is funded by a BTexaCT Future
Technologies Group sponsored Biotechnology and Biology Science Research Council Case award

(http://www.btexact.com/projects/ftg/).

References
Adami, C. (1995). Self-organized criticality in living systems. Physics Letters A, 203:29-32.

Altenberg, L. (1994). The evolution of evolvability in genetic programming. In Kinnear Jr, K., editor,
Advances in Genetic Programming, chapter 3, pages 47-74. MIT Press, Cambridge, Massachusetts.

Burch, C. and Chao, L. (2000). Evolvability of an RNA virus is determined by its mutational neighbour-
hood. Nature, 406:625—628.

Cliff, D. T., Harvey, 1., and Husbands, P. (1993). Explorations in evolutionary robotics. Adaptive
Behaviour, 2(1):71-104.

Crutchfield, J. and van Nimwegen, E. (1999). The evolutionary unfolding of complexity. In Landweber,
L., Winfree, E., Lipton, R., and Freeland, S., editors, Evolution as Computation: Proceedings of a
DIMACS Workshop. Springer, Berlin.

Dawkins, R. (1989). The evolution of evolvability. In Langton, C., editor, Artificial Life: Proceedings
of the Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems, volume VI of
Santa Fe Institute Studies in the Sciences of Complexity, pages 201-220. Addison-Wesley, Redwood,

California.

Ebner, M., Langguth, P., Albert, J., Shackleton, M., and Shipman, R. (2001). On neutral networks and
evolvability. In Proceedings of the 2001 Congress on Evolutionary Computation: CEC2001, pages 1-8.
IEEE Press, Piscataway, New Jersey.

Eigen, M. (1987). New concepts for dealing with the evolution of nucleic acids. In Cold Spring Harbor

Symposia on Quantitative Biology, volume LII.

Eldredge, N. and Gould, S. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In
Schopf, T., editor, Models in Paleobiology, pages 82—115. Freeman, San Francisco, California.

Elena, S., Cooper, V., and Lenski, R. (1996). Punctuated evolution caused by selection of rare beneficial

mutations. Science, 272:1802-1804.

Floreano, D. and Mondada, F. (1994). Automatic creation of an autonomous agent: Genetic evolution of

a neural-network driven robot. In Cliff, D., Husbands, P., Meyer, J.-A., and Wilson, S., editors, From

25



Animals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive

Behaviour, SAB94. MIT Press, Cambridge, Massachusetts.

Gould, S. and Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered.
Paleobiology, 3:115-151.

Griiner, W., Giegerich, R., Strothmann, D., Reidys, C., Weber, J., Hofacker, 1., Stadler, P., and Schuster,
P. (1996). Analysis of RNA sequence structure maps by exhaustive enumeration: I Neutral networks,

IT Structures of neutral networks and shape space covering. Monathefte Chem., 127:355-374, 375-389.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, Michigan.

Hordijk, W. (1996). A measure of landscapes. Evolutionary Computation, 4(4):335-360.

Husbands, P. and Meyer, J.-A.; editors (1998). Fwvolutionary Robotics: First European Workshop,
EvoRobot98. Springer, Berlin.

Husbands, P., Smith, T., Jakobi, N., and O’Shea, M. (1998). Better living through chemistry: Evolving
GasNets for robot control. Connection Science, 10(3-4):185-210.

Huynen, M. and Hogeweg, P. (1994). Pattern generation in molecular evolution: Exploitation of the

variation in RNA landscapes. Journal of Molecular Evolution, 39:71-79.

Jakobi, N. (1998). Evolutionary robotics and the radical envelope of noise hypothesis. Adaptive Behaviour,
6:325-368.

Jones, T. and Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic
algorithms. In Eshelmann, L., editor, Proceedings of the Sixth International Conference on Genetic

Algorithms (ICGA95), pages 184-192. Morgan Kaufmann, San Mateo, California.

Kauffman, S. (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford
University Press, Oxford, UK.

Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge,
UK.

Kirschner, M. and Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences,
USA, 95:8420-8427.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, Massachusetts.

26



Marrow, P. (1999). Evolvability: Evolution, computation, biology. In Wu, A., editor, Proceedings of the
1999 Genetic and Evolutionary Computation Conference Workshop Program (GECCO-99 Workshop
on Evolvability), pages 30-33. Morgan Kaufmann, San Mateo, California.

McMullin, B. (2000). The Von Neumann self-reproducing architecture, genetic relativism and evolvability.

In Maley, C. and Boudreau, E., editors, Artificial Life 7 Workshop Proceedings, pages 11-14.

Naudts, B. and Kallel, L. (2000). A comparison of predictive measures of problem difficulty in evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 4(1):1-15.

Nehaniv, C. (2000). Measuring evolvability as the rate of complexity increase. In Maley, C. and Boudreau,

E., editors, Artificial Life 7 Workshop Proceedings, pages 55—57.

Newman, M. and Engelhardt, R. (1998). Effects of selective neutrality on the evolution of molecular

species. Proceedings of the Royal Society of London, B, 265:1333-1338.

Nolfi, S. and Floreano, D. (2000). Ewvolutionary Robotics: The Biology, Intelligence and Technology of
Self-Organizing Machines. MIT Press, Cambridge, Massachusetts.

Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annual Review of Ecology and
Systematics, 23:263-286.

Philippides, A., Husbands, P., and O’Shea, M. (2000). Four-dimensional neuronal signaling by nitric
oxide: A computational analysis. Journal of Neuroscience, 20(3):1199-1207.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press, Cambridge, UK, 2nd edition.

Reidys, C., Forst, C., and Schuster, P. (2001). Replication and mutation on neutral networks. Bulletin
of Mathematical Biology, 63(1):57-94.

Smith, T., Husbands, P., Layzell, P., and O’Shea, M. (2002a). Fitness landscapes and evolvability.
Evolutionary Computation, 10(1):1-34. To appear.

Smith, T., Husbands, P., and O’Shea, M. (2002b). Adapting to a changing environment: Evolvability
and analysis of robot control networks. In From Animals to Animats 7: Proceedings of the Seventh

International Conference on Simulation of Adaptive Behaviour, SAB2002. Submitted.

Smith, T. and Philippides, A. (2000). Nitric oxide signalling in real and artificial neural networks. BT
Technology Journal, 18(4):140-149.

Thompson, A. (1997). Evolving inherently fault-tolerant systems. Proceedings Institution Mechanical
Engineers, Part I, 211:365-371.

27



Thompson, A. (1998). Hardware Evolution: Automatic Design of Electronic Circuits in Reconfigurable

Hardware by Artificial Fvolution. Distinguished Dissertation Series. Springer, Berlin.

Thompson, A., Layzell, P., and Zebulum, R. S. (1999). Explorations in design space: Unconventional elec-
tronics design through artificial evolution. IEEE Transactions on Evolutionary Computation, 3(3):167—

196.

Turney, P. (1999). Increasing evolvability considered as a large-scale trend in evolution. In Wu, A.
editor, Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program
(GECCO-99 Workshop on Evolvability), pages 43-46. Morgan Kaufmann, San Mateo, California.

van Nimwegen, E. and Crutchfield, J. (2000). Metastable evolutionary dynamics: Crossing fitness barriers

or escaping via neutral paths? Bulletin of Mathematical Biology, 62(5):799-848.

van Nimwegen, E., Crutchfield, J., and Huynen, M. (1999). Neutral evolution of mutational robustness.

Proceedings of the National Academy of Sciences, USA, 96:9716-9720.

van Nimwegen, E., Crutchfield, J., and Mitchell, M. (1997). Finite populations induce metastability in
evolutionary search. Physics Letters A, 229:144-150.

Vassilev, V. and Miller, J. (2000). The advantages of landscape neutrality in digital circuit evolution.
In Miller, J., Thompson, A., Thomson, P., and T., F., editors, Proceedings of the Third International
Conference on Evolvable Systems: From Biology to Hardware (ICES’2000), volume 1801 of Lecture
Notes in Computer Science, pages 252—-263. Springer, Berlin.

Wagner, G. and Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution,
50(3):967-976.

Weinberger, E. (1990). Correlated and uncorrelated fitness landscapes and how to tell the difference.
Biological Cybernetics, 63:325-336.

Wilke, C. (2001). Adaptive evolution on neutral networks. Bulletin of Mathematical Biology, 63:715-730.

Wilke, C., Wang, J., Ofria, C., Lenski, R., and Adami, C. (2001). Evolution of digital organisms at high
mutation rates leads to survival of the flattest. Nature, 412:331-333.

28



