An Introduction to Evolutionary Computing for Musicians

Phil Husbands Peter Cople¥ Alice Eldridge, James Mandelfs
! Department of Informatics, University of Sussex, UK
2 Department of Music, The Open University, UK

philh | alicee | jamesm @ sussex.ac.uk, peter@pcopley3&tsok

1 Introduction

The aims of this chapter are twofold: to provide a succineidnttion to
Evolutionary Computing, outlining the main technical details, tarmdise issues
pertinent to musical applications of the methodology. Thus thdeashould furnish
readers with the necessary background needed to understaech#ieing chapters,
as well as opening up a number of important themes relevtnis twollection.

The field of evolutionary computing encompasses a varietychhtques and
methods inspired by natural evolution. At its heart areMaan search algorithms
based on highly abstract biological models. Such algorithms tmanigh vast spaces
of data structures that represent solutions to the probleandt(which might be the
design of an efficient aero engine, the production of a beautiadge, timetabling a
set of exams or composing a piece of music). The seapdwered by processes
analogous to natural selection, mutation and reproduction. Theitkes is to
maintain a population of candidate solutions which evolve undeeectisel

pressure that favours the better solutions. Parent solutier®arbined in

various ways to produce offspring solutions which then eneéepdipulation,

are evaluated and may themselves produce offspring. Aythecontinues better
and better solutions are found. This class of techniques hadexdteagreat deal of
attention because of its success in a wide range of ajtisat

Once the Neo-Darwinian framework, which unified Darwin’s tiyemirnatural
selection with genetics, had been established in the E98D40s and emerged as a
powerful theoretical underpinning for biology (Fisher 1930, Haldane, 1332ey
1942), it is perhaps not surprising that computer pioneers wondetred possible
to abstract general problem solving methods from the logic ofalavolution.
During the 1950s a number of prominent thinkers, such as Turingestegl the use
of artificial evolution as a possible methodology for developing adgaptachines.

He envisioned its use in developing learning machines. Suchimeaakould have
hereditary material (artificial genes) encoding theuctire, mutated copies of which
would form offspring machines. A selection mechanism would be tosiavour
better adapted machines -- in this case those thatbestat learning (Turing 1950).
Such ideas were relatively common at that time, the gaderof mid-century
Cybernetics when biological inspiration was rife and adventuesearchers were
mapping out a visionary landscape, but it was not until the 1960s, cohguuter
hardware became more powerful and easily available, tinatete instantiations
began to appear. Three different variants independently echeRgchenberg and
Schwefel developed Evolutionstrategies (Rechenberg 196&kkie tengineering
design optimisation problems. Fogle, Owens and Walsh (1966) destini



technique of Evolutionary Programming, primarily concerned extiving finite
state automata for machine learning tasks. John Holland agcbhis at the
University of Michigan developed the more general Gemdgorithm which would
become the best known of the methods (Holland 1975). Holland/sreak in this
area was concerned with building a powerful general formalbsradaptive systems
(Holland 1962), this lead to his notion of a 'general reprodugtiaa’ (Holland
1966) which, slightly modified, was christened a GenelgoAthm by Bagley
(Bagley 1967). It was during the 1980s that the field reatk off, when it was at
first dominated by work in Genetic Algorithms. In the 1990s garfeameworks
were developed which unified the various strands under the nelywused term of
Evolutionary Computing (Back and Schwefel 1993). It is beyond thessufohis
paper to look in detail at all the historical flavours of etiohary algorithm that
emerged during the development of the field (see Eiben @ittt 3003, Mitchell
1996 for good introductions), rather the main properties of sudmoaevill be
presented by appealing to the idea of a general classlotienary search algorithms
which encompasses the major sub-dialects.

Early applications of Evolutionary Algorithms (EAs) were mugiinl engineering
optimization of one sort or another (see e.g. Davis 1990, Guoldl889, Grefenstette
1987), but as the method became better known and sparked the iroagihatany
researchers, the range of applications became increasimgiyand soon
encompassed creative and artistic domains, including music.

The deceptively simple biological analogy at the heart of EAighly attractive and
provides a rich seam for further developments that many oésgarhave mined and
are still busy mining today. As we shall see, this haslted in a highly flexible
framework, with far fewer restrictions on its applicattban for other comparable
methods, allowing plenty of scope for creative work. This esairthe great strengths
of the area and one of the reasons why it is attractiveugicians and artists.

The next section gives a succinct introduction to the technitailslef EAs. This is
followed by sections on two particularly popular areas for musigplications of
evolutionary computing: composition and sound design. Importansissising from
the use of EAs in these areas are aired. The papecdhénues with a wider
discussion of the place of adaptive systems in music.

2 Evolutionary Search Algorithms

2.1 Some biology

Most EAs are based squarely on the Neo-Darwinian framefsamk biology and
borrow certain key nomenclature from it. Hence it will ledpful to outline that
framework before launching into the details of EAs.

According to Darwin’s theory of natural selection (Darwin 1889plutionary
change comes about because of the existence of variatioreiitable traits in every
generation. Those individuals who survive, owing to a partiguleell-adapted
combination of inheritable characteristics, give rséhe next generation. The fittest
survive to pass on those traits that helped to make them fi



Darwin knew very little about how these variations arosel@tithe mechanisms
underlying inheritable traits were. It was modern genetidspiteevided the key to
answering these problems. Hence Neo-Darwinism postulatesataal selection
acts on the genetic variations within populations — genes Heengnits underlying
inheritable characteristics. These variations are camsgdnetic processes such as
mutations (sometimes caused by mistakes in DNA replicagiot yecombination of
genetic material from different sources (e.g. the two psiiergéexual reproduction).

Natural selection is usually thought of as acting orptienotypethe outward
expression of the genes (thenotypg— such as physical characteristics or behaviour,
the environment it inhabits and the interactions between theim process, together
with others such as genetic drift and speciation, is a&layent of modern
evolutionary theory.

2.2 The basics

Figure 1 outlines the general scheme of an EA. An irpti@lulation of structures
representing solutions to the problem is first created. gkt be completely
random individuals or based on a prior solution or generated usingtiesutiat
ensure that they have certain desirable characterigact member of the population
is evaluated so that it can be assigned a fitness (ysualimerical score). This will
involve decoding the genetic representation (genotype) into aepnctmiution
(phenotype) and testing its fithess using some method for dategiiow well it
solves the problem. Parents are selected, with a biasdefiter members of the
population, for the creation of offspring using artificial geneperators such as
mutation and recombination. The offspring are evaluated atarcef them are
selected to take the place of existing members gbdpalation chosen according to a
replacement scheme (usually biased towards the leasdifritduals). The cycle
continues until a sufficiently fit individual emerges or sonepging criteria, such as
number of cycles run, is met. Most parts of the cycle wesehndom, or stochastic,
processes which are crucial to the success of the method.

o] Parents
Recombination
R Selection Mutation
: initialise  :
\ \ 4
Population Offsping
(evaluate) (evaluate)
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Figure 1. General scheme of an Evolutionary Algorithm



We will now look at the operation of this scheme in more dbjaéxamining the
constituent parts of the EA. The main components of an evolagigearch algorithm
are:

* The genetic representation

* The evaluation function

e The population structure

* The selection method

* The genetic operators

* The replacement scheme

The genetic representation

The structures making up the population, the artificial genofygesusually strings
of numbers or symbols that represent solutions to the probleamdt They might be
a string of real numbers that are the parameters contralogind synthesis method -
- and hence represent a sound, or they might be groups of nusesenting
information such as musical note values and duration — ame hepresent a piece of
music. Complex encodings involving mixtures of numbers, symboéss ewid other
data structures have also been successfully used (esylitield of genetic
programming is concerned with the evolution of a particular fridd SP computer
programme — Koza 1992). It is also possible to use a fairiglsigenotype in
combination with a complex decoding scheme to translai®ithe phenotype.
Rather indirect routes to the end goal can be taken. Fanagestthe genotype may
specify the design of a process, or abstract machine, whibln run to generate the
end product of interest (e.g. a musical phrase). The genatgpdse of a fixed length
or, where appropriate, they can be allowed to grow and sAtirekgreat flexibility
available in designing a suitable representation is one ofdj@ advantages over
more traditional methods afforded by the EA framework. Howevemlhot
representations for a given problem will be equally good. Irestases the
representation to use is fairly obvious and straightforwagd éestring of numbers
acting as the parameters of a well defined process @njesi others it may not be
so clear. The representation definesgbrotype spactiarough which the EA
searches looking for a combination of genes that definesieaisnfiy fit phenotype.

If the representation is badly designed the space may beogoesibly convoluted
and too difficult to search with any efficiency, rendering EA useless. Throughout
the remainder of this book concrete examples of representatigable for musical
systems will be found.

The evaluation (fitness) function

EAs are a form of ‘generate and test’ algorithm (genexatew candidate solution,
test it to see if it is any good), the evaluation functiavhich operates on the
phenotype - providing the necessary means to measure fithessch\g defines the
solution requirements and implicitly encapsulates the meafiadaptation and
improvement for the particular evolutionary system. Thectiele method relies on
the evaluation function assigning relative fitness valaesémbers of the population
in order to preferentially choose the fitter individuals to predibe next generation.



Fitness is often measured on some numerical scale, buhim$naum the evaluation
function must be able to distinguish between relativelgrfd unfit individuals.

The simplest form of evaluation method is a well defined emattical function or
procedure whose variable are directly encoded on the genotype;aifgefed into the
function and a fitness value is thrown back (Eiben and S20id3). For more
complex phenotypes, for instance when the genotype encodes te afesirobot,
evaluation often involves generating a computer model of teegiype (e.g. the
robot) and then testing its behaviour in a complex simulafiakopi 1998). In other
cases an automated analysis of some characteristios phenotype is conducted in
order to derive a fithess measure. For instance, anexatusical composition might
be analyzed in terms of its closeness to some target, gieby using some
musicological theory or technique (Wiggins et al. 1998). If thenptype is the
design of a physical artifact, evaluation might entail aniatyvarious functional and
aesthetic properties of the design (Bentley 1999). In examybsas these, defining
a satisfactory automated fithess measure is oftenyhpgbblematic — how do we
codify aesthetics, how do we formalize crucial parts ottieative process of an artist
or composer? This important issue will be revisited inti®e@ and in later chapters
of this book. One partial solution that is commonly used, havieg p@neered in the
application of EAs in visual art (Todd and Latham 1992, Sims 18919,employ a
human’s judgment as the fitness measure. The main problentigitinéthod,
sometimes referred to assthetic selectioar interactive evolutionis the amount of
time required to perform the fithess judgments. This caalpde running the
evolutionary method for more than a relatively small numbeyoles.

The population structure

In the simplest cases the population is just a data struzintaining the genotypes
and their associated information, such as fitness. The paputaze is often fixed,
but it can be variable. In some EAs the entire populaticgpisaced on each cycle,
which is then referred to as a generation. A more sopdiistl variety of EA uses a
spatially distributedpopulation, alluding to the underlying conceptual model of the
population spread out over a 2D grid with each individual occuptsrayvn cell.
Members of the population only interact with those individuaficgently close to be
in theirneighbourhoodHence selection and reproduction act asynchronously and
locally allowing for highly parallel implementation of an Ef#sr instance using a
network of processors, one for each cell on the grid). This &6EA has been shown
to be highly efficient (Collins and Jefferson 1991, Hillis 199Qsbands 1993).

The selection method

Selection, whereby more credence is given to fitter populatembers, provides the
dynamo that powers the algorithm. The fittestrame likelyto pass on some of their
genes to later generations. This probabilistic element -hakitound in other parts of
the method, for example the genetic operators - helps to acoouhné ftechnique's
power and robustness.

A simple and reasonably effective selection methadusette selection. In this
scheme each member of the population is assigned a probabd#iection based on
its relative fitness (its fitness value divided by thi&k population fitness). Parents are



then selected according to this probability. This is analogodwitting up a roulette
wheel into N sectors, one for each member of the populasiamng them according
to the relative fitness of the individual represented,thad spinning it to select
parents. The bigger the relative fitness the more likeyrttlividual is to be selected
for breeding. Note that with this scheme no member of the abpulis excluded
from breeding, they all have some chance of contributing togkiegeneration.
However, this method can result in too strong a selectesspre in favour of
individuals that are relatively good at the early stage butantyally be far from
optimal; the populatioprematurely converge® be dominated by copies of such
individuals.

Rank-based selection is a particularly straightforward alternative scheme that
provides more control over the selective pressure and alloovgysiifferentiation of
the population, even at later stages when their fithesssvaheevery close. Using this
strategy the population is ranked, or ordered, according firiees values of its
members. Selection is then performed by following a prequéted probability
distribution function, such as the ones shown in Figure 2. Thisomaysimple linear
function that constrains the first ranked (fittest) individiadbe twice as likely to be
selected as the median ranked individual, or something more eompl

An alternative form of selection, that makes most sentgeicontext of parallel EAs,
was alluded to earlier - the use lakcal selection rules. Briefly, the idea is that a
population is somehow split up into many subpopulations, either expbeitl
implicitly (as in the case of the spatial distributionmiened above), and selection
occurslocally. That is, with reference only to the subpopulation, not to ltizag
population. Local schemes may be based on the methods desaibedor may be
simpler. For a more detailed discussion of possible s@testhemes see (Eiben and
Smith 2003, Mitchell 1996).

probability of selection
probability of selection

rank rank

Figure 2: typical rank-based selection probability distributions

Interactive evolutionary algorithms, employing human-based destiadection,
effectively dispense with a separate selection method widlodils are picked out by
the user to act as parents for the next generation.

The genetic operators
The genetic operators maintain variation in the populatiorcezate new individuals
from old ones. Myriad specialised operators have beenaj@abver the years and



there are numerous variation on the standard ones. Hence emhoéthe most
common generic operators will be outlined here. The two n@smon arer oss-

over andmutation, illustrated in Figure 3. Like most widely used operattrsy
have strong stochastic elements to their operation. Sicnpds-over involves
choosing at random a cross-over point (some position along the $tritiggp mating
chromosomes -- two new strings are created by swapping @veettions lying after
the cross-over point. Variations include two-point cross-over evierdomly selected
sections of the strings are swapped over and special opaitsbrearrange genes
during the crossing-over, either in order to keep the new sptukegal or to make
them better (Michalewicz et al. 2004). Mutation changes ahéwof a gene to some
other possible value. Depending on the encoding, this might assigining a new
value at random from the entire range of possible valuesdayehe, or randomly
resetting to a value ‘close’ to the current ooire€p mutatiop Mutation operators can
be heuristically guided, rather than completely blind (e.g.géne represents a note
value in a piece of music, mutation operators might be negitp respect certain
harmonic or melodic constraints — or perhaps more interestmglyarly always
respect them). For complex encodings, it often makes sehseé several different
mutation operators acting in parallel. Other operators soraetused include:
inversion, which is simply a matter of reversing a randomly chogetian of a single
genotypetranslocation which involves moving a randomly selected section to
another place on the genotype, alglication which entails adding extra copies of
genes or groups of genes. The latter operator only makesis@irseimstances
where a variable length encoding is being used, it ofteni@ungcin tandem with a
deletion operator. Specially designed cross-over operators can ailsetdo allow
genotypes to grow and shrink (Harvey 1992). Special domain &pejpérators are
regularly employed to good effect. For instance, in the egubn of EAs to musical
composition operators based on musical transformations sueheasion and
transposition can be very useful (Biles 1994).

X-over point
N
(N T N [ [N T N T e
cross-over —
mutation —

Figure 3: Schematic of popular genetic operators

The operators have assignmateswhich determine how likely they are to be used.
They are applied at the offspring creation stage accordiagautine like the
following. When two genotypes are selected for breeding,dppty crossover (with



some high probability) to create two new genotypes. Next apypdysion (with a
medium probability) to these. Finally each gene on the regudenotypes undergoes
mutation (with a low probability). According to the encodingesoe and problem
area, different combinations of operators with different ratesused. In some
circumstances it makes sense to dispense with crossfaverstance if it is difficult
to devise an encoding that works with this operation, andigesbne or more
mutation operator. It is common to have to experiment withabperates to find
good settings, which can usefully be made to vary duringethiels — in some cases
the rates themselves are put under genetic control (Batk1€991).

The replacement scheme

In some EAs enough offspring are produced on each cycle toedpmentire
population in one go. In others, sometimes cateddy statalgorithms, new
individuals are introduced one at a time, as long as theytteretian at least the
worst member of the population which is then replaced. dlfas/s a more gradual
search. Other schemes use an inverse selection method te an@obers of the
current population to be replaced with a bias towards tisé fiea

It should be clear from this brief outline of EAs that éhare many choices to make
in deciding how to apply them to any given domain and many pagesrtettweak
once the basic algorithm has been designed. The variousnédeofi¢he EA must all
work well together in order to achieve good results. Thedieste of operators,
genetic representation, evaluation function and so on, cguitbed by what has been
shown to work in the past, or by experimentation with differetiirgys and options.
However, some appreciation of the growing theoretical undersgofihow EAs
work can be very helpful and save time spent down the blires aif poor
representations or inadequate fitness functions. EAs are eomgh-linear stochastic
systems, which makes them extremely difficult to araly#ence the theoretical
literature tends to be rather inconsistent and is oftenamtioted by empirical results.
However, there is useful information to be gleaned and goodesoundude:

(Schmitt 2001, Vose 1999, Wright et al. 2005).

2.3 Related developments

Evolutionary algorithms have played an important part in theldpment of the
related fields of Artificial Life, which is concernedtithe synthesis and analysis of
life-like processes in artificial media (Langton 1995, Polleckl. 2004), and
Adaptive Behaviour, which studies the mechanisms underlyingetheration of
adaptive behaviour in real and artificial autonomous agentx (B¥90, Schaal et al.
2004).

These areas have seen interesting explorations of phenomeealamdues that have
found applications in artistic endeavours. For instance, coevolatispstems, in
which two or more ‘species’ compete (or possibly cooperate)fmie resources,
have been exploited in Karl Sims’ entertaining animationghich primitive
creatures wrestle with each other (Sims 1994), as wall\amious engineering
applications (Husbands 1993, Juille and Pollack 1996). This isa@idiravhich



might hold some promise as far as computer music is concemettiple species
could represent different voices in a composition or, folloviiregsuggestion of
Werner and Todd (1997,1998) to mimick work such as (Hillis 1991@) nat
withstanding the issues raised later in Section 3, it nighgossible in some
situations to have coevolving species of compositions and &rftido evaluate the
compositions) developing towards some interesting end.

Jon McCormack’s Eden is an interesting example of an installasing ideas from
these areas (McCormack 2003). In this system, simulated mopgdate an artificial
world in which they can move around and make and hear sounds.sbmsagents
must compete for limited resources in their environment.affemts generate sounds
to attract mates and also to capture the imaginatioreadulience - since its response
has a direct affect on the virtual environment, particuldnrd growth rate of food. In
this work McCormack has demonstrated the successful useopiearended
automatic evolutionary process to generate a highly engadergctive artwork.

This system illustrates a more implicit approach to fitreesduation, with a fairly
obligue interaction element. Such pieces suggest a wealtypoftunities for musical
developments.

2.4 Applications of evolutionary computing in music

There is a growing body of work involving the use of EAs in nalsipplications
(see Horner and Goldberg 1991, Burton and Vladimirova 1999, Bdbtth 2001,
Miranda 2003 for representative examples), just as themedhe ivisual arts and in
design (Bentley 1999). In music the two areas that haactgdtr the most attention
are composition and sound design. In the former, there havneabeumber of
attempts to evolve musical pieces in the style of aguéait composer, or within a
specific idiom, which have met with some success (Bi#®t, Hodgson 1999, 2002)
— although extending such work to more creative and original congpusit
challenging, for reasons including those discussed in Sectiorit® area of sound
design, researchers have demonstrated the efficacy @ctmgique in controlling
sound synthesis methods, both to explore new sounds and to developisynthes
algorithms for existing target sounds (Johnson 1999, Dahlstedt 20@1a @01,
Mandelis 2001).

Various aspects of these topics, in relation to spesyitems, will be dealt with in
detail in later chapters. The remainder of this chaptetended to raise a number of
important issues in these areas as background and contextésttbéthe book.
Fitness evaluation turns out to be a particularly thorny isstedation to
compositional systems and it is not a trivial matter in so@sibd.

3 Evolutionary Computing in Musical Composition

3.1 Introduction

The main purpose of this section is not to attempt a comprebessivey of
evolutionary computational approaches to musical composition (seenBand
Vladimirova 1999 for a good overview, as well as later chapterthis book) but



rather to highlight some of the potential problems, apparent ifitéhature, of too
close a marriage between the development of compositiongdutemprogrammes
and an approach to musical form derived primarily from acad#ramry, rather than
what many composers demonstrably do. This is a very real proldetextbook
musical form is by its nature algorithmic and has often been sere adeal starting
point for the development of composition programmes, particularly thased on
pre-existent models of compositional practice (see Wiggtnal 1998). The main
‘test case’ for discussion in this section will be sonatenfon theory and practice as
this, in particular, is a type of composition that could wetiver problematic if the
creative process to be modelled is not based on a traditionabdéxtefinition but
rather, something paralleling an end product that significantposers actually
produced. This is not to suggest that the production of an interesting Stneture
per se is a primary goal of more than a minority of practitenethis field. Rather,
that sonata form itself was a significant tool (whetheomtigmic in nature or not) in
the evolution of complex musical structure for more than one hundrefiftgngars
in the history of Western Art Music. Its potential to encorsgasmany elements that
inform the creative process — exploration, contrast, developrramisformation,
motivic mutation etc. — make it an ideal context within whichxangine the potential
limitations of EA composition programmes.

The musical forms generated by an EA-based system will becitiyptestricted and
shaped by the design of the various components of the system impodantly the
genotype, the genetic operators and the fitness function. Husmmatic fitness
evaluation method is used, the desired musical outcome must be sofoemally
codified. Deriving sets of rules to describe particular fwn styles is fraught with
difficulties, as discussed below. If the automatic fitnessction problem is
sidestepped by using human evaluation, the search space defirthe kgnetic
representation and operators must be sufficiently constrainedotd ampossible
bottle-necks in the time needed to perform the evaluations (B264, Gartland-
Jones and Copley 2003, 2005). As this will entail encoding musical kncavlatiy
the representation and operators, the difficulties do not diaappe

3.2 Algorithmic composition

In ‘The Algorithmic Composer’, David Cope stated that throughouthibtry of
Western Art Music, composers have used algorithms as pdre afréative process.
His premise was that an algorithm could be defined as nothing than ‘a set of
rules for solving a problem in a finite number of steps’ (Wah$991, p.35; cited in
Cope 2000, p.1). Clearly this is of crucial importance to anyonagewagin building
Al models of musical creativity and assuming Cope’s premisalid, algorithms of
musical composition and form building would be central to the conigtnuof such
models. However, while it is perfectly possible to define sarpenpositional
processes as algorithmic, not all fall so neatly into thiegmaty. A necessary
preliminary step would be to attempt a delineation of boundaget) what extent,
which compositional processes can and which cannot be sedilefin

Cope stated that ‘Most composers apply rules, steps, or satstfctions when
composing music, especially when composing music in a particyle’ $Cope
2000, p.2). Part of his support for this proposition is a serfeexamples of



compositional processes defined as algorithmic. These includeribe part of an
isorhythmic motet (significantly, Cope omits discussion and itiisin of the other
voices, which are freely composed), Bontempds, musical dice games and Fux’s
Gradus ad ParnassuifCope 2000, pp.3-11). This is a wide-ranging set of examples
although, with the exception of the motet, all bear only a pemphetation to
musical composition as actually practised by fully-fledged conmpodgontempi
(1660) states that hieta is a guide ‘by means of which one thoroughly ignorant of
the art of music can begin to compose’; a sort of musical eguivaf ‘painting by
numbers’, in point of fact! Musical dice games were sinylatb it yourself kits’ for
beginners, while Fux'§&radus(1725) was the standard instruction book for learning
strict counterpoint for much of the eighteenth century — a ugehll for the
elementary technical training of aspiring composers but beafoyut the same
relation to real music as a book of finger exercises, howelkenaed, would have to
the performing repertoire of a professional concert pianist.

On the subject of form, Cope writes that:
“Strict adherence to an established musical form constityedsanother
compositional use of musical algorithms. For example, imaginisgng form
of the medieval period, a dance form of the baroque, or a sdleafadorm of
the classical period of Western music history as symbolsfliomehart — one
way to describe an algorithm — does not seem unreasonable.”2000epp.3-
4)

The problem arises with Cope’s un-stated but implied assumptainsitnificant
composers at all periods in the development of Western art mdsinddied adhere
strictly to establishedmusical forms in their most original work, even granting that
these forms were already in acknowledged existence at theftwréing, rather than
being deduced after the event by historians or writers of textbooksusical
composition!

To return briefly to Fux, it is of course documented that Haydozdvt and
Beethoven, to name but three, worked assiduously through the eseirtithe
Gradusor from textbooks of a similar nature; but it is equally demoblgridnat they
paid scant attention to tHetter of the majority of Fux’s rules in their compositional
maturity. This is not to suggest that Fux is valueless as anpdeaf a producer of
musical algorithms, simply that the process of modelling angthiore than the most
elementary compositional process is rather more complicated hfs citation by
Cope might suggest. Historically, a large claim made for likaefit of strict
counterpoint study of the Fuxian variety was that it provided wimetuated to an
algorithm for composing in the style of Palestrina, who had begarded for
centuries after his death as a byword for purity of contrapuntal $tywfortunately,
this claim was largely unfounded and was completely exploded byver@s as far
back as the nineteen twenties:

“Yet the rules of Mr Rockstroajpnother author of a book on strict counterpdint
are not peculiar. They are, more or less, the same asfthwskin almost every
textbook of counterpoint. Who invented them, goodness only knows: why they
have been perpetuated, it passes the wit of man to explaisic Mritten to
meet their requirements is something altogesluergeneris a purely academic
by-product...The rules of counterpoint are found to have no connexion with



musical composition as practised in the sixteenth century: ate agandon the
rules or to abandon the sixteenth century? Follow Byrd and Palestrifzdlow
Mr.Rockstro and Professor Prout?”(Morris 1922, p.2)

3.3 Is sonata form an algorithm?

Sonata form expressed as an algorithm brings similar problents wake. Is the
algorithm to be based on textbook definitions or on what significant comgpose
actually produced? Furthermore, there remains the questighidi variety of sonata
form as practised is to be taken as the starting point. Mamynentators (see, for
example, Rosen 1980, pp. 365-402 and Straus 1990, pp.96-7) are now in agreeme
that there exists a fundamental distinction between what couldlpioadescribed as
eighteenth and nineteenth century approaches. For a composer icdhée kalf of
the eighteenth century, sonata form (not termed as such) iwaklaorated binary
structure characterised by differentiated key areas. T$teghirt contained a tonic area
and a dominant (or related key) area, although the first ardéc lbewharacterised by

a modulation to the tonality of the second area. The second parstednsi an area

of rapid modulation or episode followed by a return to the home keyiohwinality

the movement remained until its end. The two-part view of aos&ucture is
confirmed by the prevailing eighteenth century practice of remedtoth sections,
rather than just the first part, as is usually the aasentemporary performance.

What is set out above is just about the fullest extent of tgaleommon ground in
composing practice that can be extrapolated from the majoritatef eighteenth
century sonata structures and a composing algorithm extractedti®mould be
little different from one derived from baroque binary dance pwtedespite the two
forms being in reality quite distinct from each other. Theriibn between the two
is the far greater proliferation and elaboration of mate¢hiad the sonata framework
came to accommodate — what could, in fact be termed ‘free cdrapbosrhe beauty
of the form lay in its flexibility. This minimum common ground, eewat this stage
delineated in any contemporaneous textbook on composition, could accommuidate
only Haydn’s largely monothematic and developmental approach, buvalzart’s,
which tended to explore the underlying unity of two or more distinct buttheless
contrasting themes.

All this came to change in the nineteenth century, thanks initaltite theorising of
A.B.Marx (1795-1866) and Karl Czerny (1791-1857), which was largelgdcas the
sonata practice of ‘middle period’ Beethoven, who had provided yet ardighiect
approach to the original but still evolving model. | give hereo®aberg’s description
of the form, which corresponds to the nineteenth century theovists, which was
concerned less with the delineation of key areas and more hethatic contrast,
expressed in a ternary rather than a binary context:

“This form...is essentially a ternary structure. Its main sions are the
EXPOSITION, ELABORATION and RECAPITULATION. It differsfrom
other complex ternary forms in that the contrasting middle section
(ELABORATION) is devoted almost exclusively to the working otithe rich
variety of thematic material “exposed” in the first diwsi. Its greatest merit,
which enabled it to hold a commanding position over a period of 158,yiear



its extraordinary flexibility in accommodating the widestriety of musical
ideas, long or short, many or few, active or passive, in alamgscombination.
The internal details may be subjected to almost any mutatihowtidisturbing
the aesthetic validity of the structure as a whole.”(Schogn267, p.200)

Although Schoenberg proves himself a child of the nineteenth genttis thematic
and ternary, rather than tonal and binary, view of sonata steugerhaps in order to
allow for his continuing to explore the form in non-tonal contexts, hésrgeion is
still loose enough to accommodate a wide variety of approactesding those of
the later eighteenth century. The compositional algorithm thatl dmilextrapolated
from this description would, however, differ little from one dedvfrom a simple
ternary form.

For a truly distinctive sonata algorithm, resembling neitheisthmple binary nor the
ternary model, we would need to turn instead to the traditional stgonwho would
state that Sonata Form consists of firstly,eaposition comprising first and second
subject groups, respectively in the tonic and dominant (or relatgd)akel linked by
atransition or bridge passagesecondly, alevelopment sectipin which the original
thematic material will pass through a variety of relategskand may be extended by
episodes this will be followed (thirdly) by arecapitulation in which the material
from the exposition returns but is mostly confined to the original k&rious
optional extras, such astroductions codettasandcodascan fill out the scheme and
may be represented as byways on a flowchart, which is Cppefisrred method for
setting out compositional algorithms in a non-computerised context.

Actually, this theoretical description does indeed corresponthde conservative
later nineteenth century practice and this lends a depressingesssnéom a purely
formal point of view to the majority of sonata-type structuresnfthis period. The
extraordinary paradox is that the ‘romantic’ nineteenth centus/faualess free than
the ‘classical’ late eighteenth century in its interpretatibwhat might be termed ‘the
sonata principle’, except in the case of more progressively mhicol®posers, such as
Liszt, Berlioz and Wagner, who tended to abandon the form corypltes difficult

to avoid the conclusion that once ‘the rules’ had been encapsitatedietailed
formal scheme or algorithm, the sonata began to lose itsmilyreand developmental
possibilities and its various sections took on the characteroofids into which
appropriate music could be poured. Such an approach to potential sonatalmat
would have been psychologically impossible for any major eighteentearly
nineteenth century composer of whose structure-building creageiterally went
beyond simply following formulae devised by others.

3.4 The dangers of too many and too few rules

It may seem that several of the preceding paragraphs address more central to
the concerns of musical historians, analysts and aesthetib@mshose of designers
of computer programmes for musical composition. However, ifarge modelling
musical creative processes to any degree of sophisticdtiisncrucial that we base
our model on something close to what composers actually did,r rdtha on
theoretical constructs, often established long after the ceeawient, that oversimplify
or distort complex thought processes in the interests of pedagegmadiency. An



excessively rule-based system stands in grave danger of prodittiéngrore than
schoolroom exercises or, at best, stolid replications of ‘godtsgranship’ because
no facility has been provided for expanding a given search spaceotoraodate the
possibility, indeed the desirability of the unexpected, or even atastic but still
meaningful musical idea or development.

Although the explorative and stochastic nature of evolutionary ts@aechelpful, this
is perhaps the most challenging problem facing the designer of aba&s%
composition program, whether for general use or tailored to one ypartiset of
preferences. The past decade and more has shown that an EA di#fscuity in

replicating a composer in ‘hard-work’ (as opposed to ‘inspired’) moée (cob
1996: 158). But without the most stringently defined search space an geablya
large amount of potential material, mostly unusable, is apfietgproduced. Biles
(1994) has described this situation as the fithess bottleneckeudowif the search
space is too strictly defined — ‘Strict adherence to an éstall musical form’ (Cope:
2000: pp3-4))- the unexpected and interesting permutation, which tsaWltae hard
work is supposed to uncover may not emerge at all. As WendeF@dd pointed out:

“More structure and knowledge built into the system means masomably
structured musical output; less structure and knowledge in #tensymeans
more novel, unexpected output, but also more unstructured musical’ chaff
(Werner and Todd 1998:315)

What algorithm from textbook musical forms could have allowed foydHa
unprecedented departure from the expected course of musical ewmerte
developmental extended coda that erupts into the final variatican tbeme in the
slow movement of his String Quartet, Op.20 no.4; Mozart's intraolucof a
modulatory and developmental theme thahad contradicting all expectation, the
second subject of the first movement of Haffner Symphony; Beethoven'’s ‘sonata
structure, accommodating variation’ (Keller 1987, p.136) thahg$othe choral finale

of his 9" Symphony; or Schubert's fusion, by thematic integration of the four
movement sonata scheme into a single continuous movement in his ‘“&ander
Fantasy'?

These are not isolated, eccentric examples but the essendeubyf ereative use of
form, wholly characteristic of their respective composeisich can lend musical
compositions their enduring power to fascinate and hold the attertias. this

capacity to reinvent (or, particularly in the case of Haydninvent) form that is a
fundamental difference between a Haydn and a Vanhal, a MozartRite rsdorf; a
Beethoven and a Diabelli; or a Schubert and a Hummel. Meanicwyfitdadiction of
expectation is one expression of individuality that distinguishesfippieces and
composers from the more typical cultural products of whateveriragéhich they
lived, giving the music an intrinsic value that can transictime and place.

To attempt to model this level of creativity is asking muchagfrocess still in a
comparatively early stage in its development but it seerak thiat the possibility of
overriding ‘rules’ must be provided for in composition programmed vahy
pretensions to model creative, rather than reproductive nhtisszaght. The historical
fact that theory so often followed, and in the process distgotadtice should in itself
be warning enough of the pitfalls of regarding compositional procgasedy as



algorithms. It is natural to have recourse to algorithms whedetling creative
processes, as every computer programme ever devised isencesalgorithmic.
However, it must also be recognised that if the algorithmpleyed is reductive and
constricting in relation to the process it is modelling, theicalisnterest of what
emerges will be at best limited, if not utterly predid¢a

3.5 IndagoSonus

Gartland-Jones’ IindagoSonusSystem is a very interesting approach to partially
addressing some of these issues (Gartland-Jones 2003). The sysenvirtual
blocks which each have the ability to both play and compose musibeAsdocks are
arranged in various structures they interact with each atheays that influence the
emerging music. Each block has a pre-composed ‘home’ musical pmdséhe
ability to compose new phrases based on its home phrase and a Iparaseassed
to it from another block. A block’s compositional activity isnaid at producing a new
musical section that has a thematic relationship to both of flieses. To do this it
uses an EA which is initialised with the home music and hagnttoming phrase as
its compositional target, allowing the use of an automaticuatiah function that
measures the closeness of fit to the target. The path takehebgA generates
intermediate material related to the home and target pi@tesuser can stop the
evolutionary processes at any stage and restarted it withnoeming phrases, as
well as setting parameters that control how far the evolutiopeogess will travel
between the two pieces. To quote the designer:

“Any number of blocks may be chained or grouped in any 3D structuee. If
block is passed some music from its neighbour, it first recorspitsadf, and
then passes its new music on to all of its neighbours, and so fohih wipre-
specified range. It is important to clarify that each blbolds on to its home
music throughout, enabling any music composed by it to remain thaityatic
related, despite the constant process of re-composition urelertak each
block. In this way the composer of the music for all blocks ramsta
compositional thumbprint on the evolving musical structure. In gffée
listener/performer is able to shape the overall music by amposi send
musical fragment from blocks they like to influence otherckdd’ (Gartland-
Jones and Copley, 2003, p.53)

By this subtle mixing of automatic fitness evaluation and huimanvention, not to
mention the use of multiple interacting EAs, the systemasmakme headway in
addressing the fitness bottle-neck problem while avoiding awestiaining the
search space.

4 Evolutionary Computing in Sound Design

The use of EAs at the sound level is concerned with the matigputd parameters
that define a sound using a particular sound synthesis techniglie ¢8%/ith
parameters that define a particular deformation on an itgans (sound effects).
There are two broad categories of EA application in this agean optimisation
technique for deriving the parameters of an accurate mbédgbarticular sound
(usually a sampled sound) and for exploratory search imtestigation of new



sounds. These areas are briefly introduced in this sectide ghlighting pertinent
issues.

In the optimisation case a sample of sound, often from ditnaali instrument, is used
as a target waveform. An EA is put to work to deriveghmmeters of a particular
SST to produce a sound as close as possible to the targetegs filunction that
measures the difference between a candidate sound and #tegarsually employed
and there are many technical issues involved in how besfihe dieis. There are a
number of examples of successful uses of this approach (e.ga @@dd) and it will
be looked at in more detail later in the book. Sound definitionallysdescribes a
singular point in the parameter space of the SST withouto#tkpliletailing how this
sound changes and deforms from that frozen point. Such deformdtmmsnad, or
movements in parameter space, are necessary for mappsentpéed instrument to
a keyboard and note scale and implementing other transformdtairesitl
expressivity to the sound. In order to map those dynamicstfrerariginal source of
the sampled waveform, generally a large number of wavef@meeded. As an
absolute minimal requirement, at least three distinct wavefovould have to be used
for each degree of freedom of the original sound sourcenBtamice, if the source is
a piano sound, the degrees of freedom of the piano would inthelkey position,
velocity, aftertouch and so on. In practice most instrumamds do not vary in a
linear fashion along their axes of freedom and far more tirae samples would
have to be used for each axis. That can very easilit resuprohibitive number of
samples that places too high a computational demand on thEhEAcan be a serious
problem only if this technique is used to faithfully emulate@aginal sound source.
In contrast, if such fidelity is not required, then somerexting possibilities begin to
emerge. For instance, if the specific parameters areedefiiom a single waveform,
then any deviation from these parameters will create sahatare similar to the
original but with deformation characteristics that dependherparticular SST used.
For example, if a piano sound is used to derive the paranfetens FM SST and a
physical modelling SST, then the deformations afforded by tineciowould be
unique to this particular implementation of FM and for the datteque to the
particular physical modelling used. In effect there woulthaeinstruments that
would sound very similar at some performance configuration,thbeaame time
they would behave very differently in terms of sound defaonathen the
performance configuration changes.

The second category of EA-based sound creation, that of devetapingounds,
requires a somewhat different approach. Whereas therangeadody of knowledge
that can at least act as a starting point in attemptifigrmalise the evaluation
process of EA-based composition systems, in the area ofmavd design, where the
‘quality’ of the sound is to be assessed, there is no eqoiaderce. This is partly
because of the complexity and lack of transparency of S&T paxtly because of the
difficulty in modelling aesthetic judgements. In this donthm subjective usually
rules over the objective. Hence the use of human-basedcinieraelection is the
norm (Dhalstedt 2001, Mandelis 2001, Mandelis and Husbands 2003, Ye@ddag
Woolf 1999), which raises the issue of the evaluation bottl&-akeady discussed in
relation to composition. Although there are general problemsasiofaintaining a
consistent judgement of quality, the time taken to evalataund is usually
considerably less than that for a composition. This meanhg teaften feasible to
run the algorithm for a reasonable number of cycles. Thedestrained approach



necessitated by the lack of formalised knowledge allowa fmwerful exploration of

interesting and unexpected new forms that can be put to gostctarse.

Genophone (Mandelis 2001, Mandelis 2002) is one such exploratory sgstgned

in part to allow a flexible exploration of sound spaces withcunted for detailed
understandings of SSTs. Aspects of the system will now béiybdescribed,

focusing on general issues in the way evolutionary searcleds Tike system makes
strong use of genetic recombination which in biological sysiem<reative process
in itself. A biological analogy would be the breeding of aninsalglants which
humans have done for millennia. When pigeons are bread, for exaniplnot

normal (at least not yet) to employ gene level manipulatiangenetic engineering.
Instead, macrocosmic manipulations such as artificial ins#ion or pair choices are
enough to manipulate the genome as a whole and consequently thegestdpring.
Genophone provides analogous macroevolutionary manipulations to thoseednploy
in organic breeding: parents can be selected by the usécufzartraits can be
encouraged and manipulated. In addition, via dataglove manipulatiprsyides a
local direct and interactive exploration that facilitagesaller changes when used as a
performance tool.

The issue of an instrument’s degrees of freedom and the neov@mthis parametric
space as “performance” (Pressing 1990, Rovan et al.1997, Vdess@lright 2000,
Mulder 1994) was considered as an integral part of an institsr(sound) definition
during the design and implementation of the Genophone system. 8hischieved
by evolving the particular parameter values that produce a&desiundilong witha
performance mapping scheme where a subset of those parametepped onto
manipulation devices (dataglove and keyboard controls) fomyseriormance, this
is illustrated in Figure 4.

Each Genophone : Fold and Crawl
Genotype encodes two in order to sound space
things;

The Performanc
Sound Hyper-Volume
is defined via Macro
Evolution through
Selective Breeding

1) A Unigue Point
in Sound Spacq

2) The way the poir
moves inSound
Space via Glovg

movements

But the exploration
within that Hyper-
Volume is done
Interactively via
the glove as
performance

Thus Defining a
“Performance Sound
Hyper-Volume
or Cloud”

All Possible
Synth Sounds

Thus implementing both discontinuous
(macro) and continuous (local) modes of
sound searc



Figure 4: exploration of sound and perfor mance mapping spaces with Genophone (after Mulder
1994).

The option of locking individual genes, or even whole sections aje¢hetype,
provides an added layer of control over the evolutionary prokcasfelps bridge the
gap between a totally free-form search and the tightag&guloffered by a manual
sound editor. The inspiration for parameter locking came from #lyegenes are
activated and deactivated in biological genomes, produciggmegiic evolutionary
effects (Singh and Krimbas 2000).

An important difference between the way EAs are geneuahlyl in constrained
searches towards fixed sound targets, on the one hand, and umcedsxploration
of sound spaces, on the other, is the choice of initial populdti@enstrained EAs a
population of random individuals is often used to jump-startwb&igonary process.
This is partly to ensure no initial bias exists which magalithe search away from
the global maximum -- the perfect match to the targehérunconstrained
exploratory case, this is not necessary; in fact experimétit<senophone have
shown that it is not even desirable. These experiments inditeteit is preferable to
seed the initial population with sounds that have been profesli hand-designed
and are of some aesthetic quality. A large amount of knowledgmledded in the
parametric definitions of these sounds, information that uléiyp@ncodes a set of
aesthetic values, albeit in an implicit and not easibigleerable way. By using such
hand-designed sounds as points of departure for the evolutionary, sharc
embedded knowledge can be exploited. Experiments with Genophome\aated
that starting from hand-designed origins does not necessaaly that the resulting
offspring would sound very much like their parents. In factetones they can sound
surprisingly dissimilar, yet somehow still retaining soméhef original quality of the
hand-designed parents. It is also very easy at each gendmtmate’ a preferred
offspring with a newly chosen hand-designed sound, thus rapidlygdigeirom the
original parent set.

These two distinct uses of evolutionary computing for sound miésige been
described as the “survival of the fittest” and as gwaVival of the prettiest”, drawing
an analogy with the biological processes of natural seleamd sexual selection.
This first is in essence a convergent process whetherdcbadene is divergent.

5 New Musical Possibilities Through Adaptive
Systems

5.1 Introduction

The themes of the previous two sections are broadened ow setttion into a
discussion of evolutionary and adaptive algorithms as toolxfidoeng new musical
possibilities. In particular, it will be argued that adapsystems can provide a rich
interactive mechanism for performing as well as compositig thé computer.



Musicians have always made use of, and arguably inspirediectwologies. The
computer opens up an unimaginable scope for developing new soundssibetics
and new composition and performance practices. Audio developmeramprogs
and languages such as MAX/Msp, PD and SuperCollider are brogdési
community of computer music composers, and making the implenwnadtsystems
for exploring new musical possibilities easier and quicker.chialenge, of course, is
to make something that anyone actually wants to listelaady computer music
composers revealed formidable new worlds of acoustic texturtesenaimpossible
to achieve with acoustic instruments, but it has been suggéstiethe diminished
audiences for ‘serious’ computer music may be associatecawibier zealous
enthusiasm for precise and elaborate formalisms (Garnett 200ahdd has
suggested that part of the problem for listeners is thaétftogmal systems ‘lack the
cultural references that we normally rely on when appregatiusic’ (Miranda 2003,
p.1.) But although lacking the hallmarks of any particular ogtedd musical
tradition, the organisational structures of the dynamicsmwiesevolutionary and
adaptive systems bear strong similarities with the morphedaand structures which
appear across all musical styles. The behaviours of somdaizde an inherent
liveliness that has been shown to effectively mimi¢atemusical phenomenon, and
exhibit complex structural dynamics that have been showntwbeally effective at
all levels, from timbral morphologies to long term structurthe level of musical
form. In addition, the responsive nature of some adaptive sysfiéens an appealing
mechanism for interactive performances allowing us to iateghe aesthetically
challenging possibilities of computer music within the tradii of human
performance practice.

5.2 Generating Structure in Time

Superficially, an evolving population of digital genes magns¢o have little in
common with our concept of musical form. But this model afieigl evolution

shares with music a very fundamental characteristis:attemporal process. That it
exists in time is one of the few uncontroversially univieiesatures of music, yet
consideration of dynamic form is rarely a primary considemah computer-assisted
composition. A common problem reported by practitioners of compusedba
approaches (such as rule-based systems and neural netwadsassome
evolutionary systems) is that despite successfully creapiagific elements, there is a
lack of overall musical energy or flow. For example, whikcdssing constraint-
based system for harmonisation Lischka notes: “The harmonisatier(in a sense)
correct. But they are not exciting. What is lacking is s&md of global coherency.”
(Lischka 1991, p.237). This makes the creation of long term marbhdcal structure a
real difficulty. It seems likely that these problemsassociated with the fact that
time-based structures are rarely a primary focus, a tegpdemch perhaps has deeper
roots in the music theoretic principles from which many moaedserived (for a
discussion of the temporal paradox in musicology see Cook 1990).

There are myriad time-based models that could be useéfierating music, and
many composers have explored their possibilities. The faichthecess is formally
defined as a function of time does not in any way ensureh@ahusical outcome
will be engaging, nor even that the temporal dynamics cappeciated by the
listener. Just as the application of EAs demands carefuufation of representation



schemes, fitness functions and operators, this approachaelibe inspired selection
and implementation of a suitable model and the definitionnoéaningful mapping
from numerical output to musical space.

The implementation of a model is often motivated by an intuitioh ithghares an
organisational structure with a particular musical phenomenon a@t.€fiee musical
success of the approach is then dependent upon mapping the numericaintoitput
suitable musical domain in a way which preserves the desinectse. In a later
chapter in this book, Miranda describes various implementatio@elbflar Automata
(CA) models for musical applications. In one of the€faosynth a chemical
oscillator CA is used to parameterize a granular synthegiae (Miranda 2000). The
dynamics of the chemical oscillator CA rule, as it evolfresn a random state to
sustained oscillation, bear strong resemblance to the morpholagiohltion of
sound in the voice and many acoustic instruments: their pactalgerge from a
random distribution to a stable pattern of oscillation. The inggpused to
parameterize the granular synthesis engine preserve thesectehiatics, so the
sounds produced similarly bear these morphological features, capthermgobal
spectral evolution of an acoustic note onset. Using a compleandg model allows
the description of the changes in amplitude of multiple frequeoweigstime, and also
the relations between them. These multiple levels of relatednaig structures are
not peculiar to the timbral level, indeed almost all polyphonisimcan be conceived
as a complex of distinct, but interdependent voices weavingdpaiporal forms at
many levels. The use of complex dynamic systems enables thetyEmef these
sorts of rich spatio-temporal structures which are seen alewals of musical
organisation.

As well as modeling musical form, specific musical phenomeaonbe modeled
using time-based systems which would be difficult or imposs$ibtapture using
other approaches. Tim Blackwell's work on Swarm music (alesgmted in a later
chapter in this book) is motivated by the similarity betwinenself-organisation
exhibited by the swarm algorithm and the self-organisatiostrocture that emerges
in improvised ensembles of live musicians:

“The development of higher level musical structure aris@s fnteractions at
lower levels, and we propose here that the self-organisdtsoc@l animals
provides a very suggestive analogy.” Blackwell and Young 20037p.

The swarm system used by Blackwell is an extension of @aymolds ‘Boids’
algorithm (Reynolds 1987) which mimics the behaviour of a flockinds. In this
simple model, Reynolds shows that the global organisation dbtditecan arise from
simple rules which determine the movements of each batwelto each other,
without the need of any ‘leader’ or pre-devised plan. Theanedased on three
simple principles: separation, alignment and cohesion. Separagans each bird
must steer to avoid bumping into each other or any other objdw environment.
Alignment keeps the each individuals moving in a similar pgttaking the average
heading of local flockmates. Cohesion keeps the flock togatheach bird steers
toward the average position of local flockmates. Blackwas| émployed a similar
algorithm to parameterise a granular synthesis engiregjrayean eerily ‘lifelike’
movement of sound swarming through time.



5.3 Integrating the interactive machine

In the Boids algorithm above, note that the future position of ageht is described

in terms of the current state of the other agents:dbata are sensitive to, and
respond to changes in their environment. This is obvious whexomsder what
happens to a real, or simulated flock when it encounters asctdghe flock will

part to avoid it before rejoining. As well as mapping the bislawof the flock into
musical space then, we can apply the mapping in revetbatssound events (created
by ‘live’ musicians) in the real world can be mapped ih®\irtual world to

influence the behaviour of the flock. This provides a noveliatedesting mechanism
for interaction which extends the classic approaches to atitezanusic.

Traditional approaches to interactive music are based onlsnafdateraction derived
from existing musical practices, either allowing perforntersontrol aspects of a
predetermined score (eg Machover, 1991) mimicking interperselasibns in
performance (eg Winkler 1991), or extending the performer’s relatitmtheir
instrument (Machover and Chung 1989). The interesting thing about tioé use
adaptive systems in an interactive context is thatytbiesn amalgamates the
characteristics of all these categories, creatingeg¢ @ responsive composition and a
dynamic, behaving instrument which in performance can fezgihother, albeit
digital, performance partner. Other practitioners hawntexploring adaptive models
in improvised performance (eg Eldridge 2005, Bown and Lexer 20@6) a
performances made with systems such as homeostatic netmorkentinuous time
recurrent neural networks demonstrate the success gbpheagh in integrating an
experimental machine aesthetic within the rich (and pakjaihditions of live
performance.

6 Concluding Remarks

As well as providing a short introduction to evolutionary comput&atpniques, this
chapter has described a variety of ways in which theyoearsed in musical settings,
highlighting a number of important issues that arise. Atlarieal level it is crucial to
appreciate the significance of appropriately designed compdioer@isy EA-based
system, but in an artistic endeavour such as musical comgpadsis also imperative
to engage fully with the wider community:

“In order to assess the usefulness of [evolutionary computingpsically
creative tasks however, more general discussion of the ahositput needs to
be conducted. It needs to be recognized that the task is oy sine of
computer science, but must include discussion in the relevant dorharwill
require the skills and engagement of the wider musicalessie community,
and an increased number of interdisciplinary research psdj&artland-Jones
and Copley (2003), p.54.

Keeping the composer and/or performer firmly in the loop isvameto help
encourage this. The development of tools to allow composeysijaashetically



exploit appropriate properties of adaptive algorithms, and thgretion of adaptive
systems within live performances, are very promisingctoas.

It is early days yet, but there is significant potentalexciting and fruitful
developments of evolutionary and adaptive computing in music.
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