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The chaotic dynamics and
multistability of two coupled
Fitzhugh–Nagumo model neurons

Yoonsik Shim and Phil Husbands

Abstract
In this short article, we present a detailed analysis of the dynamics of a system of two coupled Fitzhugh–Nagumo neuron
equations with tonic descending command signals, suitable for modelling circuits underlying the generation of motor
behaviours. We conduct a search of possible attractors and calculate dynamical quantities, such as the largest Lyapunov
exponents (LLEs), at a fine resolution over the areas of parameter space where complex and chaotic dynamics are most
likely, to build a more detailed picture of the dynamical regimes of the system, focusing on the most complex solutions.
By building a precise LLE map, we identify a narrow region of parameter space of particular interest, rich with chaotic
and multistable dynamics, and show that it is on the border of criticality. This allows us to draw conclusions about possi-
ble neural mechanisms underlying the generation of chaotic dynamics. We illustrate the detailed ecology of multiple
attractors in the system by listing, characterising and grouping all the stable attractors in the parameter range of interest.
This allows us to pinpoint the regions with complex multistability. The greater understanding thus provided is intended
to help future studies on the roles of chaotic dynamics in biological motor control, and their application in robotics, par-
ticularly by giving a deeper insight into how input signals and control parameters shape the system’s dynamics which can
be exploited in chaos-driven adaptation.
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1. Introduction

The existence of intrinsic chaotic dynamics in the ner-
vous system has been recognised for some time
(Freeman & Viana Di Prisco, 1986; Guevara, Glass,
Mackey, & Shrier, 1983; Korn & Faure, 2003; Rapp,
Zimmerman, Albano, Deguzman, & Greenbaun, 1985;
Terman & Rubin, 2007; Wright & Liley, 1996). Such
dynamics have been shown to be integral to the opera-
tion of some neural circuits (Aihara & Matsumoto,
1982; Hoerzer, Legenstein, & Maass, 2014; Sussillo &
Abbott, 2009) and in the learning and control of the
dynamical interactions between brain, body and envi-
ronment that are inherent in embodied behaviour
(Ohgi, Morita, Loo, & Mizuike, 2008). Chaotic
dynamics occur in both normal and pathological brain
states, at both global and microscopic scales (Wright &
Liley, 1996), and in a variety of animals, supporting the

idea that chaos plays a fundamental role in neural
mechanisms. While intriguing proposals for the func-
tional roles of neural chaos have been put forward –
including for generating a kind of continual adaptive
open-endedness (Skarda & Freeman, 1987), or as a
means of allowing spontaneous exploration of body
coordination during development (Kuniyoshi &
Sangawa, 2006) – they are as yet not well understood.

The Fitzhugh–Nagumo neural model (FHN)
(Fitzhugh, 1961; Nagumo, Arimoto, & Yoshizawa,
1962) has become an important tool in theoretical
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studies of chaotic neural systems. It is a widely used
two-dimensional simplification of the biophysically rea-
listic Hodgkin–Huxley (HH) model of neural spike
initiation and propagation (Hodgkin & Huxley, 1952).
The HH model addresses excitation and propagation at
the level of underlying cellular electrochemical pro-
cesses, while FHN abstracts the essential mathematical
properties of excitation and propagation from the elec-
trochemical details of sodium and potassium ion flow.
As such, it remains a realistic model of neural dynamics
while being more tractable in relation to analysis and
visualisation than the higher dimensional HH model
(with which it is upwardly compatible). The equations
used are derived from those describing a van der Pol
non-linear relaxation oscillator, hence it is sometimes
also referred to as the Bonhoeffer–van der Pol model.

Neural circuits involving coupled FHNs have partic-
ularly rich oscillatory dynamics which can become
chaotic and multistable (Asai, Nomura, & Sato, 2000;
Yanagita, Ichinomiya, & Oyama, 2005). Hence,
because of their relative tractability, they have been
used in simulation studies aimed at better understand-
ing the functional role of chaotic dynamics in the ner-
vous system. A particular form of coupled FHN
neuron circuit, introduced by Asai, Nomura, Sato, et
al. (2003), has proven very useful as a model of central
pattern generator (CPG) units in the nervous system,
used in motor behaviours. For instance, such circuits
have been used to model human interlimb coordina-
tion, successfully reproducing clinical data from studies
of patients with Parkinsons disease, including normal
and disordered movements (Asai, Nomura, Abe, et al.,
2003; Asai, Nomura, Sato, et al., 2003). They have also
been used to model the development and learning of
limb coordination (Kuniyoshi & Sangawa, 2006;
Kuniyoshi et al., 2007), including with an approach
which exploits controllable chaotic dynamics to learn
stable and efficient gaits for walking and swimming
(Shim & Husbands, 2012, 2015), which can also be
applied in robotics.

Asai et al. (2000) and Asai, Nomura, Sato, et al.
(2003) provided very useful, detailed bifurcation analy-
ses of these coupled FHN motor circuits which showed
how the chaoticity of the system could vary under the
influence of control parameters. Other bifurcation anal-
yses of related, but more simply coupled, versions of
the circuits followed, highlighting different aspects of
the dynamics (Ciszak, Euzzor, Arecchi, & Meucci,
2013; Hoff, dos Santos, Mancheina, & Albuquerque,
2014) or focusing on more abstract, less biologically
motivated analysis (Yanagita et al., 2005). In this arti-
cle, we aim to extent Asai, Nomura, Sato, et al.’s (2003)
original work on the more complex, strongly biologi-
cally motivated, form of the FHN coupled CPG cir-
cuits. Unlike the other models mentioned above, this
includes variables representing tonic descending com-
mand signals and a coupling to the refractory variables

(from x to y in the equations in the next section). While
the original, partly qualitative, analysis was highly
informative, until now a more detailed, quantitative
dynamical analysis of this important system, particu-
larly with regard to characterising the attractor types
and mapping regions of chaotic dynamics, has not been
available. In this short article, we fill that gap by con-
ducting an elaborate search of possible attractors as
well as calculating dynamical quantities, such as the
largest Lyapunov exponents (LLEs), at a fine resolution
over the most important areas of parameter space, to
build a more detailed picture of the dynamical regimes
of the system.

Identifying chaos in a given dynamical system is
important both for accurately modelling and analysing
the system. The LLE is one of the few mathematical
measures of a system’s chaoticity and is used in this
work, together with Lyapunov spectra, to properly
characterise the possible behaviours of the coupled
FHN system. Different systems all of which exhibit see-
mingly irregular behaviours cannot be automatically
grouped together as chaotic, since they might be either
multiperiodic or quasiperiodic, or even show long tran-
sient behaviours (which appear chaotic) before settling
into a stationary state such as a fixed point or limit
cycle. Thus, a mathematical rigorous analysis, done
here for the first time, is one significant contribution
beyond the previous work because it allows an accurate
characterisation of behaviour of the FHN system.

The greater understanding thus provided is intended
to help future studies on the roles of chaotic dynamics
in biological motor control, and in the application of
such circuits in robotics; particularly by giving a deeper
insight into how input signals and control parameters
shape the system’s dynamics.

2. The Model

We consider two identical Fitzhugh–Nagumo neuron
(FHN) equations bidirectionally coupled by output-to-
all connections (Asai et al., 2000). Asai’s model of two
coupled FHNs can be described by the output variable
x and the recovery variable y as follows

_x1 = c x1 �
x3

1

3
� y1 + z1

� �
+ d(x2 � x1) ð1Þ

_y1 =
1

c
(x1 � by1 + a)+ ex2 ð2Þ

_x2 = c x2 �
x3

2

3
� y2 + z2

� �
+ d(x1 � x2) ð3Þ

_y2 =
1

c
(x2 � by2 + a)+ ex1 ð4Þ

where the equation constants are a= 0:7, b= 0:675

and c= 1:75, which are set such that the neurons
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exhibit biologically plausible dynamics (empirically
determined through sweeps of parameter space by the
current and other authors (Asai, Nomura, Sato, et al.,
2003; Shim & Husbands, 2012)). The system employing
these values has already successfully reproduced human
interlimb coordination both in normal and pathological
states (Asai, Nomura, Sato, et al., 2003) and success-
fully transferred to modelling the development of limb
coordination (Kuniyoshi et al., 2007) and to the devel-
opment of adaptive, chaos-driven neural mechanisms
used in locomotion learning (Shim & Husbands, 2012,
2015). The coupling strengths are set to d= 0:013 and
e= 0:022 after similar empirical explorations. These
were found to be the best values of the constants,
although broadly similar behaviour can be exhibited
with values close to these. z1 and z2 represent tonic des-
cending command signals from pathways entering the
neural motor centres, and they should be considered as
the bifurcation parameters of the system. It had been
shown that the model exhibits a wide range of dynamics
from different phase locked and quasiperiodic oscilla-
tions to chaotic orbits as the combination of the two
control parameters changes (Asai, Nomura, Abe, et al.,
2003; Asai, Nomura, Sato, et al., 2003). In particular,
the dynamics of the coupled systems is mainly influ-
enced by the degree of asymmetry between the two neu-
rons which is instantiated by the difference between z1

and z2. The presence of both the tonic descending com-
mands and the variable half-centre asymmetry they can
influence are the key elements for assessing the biologi-
cal implication of the model, as they mimic hierarchical
and coherent control structures of the nervous system.
This is in contrast to the other simpler models men-
tioned above, which do not include descending signals
and tend to focus only on extreme cases of coupling:
unidirectional and perfectly symmetrical bidirectional
(Hoff et al., 2014).

The coupled FHN model described by the equations
above can either be used to model at the level of single
neurons, or, as in (Asai, Nomura, Sato, et al., 2003), at
the level of neural populations. As a single spiking neu-
ron model, the variables x and y represent the mem-
brane potential and refractoriness of a cell. When used
at the population level, x and y can be regarded as the
activities of excitatory and inhibitory cell populations,
respectively. In this case, the coupling between x vari-
ables can be interpreted as a two-way connection
between the two excitatory populations, and x-to-y
couplings as the excitatory connections from an excita-
tory population to an inhibitory population. In either
case, the system can be considered as a realisation of
the half-centre model with reciprocal inhibition
(Brown, 1914), which is still widely accepted as the
underlying mechanism of many biological CPGs.

We extend Asai, Nomura, Abe, et al. (2003; Asai et
al., 2000) original analyses by investigating two aspects
of particular interest. The first analysis is intended to

produce a detailed map of chaotic regions on the para-
meter space. Asai, Nomura, Sato, et al. (2003) explored
the dynamics of the model, as applied to describing
human interlimb coordination, by varying the two
bifurcation parameters and categorised the dynamics
into different groups using a hierarchical clustering
method which measured multiple features of oscilla-
tory patterns such as the variance of amplitude modu-
lation and the mean relative phase. From these
measures, they classified the oscillatory patterns into
different categories based on the distinct interlimb
coordinations obtained from clinical data. Among
these categories, they roughly indicated the region of
chaotic dynamics of the model on a z� dz parameter
space where z1 = z and z2 = z+ dz. However, this
region was determined based on a partly qualitative
waveform clustering method, mainly by identifying
the irregular transition of relative phase, rather than
measuring LLEs which are widely accepted as an
indicator of chaos. Thus, in this article, we investigate
these dynamics in more detail, to give a more precise,
quantitative characterisation, by measuring LLEs
over various regions of the z� dz space, including
those which were classified as the most chaotic in the
previous rough characterisation.

The second analysis investigates a particularly inter-
esting narrow range of z in the tonic symmetry case
(z1 = z2), which is the early parameter region near the
Hopf bifurcation of FHNs. In contrast to the region
where the value of z is far from the Hopf bifurcation
point, the early region exhibits more complex bifurca-
tion phenomena including symmetry breaking, Hopf
branches, double cycles, and period doubling routes to
chaos despite the symmetry of the coupled system (Asai
et al., 2000). While the previous work pointed out a few
representative attractors (in-phase, anti-phase and out-
of-phase) in this range by providing a bifurcation dia-
gram on a Poincaré section, we have discovered that
there are various kinds of distinct oscillatory solutions
coexisting with each other (e.g. periodic solutions of dif-
ferent periods, 2-torus and multiple chaotic solutions)
over a wide range of z within this region. Specifically,
we focus on the parameter range zs\z\za, where zs is
the point where the stable and unstable oscillatory solu-
tions begin to appear and bifurcate (due to the subcriti-
cal Hopf bifurcation) and za is the point such that for
z . za, the system only exhibits one or both of the typi-
cal solutions of the general two identical coupled oscil-
lators, that is, anti-phase and in-phase oscillations.

3. Results

3.1. LLE map of the chaotic region

A map of the LLEs of the coupled FHNs on the
selected parameter region is shown in Figure 1. The
LLEs were calculated using a numerical method by
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Wolf, Swift, Swinney, and Vastano (1985) over the
belt-shaped area covering the possible chaotic region
identified in the previous study (region (c) in Figure 6
of Asai, Nomura, Abe, et al., 2003). Note that the
region analysed for chaos is significantly expanded
from the previous one by increasing the range of dz up
to 0.5 (dz\0:3 in the previous work). For compact
visualisation of this diagonal region of interest, it is
plotted using z1 versus positive values of dz, where
dz= z2 � z1 and z1 is the smaller of the two z values.

The model equations were numerically updated
using Runge–Kutta fourth-order integration with a
time-step of 0.001 s for 2 3 107 iterations, which is con-
sidered long enough to ensure the precision of the final
LLEs up to a few floating point digits, while the satis-
factory convergence of LLEs was normally observed
before 5 3 106 iterations. The calculation of the trajec-
tory separation and renormalisation (back to the initial
distance of 1 3 10�7) was done at every time-step.

The precise map clearly shows that the sub-regions
with positive LLEs (indicating chaos) all lie within the
hypothesised area, thus supporting and reinforcing the
previous work on identifying the chaotic region.
Observing the horizontally stretched braid of the chaotic
area indicates that the chaotic dynamics mainly take
place around z1 = zh ’ 0:3812 (i.e. the Hopf bifurcation
point of a single FHN) over the whole range of dz, which
means that the smaller of FHN’s two control parameters
(z1) stays near its critical state (zh), which is analogous to
chaos at the border of criticality (Medvedev & Yoo,
2008).

As shown in the previous study (Asai, Nomura,
Abe, et al., 2003), the difference in the oscillation ampli-
tudes of the two neurons in a coupled circuit represents
the asymmetry of the solutions and is crucial for the
non-periodic patterns. In chaotic solutions, the ampli-
tudes of the two FHNs in both the tonic symmetric and
asymmetric cases show similar patterns: the variance of

the amplitude of the FHN with smaller z is much larger
than the FHN with bigger z, while its maximum ampli-
tude is smaller. From this observation, one possible
intuition about the mechanism of chaos can be drawn –
at least in the case of tonic asymmetry – by looking at
each oscillator separately. The limit cycle of a single
uncoupled FHN with smaller z near a Hopf bifurcation
point is smaller and more vulnerable to external pertur-
bation (for instance, if the orbit is perturbed by an
impulse in a radial direction, then it takes longer to
return to the original limit cycle). If it is coupled reci-
procally with a second oscillator which has larger z
(thus having a bigger and more stable limit cycle), then
the smaller limit cycle of the first oscillator distorts
more easily, whereas the larger limit cycle remains
almost intact with little variance; this becomes a major
source of complexity for chaotic solutions.

3.2. Multistable solutions in the symmetric case
near Hopf bifurcations

Next let us illustrate the detailed ecology of multiple
attractors in the system with tonic symmetry (dz= 0,
z1 = z2 = z), which emerge in the narrow range of z near
Hopf branches. First, we performed an elaborate manual
search for all the coexisting stable attractors in the para-
meter range of interest by running the simulation at each
z several times with different initial conditions. Then, we
categorised the attractors thus discovered by referring
to the bifurcation diagrams in the previous work (Asai
et al., 2000; Asai, Nomura, Sato, et al., 2003). The para-
meter range of interest is zs < z < za, where zs = 0:3262 is
the point near the first Hopf branch at which stable in-
phase oscillations begin to appear from a non-oscillatory
state, and z . za = 0:4075 is the region where all the
interesting attractors disappear and only anti-phase oscil-
lations remain stable, along with an unstable in-phase
solution, until it is accompanied by a stable in-phase

Figure 1. LLE map on dz� z1 parameter space. The parameter area includes and extends the previously suggested region of
possible chaotic solutions (the diagonal region (c) of Figure 6 in Asai, Nomura, Abe, et al. (2003)). The calculation was performed
over the area with an interval of 0.001 for both axes. Due to the finite duration of the calculation, only values larger than
l1.5 3 10�4 were plotted as positive LLEs. The arrow indicates the Hopf bifurcation point zh’0:3824 of a single uncoupled FHN.
Non-oscillatory steady states are shown in grey at the lower left corner.
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solution again. Since the analytically solved Hopf
bifurcation point of a single uncoupled FHN is
zh ’ 0:3812441, it can be seen that most of the interesting
bifurcation dynamics in this range results from the inter-
action of two half-centres. The control parameters were
scanned with an interval of 0.0001, such that a total of
814 parameters values were investigated. Also, all the sta-
ble attractors which exhibited complex non-periodic
orbits were examined using their Lyapunov spectrum in
order to identify their quasiperodic/chaotic properties.

Figure 2 shows all the stable attractors manually
found within the prescribed parameter range, together
with illustrations of a few unstable solutions (shown as
thin grey lines) which were incorporated from the anal-
ysis in the previous studies (Asai et al., 2000; Asai,
Nomura, Sato, et al., 2003). The attractor solutions
were categorised into six groups (A–F) according to
their representative trajectories in state space. Due to
the left–right symmetry of two half-centres, any solu-
tion having different amplitudes between two FHNs
caused by symmetry-breaking bifurcation has another
coexisting mirrored solution. The two are interchange-
able by flipping either the initial conditions or the
indices of two FHNs. Thus, we considered only one of
the mirrored twins as an individual solution for cate-
gorisation. These groups are D and E, whereas A, B,
C, and F are the inherently symmetric solutions.

There is no oscillatory solution where z\zs = 0:3262,
only stable equilibrium (fixed points) exists (group A in
Figure 2). As the control parameter increases beyond
zs, stable and unstable in-phase solutions emerge simul-
taneously by double-cycle bifurcation and they coexist
with stable equilibriums (group B) until the unstable in-
phase solutions coalesce into unstabilised equilibrium
which correspond to subcritical Hopf bifurcation in a
two-dimensional subspace of the system (Asai,
Nomura, Sato, et al., 2003). In addition, another new
stable solution, which was not shown in the previous

studies, emerges immediately after this double cycle
bifurcation; this is the family of 2-period near-in-phase
oscillations whose trajectory on (x1, x2) space is butter-
fly shaped (group C). Beyond the in-phase Hopf
branching, a slightly out-of-phase solution occurs
(group D) having highly asymmetric amplitudes
between two FHNs, which is similar to one of the solu-
tions shown in previous work on the tonic asymmetric
case ((a4) and (a5) in Figure 2 of Asai, Nomura, Abe,
et al. (2003)), but in this case, the smaller limit cycle has
a two-period orbit. The stable in-phase solution
changes its stability at z= 0:3391, giving birth to a fam-
ily of major out-of-phase solutions (group E) which has
a rich repertoire of dynamics over a wide range of para-
meters, including the period doubling route to chaos as
well as the coexistence of multiple variations of similar
solutions (e.g. at z= 0:4022) even with different quanti-
tative measures (i.e. chaoticity). Finally, the anti-phase
solution (group F), born at the second Hopf branch,
becomes stable at z= 0:4002 and persists (as the sole
solution) far beyond za.

Figures 3 to 8 show a deeper investigation of a few
selected parameter ranges using Lyapunov spectra and
attractor trajectories, which looks into sub-regions 1–5
in Figure 2 to identify quasiperiodic or chaotic solu-
tions (shown as blue and red bars). These regions were
chosen for further analysis because their dynamics are
particularly rich and complex. The Lyapunov spectrum
was calculated by the discrete QR-based method (Dieci,
Russell, & Van Vleck, 1997) for 5 3 107 iterations where
the decomposition of the updated variational matrix by
the Gram–Schmidt procedure was performed at every
integration step. Other simulation parameters were the
same as in the previous LLE calculation.

Sub-regions 1 and 5 in groups C and F show initially
complex orbits (multiperiodic, quasiperiodic and even
chaotic) right after the birth of each group. The trajec-
tories swirl around an unstable periodic solution

Figure 2. Inhabitancy diagram of different attractor groups versus the control parameter z1 = z2 = z. At each value of z, the
coexistence of attractors was plotted using vertical bars with different colours and sizes according to the signs of their Lyapunov
spectra; (black) n-period oscillation {0,2,2,2}, (blue) 2-torus {0,0,2,2} and (red) chaos {+ ,0,2,2}. Inset shows a magnification of
the region surrounded by the dashed box. See Table 1 for the details of different n-periodic solutions.
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(‘skeleton’), which is later stabilised to a representative
solution of the corresponding group as z increases.
Both the first and second Lyapunov exponents (LEs)
of quasiperiodic oscillations are virtually zero (Figure
3(1) and (5)), and their Poincaré maps (Figure 8(a)
and (c)) form one-dimensional closed trajectories in
three-dimensional space, which indicates that they are
2-torus. While the early quasiperiodic solutions of the
anti-phase family (group F) seem to follow a typical
torus bifurcation process, some of the early dynamics
of group C (2-period butterfly) exhibit chaos (positive
l1 and a cracked Poincaré map in Figure 8(b)).

In the parameter space under investigation, the solu-
tion group E can be seen as the major solution group
caused by symmetry-breaking bifurcation. They are a
family of out-of-phase solutions who tend towards
more complex dynamics. A variety of out-of-phase
solutions with different periodicities coexist and coa-
lesce by branching into sub-groups (e.g. (2a) and (2b) in
Figure 2), which go through their own period doubling

cascades creating different chaotic solutions that pre-
serve their trajectory characteristics to some degree. A
few parameter points near the last period of the group
(inset in Figure 2) show a particularly rich coexistence
of various solutions. For example, the system with
z= 0:4022 exhibits the coexistence of four distinct out-
of-phase patterns with different periodicities; a total of
five stable attractors (four from group E and one from
group F) coexist at this parameter value (Table 1).

4. Discussion

We presented a rigorous analysis of the dynamical
behaviours of a system of two coupled FHNs with des-
cending command signals, focusing on regions with
rich dynamics of potential use in the generation of
motor behaviours. Expanding on the prior work of
(Asai, Nomura, Abe, et al., 2003; Asai, Nomura, Sato,
et al., 2003), we developed a more detailed and more
quantitative analysis. In so doing, we identified a

Figure 3. Lyapunov exponents of the specified regions in Figure 2. The four LEs (l1.l2.l3.l4) are coloured as black, red, blue
and green, respectively.

Figure 4. Examples of trajectories in group C. The pair of plots for each column shows the orbits on (x1, x2) and (x, y) planes
(black: (x1, y1), grey: (x2, y2)) for the corresponding solution: (a) 2-torus at z= 0:3267, (b) 34-period at z= 0:3270, (c) chaos at
z= 0:3272 and (d) 2-period at z= 0:3274, which is the representative trajectory of group C.
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narrow region of parameter space of particular interest,
replete with chaotic and multistable dynamics.

But outside of this tight region, there were only two,
unremarkable and uninteresting, solutions: in-phase
and anti-phase oscillations. The region of special inter-
est, the only one showing complex coexisting solutions,
lies at the border of criticality, very close to the Hopf
bifurcation point of a single FHN (zh ’ 0:3824). In bio-
logical terms, in this state, an individual FHN is at the
border of two important types of oscillatory (CPG)
behaviour: half-centre (requiring a reciprocally linked

partner FHN) and pacemaker (having intrinsic oscilla-
tory dynamics of its own). Dynamics poised on this
border can be exploited in a powerful way in the devel-
opment, learning and generation of motor behaviours
(Kuniyoshi et al., 2007; Shim & Husbands, 2015), and
the analysis in this article will help to refine such
research. For instance, it was demonstrated that chao-
tic dynamics emerging spontaneously from interactions
between neural circuitry, bodies and environments can
be used to power a kind of search process (chaotic
search) enabling an embodied system to explore its

Figure 5. Examples of trajectories in group E (out-of-phase solution family). An example of group D (highly asymmetric amplitudes)
is shown together at the lower left corner for convenience. (a) 1-period at z= 0:3550. (b1–b3) An example of the period doubling
route to chaos of the first solution branch in Figure 2-(2a); 4-period at z= 0:3252, 8-period at z= 0:3256 and chaos at z= 0:3266.
(c1–c3) Period doubling cascade of the second branch (2b); 3-period at z= 0:3238, 6-period at z= 0:3260 and chaos at
z= 0:3266. Note that the two different chaotic solutions (b3 and c3) bifurcated from each branch coexist at z= 0:3266.

Figure 6. Four different solutions coexisting at z= 0:4022. (a) 5-period, (b) 7-period, (c) 2-torus and (d) Chaos.
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own possible motor behaviours (Kuniyoshi & Suzuki,
2004). This idea has been advanced by showing how to
harness chaos in a general goal-directed way such that
desired adaptive sensorimotor behaviours can be
explored, captured and learned (Shim & Husbands,
2012, 2015). Key to this adaptive method is the control
of chaos in coupled FHN neurons through changes to
the z parameter by actively linking it to a performance
measure which feeds back into the system. Chaos is
increased, stimulating more exploration, when the

performance level is low and is reduced as performance
increases, turning off as the system stabilises on a high
performing attractor. The detailed analysis of the
coupled FHN dynamics presented here allows us to see
in greater detail than previously how changes in z shape
the dynamics and which regions of parameter space
have the richest dynamics, most amenable to chaotic
search. By biasing the system towards such regions the
adaptive mechanisms can be made more efficient.
Although the dynamics of these systems were referred

Figure 7. Examples of trajectories in group F (anti-phase solutions): (a) 13-period at z= 0:4002, (b) 2-torus at z= 0:4004 and (c)
1-period representative solution at z= 0:4067.

Figure 8. Example of the Poincaré maps for torus and chaotic solutions. The points of the maps were plotted on (y1, x2, y2) space
whenever x1 crosses the hypersurface x1 = � 1 in the positive direction: (a) 2-torus in group C at z= 0:3267, (b) chaos in group C
at z= 0:3271, (c) 2-torus in group F at z= 0:4003 and (d) 2-torus in group E at z= 0:4022 (i.e. one of the four coexisting solutions).
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Table 1. All existing stable attractors and their periodicities for values of z, organised in terms of the groups A–F. The numbers n
in the columns represent stable n-period oscillations (zero indicates a stable equilibrium), and the letters indicate (T): 2-torus and
(C): chaotic. Each column represents the corresponding attractor group as shown in Figure 2, where the coexistence of different
solutions within the same group is shown as multiple entries separated by commas. The period of the solution marked with an
asterisk (*) was counted up to 120 due to the precision limit.

z A B C D E F

<0.3261 0
0.3262 0 1
0.3263–0.3269 0 1 T
0.3270 0 1 34
0.3271 0 1 C
0.3272 0 1 C
0.3273 0 1 2,8
0.3274–0.3317 0 1 2
0.3318–0.3321 0 1 2 1
0.3322–0.3340 1 2 1
0.3341–0.3390 1 1
0.3391–0.3549 1 1
0.3550–0.3583 1
0.3584–0.3636 2
0.3637–0.3639 2,3
0.3640–0.3652 4,3
0.3653 4,6
0.3654–0.3656 8,6
0.3657 16,6
0.3658 C,6
0.3659 20,6
0.3660 C,6
0.3661–0.3662 C,12
0.3663 C,16
0.3664–0.3668 C,C
0.3669 C,9
0.3670–0.3672 C,C
0.3673 C
0.3674 C,7
0.3675–0.3728 C
0.3729 9
0.3730–0.3787 C
0.3788 8
0.3789 32
0.3790–0.3844 C
0.3845 8
0.3846–0.3856 C
0.3857 48
0.3858–0.3870 C
0.3871 15
0.3872–0.3873 C
0.3874 48
0.3875 C
0.3876 24
0.3877–0.3878 12
0.3879–0.3892 6
0.3893–0.3946 3
0.3947–0.3953 3,C
0.3954–0.3964 C
0.3965 C,C,5
0.3966 12
0.3967 C
0.3968 16
0.3969–0.3970 8
0.3971–0.3983 4
0.3984–0.4001 2
0.4002 2 13
0.4003–0.4006 2 T

(continued)
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to as chaotic in previous publications (because bifurca-
tion analysis strongly pointed in that direction), now
with the more rigorous analysis provided by this article,
we can safely say they truly are chaotic.

The detailed LLE map of the chaotic region of the
coupled FHN system, and the Lyapunov spectra for
more detailed investigation of some parameter ranges,
were calculated using well-accepted numerical methods
(Dieci et al., 1997; Wolf et al., 1985) using a fine inte-
gration time-step and a large number of iteration to
ensure convergence of all calculations. Numerical
methods were used since for this highly non-linear sys-
tem, the relevant equations are not analytically tract-
able. Although there can always be slight doubts about
numerical calculations, the methods used here are
uncontroversial and produced highly stable results. If
(as is widely done) we define a system as chaotic (in a
subset S of state space), if it shows (1) sensitive depen-
dence on initial conditions and (2) S is bounded so as
to exclude the trivial case of an unstable linear system
whose trajectories diverge exponentially for all times,
then the system described in this article exhibits chaos.
Condition (1) is satisfied if the properly calculated LLE
is positive, which is the case for the system in the
regions depicted in Figure 1, and condition (2) is clearly

satisfied in this case, so we are justified in referring to
the neural dynamics as chaotic. However, ultimately
the systems of most interest for understanding adaptive
behaviour are embodied. Here, the overall dynamics
involve multiple brain–body–environment interactions
and the analysis of such dynamics is significantly
harder. A study of the overall dynamics of a fully
embodied system with a coupled FHN–based nervous
system (such as in Shim & Husbands, 2015) will be the
subject of a future paper; preliminary results suggest
we can refer to the whole system as chaotic.

Although the elaborate categorisation of different
stable solutions in the tonic symmetry case were pre-
sented by looking into a narrow parameter region in
detail, they were manually found by observing the evolu-
tion of trajectories starting from various random initial
conditions up to a few 100 points. This method inevitably
introduces an element of coarseness into the exploration
of possible basins of attraction in a four-dimensional
space. One future direction would be to employ a cluster-
ing analysis similar to Asai, Nomura, Abe, et al. (2003),
but specialised for detecting more detailed oscillatory pat-
terns including the number of oscillation periods, n-torus
and chaotic attractors, incorporated by Lyapunov analy-
sis. For example, it is difficult to distinguish between the

Table1. Continued

z A B C D E F

0.4007–0.4008 2 1
0.4009–0.4014 2,3 1
0.4015–0.4018 2,6 1
0.4019 2,12 1
0.4020 11,C 1
0.4021 9,C 1
0.4022 5,7,C,T 1
0.4023 5,7,C 1
0.4024–0.4025 5,C,T 1
0.4026–0.4029 5,C 1
0.4030 24,16,C 1
0.4031 12,16 1
0.4032–0.4033 12 1
0.4034–0.4042 6,4 1
0.4043–0.4052 3,4 1
0.4053–0.4054 3,C 1
0.4055–0.4057 3,14 1
0.4058–0.4059 3,7 1
0.4060 .120*,7 1
0.4061–0.4062 7 1
0.4063 13 1
0.4064 6 1
0.4065 4,C 1
0.4066 22,C 1
0.4067–0.4068 C,C 1
0.4069 8,10 1
0.4070 4,5 1
0.4071–0.4072 4,10 1
0.4073–0.4075 4 1
0.4076< 1
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2-torus and chaotic attractors in group C or the different
chaotic orbits (and torus) in group E because of their
similarities in the evolution of relative phases and the
amplitude variances.

By presenting a more detailed picture of the coupled
FHN system’s dynamics, particularly in the region of
high complexity, our intention is to aid future studies
on the roles of chaotic dynamics in biological motor
control, and in the application of such mechanisms in
robotics, by providing the most promising parameter
ranges to pursue.

The intrinsic stability and dynamical structure of non-
chaotic and chaotic systems are different even if their
orbits seem similarly irregular, which may well lead to dif-
ferent behaviours when such systems are used for robot
control under the influence of external forces/control sig-
nals and/or noise. Hence, when applying these ideas in
biorobotics, it is important to have a rigorous understand-
ing of the dynamics as provided by this article.
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