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1 Introduction 
The aims of this chapter are twofold: to provide a succinct introduction to 
Evolutionary Computing, outlining the main technical details, and to raise issues 
pertinent to musical applications of the methodology. Thus this article should furnish 
readers with the necessary background needed to understand the remaining chapters, 
as well as opening up a number of important themes relevant to this collection. 
 
The field of evolutionary computing encompasses a variety of techniques and 
methods inspired by natural evolution. At its heart are Darwinian search algorithms 
based on highly abstract biological models. Such algorithms hunt through vast spaces 
of data structures that represent solutions to the problem at hand (which might be the 
design of an efficient aero engine, the production of a beautiful image,  timetabling a 
set of exams or composing a piece of music). The search is powered by processes 
analogous to natural selection, mutation and reproduction. The basic idea is to 
maintain a population of candidate solutions which evolve under a selective 
pressure that favours the better solutions. Parent solutions are combined in 
various ways to produce offspring solutions which then enter the population, 
are evaluated and may themselves produce offspring. As the cycle continues better 
and better solutions are found. This class of techniques has attracted a great deal of 
attention because of its success in a wide range of applications.  
 
Once the Neo-Darwinian framework, which unified Darwin’s theory of natural 
selection with genetics, had been established in the 1930s and 40s and emerged as a 
powerful theoretical underpinning for biology (Fisher 1930, Haldane 1932, Huxley 
1942), it is perhaps not surprising that computer pioneers wondered if it was possible 
to abstract general problem solving methods from the logic of natural evolution. 
During the 1950s a number of prominent thinkers, such as Turing, suggested the use 
of artificial evolution as a possible methodology for developing adaptive machines. 
He envisioned its use in developing learning machines. Such machines would have 
hereditary material (artificial genes) encoding their structure, mutated copies of which 
would form offspring machines. A selection mechanism would be used to favour 
better adapted machines --  in this case those that were best at learning (Turing 1950). 
Such ideas were relatively common at that time, the golden age of mid-century 
Cybernetics when biological inspiration was rife and adventurous researchers were 
mapping out a visionary landscape, but it was not until the 1960s, when computer 
hardware became more powerful and easily available, that concrete instantiations 
began to appear. Three different variants independently emerged. Rechenberg   and   
Schwefel developed Evolutionstrategies (Rechenberg  1965)  to tackle engineering 
design optimisation problems. Fogle, Owens and Walsh (1966) describes the 



technique of Evolutionary Programming, primarily concerned with evolving finite 
state automata for machine learning tasks. John Holland and his group at the 
University of Michigan developed the more general Genetic Algorithm which would 
become the best known of the methods (Holland 1975).  Holland's early work in this 
area was concerned with building a powerful general formalism for adaptive systems 
(Holland 1962), this lead to his notion of a 'general reproductive  plan'  (Holland 
1966)  which, slightly modified, was christened  a  Genetic Algorithm by Bagley 
(Bagley  1967).  It was during the 1980s that the field really took off, when it was at 
first dominated by work in Genetic Algorithms. In the 1990s general frameworks 
were developed which unified the various strands under the now widely used term of  
Evolutionary Computing (Back and Schwefel 1993). It is beyond the scope of this 
paper to look in detail at all the historical flavours of evolutionary algorithm that 
emerged during the development of the field (see Eiben and Smith 2003, Mitchell 
1996 for good introductions), rather the main properties of such methods will be 
presented by appealing to the idea of a general class of evolutionary search algorithms 
which encompasses the major sub-dialects. 
 
Early applications of Evolutionary Algorithms (EAs) were mainly in engineering 
optimization of one sort or another (see e.g. Davis 1990, Goldberg 1989, Grefenstette 
1987), but as the method became better known and sparked the imagination of many 
researchers, the range of applications became increasingly wide and soon 
encompassed creative and artistic domains, including music.  
 
The deceptively simple biological analogy at the heart of EAs is highly attractive and 
provides a rich seam for further developments that many researchers have mined and 
are still busy mining today. As we shall see, this has resulted in a highly flexible 
framework, with far fewer restrictions on its application than for other comparable 
methods, allowing plenty of scope for creative work. This is one of the great strengths 
of the area and one of the reasons why it is attractive to musicians and artists. 
 
The next section gives a succinct introduction to the technical details of EAs. This is 
followed by sections on two particularly popular areas for musical applications of 
evolutionary computing: composition and sound design. Important issues arising from 
the use of EAs in these areas are aired. The paper then continues with a wider 
discussion of the place of adaptive systems in music. 

2 Evolutionary Search Algorithms 

2.1 Some biology 
 
Most EAs are based squarely on the Neo-Darwinian framework from biology and 
borrow certain key nomenclature from it. Hence it will be helpful to outline that 
framework before launching into the details of EAs. 
 
According to Darwin’s theory of natural selection (Darwin 1859), evolutionary 
change comes about because of the existence of variations in inheritable traits in every 
generation. Those individuals who survive, owing to a particularly well-adapted 
combination of inheritable characteristics, give rise to the next generation. The fittest 
survive to pass on those traits that helped to make them fit.  
 



Darwin knew very little about how these variations arose or what the mechanisms 
underlying inheritable traits were. It was modern genetics that provided the key to 
answering these problems. Hence Neo-Darwinism postulates that natural selection 
acts on the genetic variations within populations – genes being the units underlying 
inheritable characteristics. These variations are caused by genetic processes such as 
mutations (sometimes caused by mistakes in DNA replication) and recombination of 
genetic material from different sources (e.g. the two parents in sexual reproduction).  
 
Natural selection is usually thought of as acting on the phenotype, the outward 
expression of the genes (the genotype) – such as physical characteristics or behaviour, 
the environment it inhabits and the interactions between them. This process, together 
with others such as genetic drift and speciation, is a key element of modern 
evolutionary theory. 
 

2.2 The basics 
 
Figure 1 outlines the general scheme of an EA. An initial population of structures 
representing solutions to the problem is first created. They might be completely 
random individuals or based on a prior solution or generated using heuristics that 
ensure that they have certain desirable characteristics. Each member of the population 
is evaluated so that it can be assigned a fitness (usually a numerical score). This will 
involve decoding the genetic representation (genotype) into a problem solution 
(phenotype) and testing its fitness using some method for determining how well it 
solves the problem. Parents are selected, with a bias towards fitter members of the 
population, for the creation of offspring using artificial genetic operators such as 
mutation and recombination. The offspring are evaluated and certain of them are 
selected to take the place of existing members of the population chosen according to a 
replacement scheme (usually biased towards the least fit individuals). The cycle 
continues until a sufficiently fit individual emerges or some stopping criteria, such as 
number of cycles run, is met. Most parts of the cycle involve random, or stochastic, 
processes which are crucial to the success of the method. 

 
 

Figure 1: General scheme of an Evolutionary Algorithm 
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We will now look at the operation of this scheme in more detail by examining the 
constituent parts of the EA. The main components of an evolutionary search algorithm 
are: 

• The genetic representation 
• The evaluation function 
• The population structure 
• The selection method 
• The genetic operators 
• The replacement scheme 

 

The genetic representation 
The structures making up the population, the artificial genotypes, are usually strings 
of numbers or symbols that represent solutions to the problem at hand. They might be 
a string of real numbers that are the parameters controlling a sound synthesis method -
- and hence represent a sound, or they might be groups of numbers representing 
information such as musical note values and duration – and hence represent a piece of 
music. Complex encodings involving mixtures of numbers, symbols, rules and other 
data structures have also been successfully used (e.g. the sub field of genetic 
programming is concerned with the evolution of a particular form of LISP computer 
programme – Koza 1992). It is also possible to use a fairly simple genotype in 
combination with a complex decoding scheme to translate it into the phenotype. 
Rather indirect routes to the end goal can be taken. For instance, the genotype may 
specify the design of a process, or abstract machine, which is then run to generate the 
end product of interest (e.g. a musical phrase). The genotypes can be of a fixed length 
or, where appropriate, they can be allowed to grow and shrink. The great flexibility 
available in designing a suitable representation is one of the major advantages over 
more traditional methods afforded by the EA framework. However, not all 
representations for a given problem will be equally good. In some cases the 
representation to use is fairly obvious and straightforward (e.g. a string of numbers 
acting as the parameters of a well defined process or design), in others it may not be 
so clear. The representation defines the genotype space through which the EA 
searches looking for a combination of genes that defines a sufficiently fit phenotype. 
If the representation is badly designed the space may become impossibly convoluted 
and too difficult to search with any efficiency, rendering the EA useless. Throughout 
the remainder of this book concrete examples of representations suitable for musical 
systems will be found. 
 

The evaluation (fitness) function 
EAs are a form of ‘generate and test’ algorithm (generate a new candidate solution, 
test it to see if it is any good), the evaluation function – which operates on the 
phenotype - providing the necessary means to measure fitness. As such it defines the 
solution requirements and implicitly encapsulates the meaning of adaptation and 
improvement for the particular evolutionary system. The selection method relies on 
the evaluation function assigning relative fitness values to members of the population 
in order to preferentially choose the fitter individuals to produce the next generation. 



Fitness is often measured on some numerical scale, but as a minimum the evaluation 
function must be able to distinguish between relatively fit and unfit individuals.  
 
The simplest form of evaluation method is a well defined mathematical function or 
procedure whose variable are directly encoded on the genotype; these are fed into the 
function and a fitness value is thrown back (Eiben and Smith 2003). For more 
complex phenotypes, for instance when the genotype encodes the design of a robot, 
evaluation often involves generating a computer model of the phenotype (e.g. the 
robot) and then testing its behaviour in a complex simulation (Jakobi 1998). In other 
cases an automated analysis of some characteristics of the phenotype is conducted in 
order to derive a fitness measure. For instance, an evolved musical composition might 
be analyzed in terms of its closeness to some target piece, or by using some 
musicological theory or technique (Wiggins et al. 1998). If the phenotype is the 
design of a physical artifact, evaluation might entail analyzing various functional and 
aesthetic properties of the design (Bentley 1999). In examples such as these, defining 
a satisfactory automated fitness measure is often highly problematic – how do we 
codify aesthetics, how do we formalize crucial parts of the creative process of an artist 
or composer? This important issue will be revisited in Section 3 and in later chapters 
of this book. One partial solution that is commonly used, having been pioneered in the 
application of EAs in visual art (Todd and Latham 1992, Sims 1991), is to employ a 
human’s judgment as the fitness measure. The main problem with this method, 
sometimes referred to as aesthetic selection or interactive evolution, is the amount of 
time required to perform the fitness judgments. This can preclude running the 
evolutionary method for more than a relatively small number of cycles.   
 

The population structure 
In the simplest cases the population is just a data structure containing the genotypes 
and their associated information, such as fitness. The population size is often fixed, 
but it can be variable. In some EAs the entire population is replaced on each cycle, 
which is then referred to as a generation. A more sophisticated variety of EA uses a 
spatially distributed population, alluding to the underlying conceptual model of the 
population spread out over a 2D grid with each individual occupying its own cell. 
Members of the population only interact with those individuals sufficiently close to be 
in their neighbourhood. Hence selection and reproduction act asynchronously and 
locally allowing for highly parallel implementation of an EA (for instance using a 
network of processors, one for each cell on the grid). This form of EA has been shown 
to be highly efficient (Collins and Jefferson 1991, Hillis 1990, Husbands 1993). 
 

The selection method 
Selection, whereby more credence is given to fitter population members, provides the 
dynamo that powers the algorithm. The fittest are more likely to pass on some of their 
genes to later generations. This probabilistic element - which is found in other parts of 
the method, for example the genetic operators - helps to account for the technique's 
power and robustness.  
 
A simple and reasonably effective selection method is roulette selection. In this 
scheme each member of the population is assigned a probability of selection based on 
its relative fitness (its fitness value divided by the total population fitness). Parents are 



then selected according to this probability. This is analogous to dividing up a roulette 
wheel into N sectors, one for each member of the population - sizing them according 
to the relative fitness of the individual represented, and then spinning it to select 
parents. The bigger the relative fitness the more likely the individual is to be selected 
for breeding. Note that with this scheme no member of the population is excluded 
from breeding, they all have some chance of contributing to the next generation. 
However, this method can result in too strong a selective pressure in favour of 
individuals that are relatively good at the early stage but may actually be far from 
optimal; the population prematurely converges to be dominated by copies of such 
individuals.  
 
Rank-based selection is a particularly straightforward alternative scheme that 
provides more control over the selective pressure and allows strong differentiation of 
the population, even at later stages when their fitness values are very close. Using this 
strategy the population is ranked, or ordered, according to the fitness values of its 
members. Selection is then performed by following a pre-determined probability 
distribution function, such as the ones shown in Figure 2. This may be a simple linear 
function that constrains the first ranked (fittest) individual to be twice as likely to be 
selected as the median ranked individual, or something more complex.  
 
An alternative form of selection, that makes most sense in the context of parallel EAs, 
was alluded to earlier -  the use of  local selection rules. Briefly, the idea is that a 
population is somehow split up into many subpopulations, either explicitly or 
implicitly (as in the case of the spatial distribution mentioned above), and selection 
occurs locally. That is, with reference only to the subpopulation, not to the global 
population. Local schemes may be based on the methods described earlier or may be 
simpler.  For a more detailed discussion of possible selection schemes see (Eiben and 
Smith 2003, Mitchell 1996). 
 
 
 
 
 

 

 

 

 

 
Interactive evolutionary algorithms, employing human-based aesthetic selection, 
effectively dispense with a separate selection method – individuals are picked out by 
the user to act as parents for the next generation.  

The genetic operators 
The genetic operators maintain variation in the population and create new individuals 
from old ones. Myriad specialised operators have been developed over the years and 

Figure 2: typical rank-based selection probability distributions 



there are numerous variation on the standard ones. Hence only a few of the most 
common generic operators will be outlined here. The two most common are cross-
over and mutation, illustrated in Figure 3. Like most widely used operators, they 
have strong stochastic elements to their operation. Simple cross-over involves 
choosing at random a cross-over point (some position along the string) for two mating 
chromosomes -- two new strings are created by swapping over the sections lying after 
the cross-over point. Variations include two-point cross-over where randomly selected 
sections of the strings are swapped over and special operators that rearrange genes 
during the crossing-over, either in order to keep the new solutions legal or to make 
them better (Michalewicz et al. 2004). Mutation changes the value of a gene to some 
other possible value. Depending on the encoding, this might entail assigning a new 
value at random from the entire range of possible values for the gene, or randomly 
resetting to a value ‘close’ to the current one (creep mutation). Mutation operators can 
be heuristically guided, rather than completely blind (e.g. if a gene represents a note 
value in a piece of music, mutation operators might be designed to respect certain 
harmonic or melodic constraints – or perhaps more interestingly to nearly always 
respect them). For complex encodings, it often makes sense to have several different 
mutation operators acting in parallel. Other operators sometimes used include: 
inversion, which is simply a matter of reversing a randomly chosen section of a single 
genotype, translocation which involves moving a randomly selected section to 
another place on the genotype, and duplication which entails adding extra copies of 
genes or groups of genes. The latter operator only makes sense in circumstances 
where a variable length encoding is being used, it often functions in tandem with a 
deletion operator. Specially designed cross-over operators can also be used to allow 
genotypes to grow and shrink (Harvey 1992). Special domain specific operators are 
regularly employed to good effect. For instance, in the application of EAs to musical 
composition operators based on musical transformations such as inversion and 
transposition can be very useful (Biles 1994). 
 
 

 

 
Figure 3: Schematic of popular genetic operators 
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some high probability) to create two new genotypes. Next apply inversion (with a 
medium probability) to these. Finally each gene on the resulting genotypes undergoes 
mutation (with a low probability). According to the encoding scheme and problem 
area, different combinations of operators with different rates are used. In some 
circumstances it makes sense to dispense with cross-over, for instance if it is difficult 
to devise an encoding that works with this operation, and just use one or more 
mutation operator. It is common to have to experiment with operator rates to find 
good settings, which can usefully be made to vary during the search – in some cases 
the rates themselves are put under genetic control (Back et al. 1991). 

 

The replacement scheme 
In some EAs enough offspring are produced on each cycle to replace the entire 
population in one go. In others, sometimes called steady state algorithms, new 
individuals are introduced one at a time, as long as they are fitter than at least the 
worst member of the population which is then replaced. This allows a more gradual 
search. Other schemes use an inverse selection method to choose members of the 
current population to be replaced with a bias towards the least fit.  
 
It should be clear from this brief outline of EAs that there are many choices to make 
in deciding how to apply them to any given domain and many parameters to tweak 
once the basic algorithm has been designed. The various elements of the EA must all 
work well together in order to achieve good results. The best choice of operators, 
genetic representation, evaluation function and so on, can be guided by what has been 
shown to work in the past, or by experimentation with different settings and options. 
However, some appreciation of the growing theoretical understanding of how EAs 
work can be very helpful and save time spent down the blind allies of poor 
representations or inadequate fitness functions. EAs are complex non-linear stochastic 
systems, which makes them extremely difficult to analyze. Hence the theoretical 
literature tends to be rather inconsistent and is often contradicted by empirical results. 
However, there is useful information to be gleaned and good sources include: 
(Schmitt 2001, Vose 1999, Wright et al. 2005). 
 

2.3 Related developments 
 
Evolutionary algorithms have played an important part in the development of  the 
related fields of Artificial Life, which is concerned with the synthesis and analysis of 
life-like processes in artificial media (Langton 1995, Pollack et al. 2004),  and 
Adaptive Behaviour, which studies the mechanisms underlying the generation of 
adaptive behaviour in real and artificial autonomous agents (Beer 1990, Schaal et al. 
2004). 
 
These areas have seen interesting explorations of phenomena and techniques that have 
found applications in artistic endeavours. For instance, coevolutionary systems, in 
which two or more ‘species’ compete (or possibly cooperate) over finite resources, 
have been exploited in Karl Sims’ entertaining animations, in which primitive 
creatures wrestle with each other (Sims 1994), as well as in various engineering 
applications (Husbands 1993, Juille and Pollack 1996). This is a direction which 



might hold some promise as far as computer music is concerned – multiple species 
could represent different voices in a composition or, following the suggestion of 
Werner and Todd (1997,1998) to mimick work such as (Hillis 1990), and not 
withstanding the issues raised later in Section 3, it might be possible in some 
situations to have coevolving species of compositions and ‘critics’ (who evaluate the 
compositions) developing towards some interesting end.  
 
Jon McCormack’s Eden is an interesting example of an installation using ideas from 
these areas (McCormack 2003). In this system, simulated beings populate an artificial 
world in which they can move around and make and hear sounds. These sonic agents 
must compete for limited resources in their environment. The agents generate sounds 
to attract mates and also to capture the imagination of the audience - since its response 
has a direct affect on the virtual environment, particularly the growth rate of food. In 
this work McCormack has demonstrated the successful use of an open-ended 
automatic evolutionary process to generate a highly engaging interactive artwork. 
This system illustrates a more implicit approach to fitness evaluation, with a fairly 
oblique interaction element. Such pieces suggest a wealth of opportunities for musical 
developments. 

2.4 Applications of evolutionary computing in music 
 
There is a growing body of work involving the use of EAs in musical applications 
(see  Horner and Goldberg 1991, Burton and Vladimirova 1999, Bilotta et al. 2001, 
Miranda 2003 for representative examples), just as there is in the visual arts and in 
design (Bentley 1999). In music the two areas that have attracted the most attention 
are  composition and sound design. In the former, there have been a number of 
attempts to evolve musical pieces in the style of a particular composer, or within a 
specific idiom, which have met with some success (Biles 1994, Hodgson 1999, 2002) 
– although extending such work to more creative and original compositions is 
challenging, for reasons including those discussed in Section 3. In the area of sound 
design, researchers have demonstrated the efficacy of the technique in controlling 
sound synthesis methods, both to explore new sounds and to develop synthesis 
algorithms for existing target sounds (Johnson 1999, Dahlstedt 2001, Garcia 2001, 
Mandelis 2001). 
 
Various aspects of these topics, in relation to specific systems, will be dealt with in 
detail in later chapters. The remainder of this chapter is intended to raise a number of 
important issues in these areas as background and context to the rest of the book. 
Fitness evaluation turns out to be a particularly thorny issue in relation to 
compositional systems and it is not a trivial matter in sound design. 
 

3 Evolutionary Computing in Musical Composition 

3.1 Introduction 
 
The main purpose of this section is not to attempt a comprehensive survey of 
evolutionary computational approaches to musical composition (see Burton and 
Vladimirova 1999 for a good overview, as well as later chapters in this book) but 



rather to highlight some of the potential problems, apparent in the literature, of too 
close a marriage between the development of compositional computer programmes 
and an approach to musical form derived primarily from academic theory, rather than 
what many composers demonstrably do. This is a very real problem as textbook 
musical form is by its nature algorithmic and has often been seen as the ideal starting 
point for the development of composition programmes, particularly those based on 
pre-existent models of compositional practice (see Wiggins et al. 1998). The main 
‘test case’ for discussion in this section will be sonata form, in theory and practice as 
this, in particular, is a type of composition that could well prove problematic if the 
creative process to be modelled is not based on a traditional textbook definition but 
rather, something paralleling an end product that significant composers actually 
produced. This is not to suggest that the production of an interesting sonata structure 
per se is a primary goal of more than a minority of practitioners in this field. Rather, 
that sonata form itself was a significant tool (whether algorithmic in nature or not) in 
the evolution of complex musical structure for more than one hundred and fifty years 
in the history of Western Art Music. Its potential to encompass so many elements that 
inform the creative process – exploration, contrast, development, transformation, 
motivic mutation etc. – make it an ideal context within which to examine the potential 
limitations of EA composition programmes. 
 
The musical forms generated by an EA-based system will be implicitly restricted and 
shaped by the design of the various components of the system – most importantly the 
genotype, the genetic operators and the fitness function. If an automatic fitness 
evaluation method is used, the desired musical outcome must be somehow formally 
codified. Deriving sets of rules to describe particular forms or styles is fraught with 
difficulties, as discussed below. If the automatic fitness function problem is 
sidestepped by using human evaluation, the search space defined by the genetic 
representation and operators must be sufficiently constrained to avoid impossible 
bottle-necks in the time needed to perform the evaluations (Biles 1994, Gartland-
Jones and Copley 2003, 2005). As this will entail encoding musical knowledge into 
the representation and operators, the difficulties do not disappear. 
 

3.2 Algorithmic composition 
 
In ‘The Algorithmic Composer’, David Cope stated that throughout the history of 
Western Art Music, composers have used algorithms as part of the creative process. 
His premise was that an algorithm could be defined as nothing more than ‘a set of 
rules for solving a problem in a finite number of steps’ (Webster 1991, p.35; cited in 
Cope 2000, p.1). Clearly this is of crucial importance to anyone engaged in building 
AI models of musical creativity and assuming Cope’s premise is valid, algorithms of 
musical composition and form building would be central to the construction of such 
models. However, while it is perfectly possible to define some compositional 
processes as algorithmic, not all fall so neatly into this category. A necessary 
preliminary step would be to attempt a delineation of boundaries, as to what extent, 
which compositional processes can and which cannot be so defined.  
 
Cope stated that ‘Most composers apply rules, steps, or sets of instructions when 
composing music, especially when composing music in a particular style’ (Cope 
2000, p.2). Part of his support for this proposition is a series of examples of 



compositional processes defined as algorithmic. These include the tenor part of an 
isorhythmic motet (significantly, Cope omits discussion and illustration of the other 
voices, which are freely composed), Bontempi’s rota, musical dice games and Fux’s 
Gradus ad Parnassum (Cope 2000, pp.3-11). This is a wide-ranging set of examples 
although, with the exception of the motet, all bear only a peripheral relation to 
musical composition as actually practised by fully-fledged composers. Bontempi 
(1660) states that his rota is a guide ‘by means of which one thoroughly ignorant of 
the art of music can begin to compose’; a sort of musical equivalent of ‘painting by 
numbers’, in point of fact! Musical dice games were similarly ‘do it yourself kits’ for 
beginners, while Fux’s Gradus (1725) was the standard instruction book for learning 
strict counterpoint for much of the eighteenth century – a useful tool for the 
elementary technical training of aspiring composers but bearing about the same 
relation to real music as a book of finger exercises, however advanced, would have to 
the performing repertoire of a professional concert pianist.  
 
On the subject of form, Cope writes that:  

“Strict adherence to an established musical form constitutes yet another 
compositional use of musical algorithms. For example, imagining a song form 
of the medieval period, a dance form of the baroque, or a sonata allegro form of 
the classical period of Western music history as symbols in a flowchart – one 
way to describe an algorithm – does not seem unreasonable.”(Cope 2000, pp.3-
4) 

 
The problem arises with Cope’s un-stated but implied assumption that significant 
composers at all periods in the development of Western art music did indeed adhere 
strictly to established musical forms in their most original work, even granting that 
these forms were already in acknowledged existence at the time of writing, rather than 
being deduced after the event by historians or writers of textbooks on musical 
composition!  
 
To return briefly to Fux, it is of course documented that Haydn, Mozart and 
Beethoven, to name but three, worked assiduously through the exercises in the 
Gradus or from textbooks of a similar nature; but it is equally demonstrable that they 
paid scant attention to the letter of the majority of Fux’s rules in their compositional 
maturity. This is not to suggest that Fux is valueless as an example of a producer of 
musical algorithms, simply that the process of modelling anything more than the most 
elementary compositional process is rather more complicated than his citation by 
Cope might suggest. Historically, a large claim made for the benefit of strict 
counterpoint study of the Fuxian variety was that it provided what amounted to an 
algorithm for composing in the style of Palestrina, who had been regarded for 
centuries after his death as a byword for purity of contrapuntal style. Unfortunately, 
this claim was largely unfounded and was completely exploded by R.O.Morris as far 
back as the nineteen twenties: 
 

“Yet the rules of Mr Rockstro [another author of a book on strict counterpoint] 
are not peculiar. They are, more or less, the same as those found in almost every 
textbook of counterpoint. Who invented them, goodness only knows: why they 
have been perpetuated, it passes the wit of man to explain. Music written to 
meet their requirements is something altogether sui generis, a purely academic 
by-product…The rules of counterpoint are found to have no connexion with 



musical composition as practised in the sixteenth century: are we to abandon the 
rules or to abandon the sixteenth century? Follow Byrd and Palestrina, or follow 
Mr.Rockstro and Professor Prout?”(Morris 1922, p.2)  

 

3.3 Is sonata form an algorithm? 
 
Sonata form expressed as an algorithm brings similar problems in its wake. Is the 
algorithm to be based on textbook definitions or on what significant composers 
actually produced? Furthermore, there remains the question of which variety of sonata 
form as practised is to be taken as the starting point. Many commentators (see, for 
example, Rosen 1980, pp. 365-402 and Straus 1990, pp.96-7) are now in agreement 
that there exists a fundamental distinction between what could broadly be described as 
eighteenth and nineteenth century approaches. For a composer in the second half of 
the eighteenth century, sonata form (not termed as such) was an elaborated binary 
structure characterised by differentiated key areas. The first part contained a tonic area 
and a dominant (or related key) area, although the first area could be characterised by 
a modulation to the tonality of the second area. The second part consisted of an area 
of rapid modulation or episode followed by a return to the home key in which tonality 
the movement remained until its end. The two-part view of sonata structure is 
confirmed by the prevailing eighteenth century practice of repeating both sections, 
rather than just the first part, as is usually the case in contemporary performance.  
 
What is set out above is just about the fullest extent of universal common ground in 
composing practice that can be extrapolated from the majority of later eighteenth 
century sonata structures and a composing algorithm extracted from this would be 
little different from one derived from baroque binary dance patterns, despite the two 
forms being in reality quite distinct from each other. The distinction between the two 
is the far greater proliferation and elaboration of material that the sonata framework 
came to accommodate – what could, in fact be termed ‘free composition’. The beauty 
of the form lay in its flexibility. This minimum common ground, never at this stage 
delineated in any contemporaneous textbook on composition, could accommodate not 
only Haydn’s largely monothematic and developmental approach, but also Mozart’s, 
which tended to explore the underlying unity of two or more distinct but nonetheless 
contrasting themes. 
 
All this came to change in the nineteenth century, thanks initially to the theorising of 
A.B.Marx (1795-1866) and Karl Czerny (1791-1857), which was largely based on the 
sonata practice of ‘middle period’ Beethoven, who had provided yet another distinct 
approach to the original but still evolving model. I give here Schoenberg’s description 
of the form, which corresponds to the nineteenth century theorists’ view, which was 
concerned less with the delineation of key areas and more with thematic contrast, 
expressed in a ternary rather than a binary context: 
 

“This form…is essentially a ternary structure. Its main divisions are the 
EXPOSITION, ELABORATION and RECAPITULATION. It differs from 
other complex ternary forms in that the contrasting middle section 
(ELABORATION) is devoted almost exclusively to the working out of the rich 
variety of thematic material ‘’exposed’’ in the first division. Its greatest merit, 
which enabled it to hold a commanding position over a period of 150 years, is 



its extraordinary flexibility in accommodating the widest variety of musical 
ideas, long or short, many or few, active or passive, in almost any combination. 
The internal details may be subjected to almost any mutation without disturbing 
the aesthetic validity of the structure as a whole.”(Schoenberg 1967, p.200) 

 
Although Schoenberg proves himself a child of the nineteenth century in his thematic 
and ternary, rather than tonal and binary, view of sonata structure, perhaps in order to 
allow for his continuing to explore the form in non-tonal contexts, his description is 
still loose enough to accommodate a wide variety of approaches, including those of 
the later eighteenth century. The compositional algorithm that could be extrapolated 
from this description would, however, differ little from one derived from a simple 
ternary form.  
 
For a truly distinctive sonata algorithm, resembling neither the simple binary nor the 
ternary model, we would need to turn instead to the traditional theorists, who would 
state that Sonata Form consists of firstly, an exposition, comprising first and second 
subject groups, respectively in the tonic and dominant (or related) keys and linked by 
a transition or bridge passage; secondly, a development section, in which the original 
thematic material will pass through a variety of related keys and may be extended by 
episodes; this will be followed (thirdly) by a recapitulation, in which the material 
from the exposition returns but is mostly confined to the original key. Various 
optional extras, such as introductions, codettas and codas can fill out the scheme and 
may be represented as byways on a flowchart, which is Cope’s preferred method for 
setting out compositional algorithms in a non-computerised context.  
 
Actually, this theoretical description does indeed correspond to more conservative 
later nineteenth century practice and this lends a depressing sameness, from a purely 
formal point of view to the majority of sonata-type structures from this period. The 
extraordinary paradox is that the ‘romantic’ nineteenth century was far less free than 
the ‘classical’ late eighteenth century in its interpretation of what might be termed ‘the 
sonata principle’, except in the case of more progressively minded composers, such as 
Liszt, Berlioz and Wagner, who tended to abandon the form completely. It is difficult 
to avoid the conclusion that once ‘the rules’ had been encapsulated in a detailed 
formal scheme or algorithm, the sonata began to lose its dynamic and developmental 
possibilities and its various sections took on the character of moulds into which 
appropriate music could be poured. Such an approach to potential sonata material 
would have been psychologically impossible for any major eighteenth or early 
nineteenth century composer of whose structure-building creativity generally went 
beyond simply following formulae devised by others.  
 

3.4 The dangers of too many and too few rules 
 
It may seem that several of the preceding paragraphs address issues more central to 
the concerns of musical historians, analysts and aestheticians than those of designers 
of computer programmes for musical composition. However, if we are modelling 
musical creative processes to any degree of sophistication, it is crucial that we base 
our model on something close to what composers actually did, rather than on 
theoretical constructs, often established long after the creative event, that oversimplify 
or distort complex thought processes in the interests of pedagogical expediency. An 



excessively rule-based system stands in grave danger of producing little more than 
schoolroom exercises or, at best, stolid replications of ‘good craftsmanship’ because 
no facility has been provided for expanding a given search space to accommodate the 
possibility, indeed the desirability of the unexpected, or even iconoclastic but still 
meaningful musical idea or development. 
 
Although the explorative and stochastic nature of evolutionary search are helpful, this 
is perhaps the most challenging problem facing the designer of an EA-based 
composition program, whether for general use or tailored to one particular set of 
preferences. The past decade and more has shown that an EA has no difficulty in 
replicating a composer in ‘hard-work’ (as opposed to ‘inspired’) mode (See Jacob 
1996: 158). But without the most stringently defined search space an unmanageably 
large amount of potential material, mostly unusable, is apt to be produced. Biles 
(1994) has described this situation as the fitness bottleneck. However, if the search 
space is too strictly defined – ‘Strict adherence to an established musical form’ (Cope: 
2000: pp3-4))- the unexpected and interesting permutation, which is what all the hard 
work is supposed to uncover may not emerge at all. As Werner and Todd pointed out: 

 
“More structure and knowledge built into the system means more reasonably 
structured musical output; less structure and knowledge in the system means 
more novel, unexpected output, but also more unstructured musical chaff.” 
(Werner and Todd 1998:315) 

 
What algorithm from textbook musical forms could have allowed for Haydn’s 
unprecedented departure from the expected course of musical events in the 
developmental extended coda that erupts into the final variation on a theme in the 
slow movement of his String Quartet, Op.20 no.4; Mozart’s introduction of a 
modulatory and developmental theme that is not, contradicting all expectation, the 
second subject of the first movement of his Haffner Symphony; Beethoven’s ‘sonata 
structure, accommodating variation’ (Keller 1987, p.136) that forms the choral finale 
of his 9th Symphony; or Schubert’s fusion, by thematic integration of the four 
movement sonata scheme into a single continuous movement in his ‘Wanderer 
Fantasy’? 
 
These are not isolated, eccentric examples but the essence of a truly creative use of 
form, wholly characteristic of their respective composers, which can lend musical 
compositions their enduring power to fascinate and hold the attention. It is this 
capacity to reinvent (or, particularly in the case of Haydn, to invent) form that is a 
fundamental difference between a Haydn and a Vanhal; a Mozart and a Dittersdorf; a 
Beethoven and a Diabelli; or a Schubert and a Hummel. Meaningful contradiction of 
expectation is one expression of individuality that distinguishes specific pieces and 
composers from the more typical cultural products of whatever age in which they 
lived, giving the music an intrinsic value that can transcend time and place.  
 
To attempt to model this level of creativity is asking much of a process still in a 
comparatively early stage in its development but it seems vital that the possibility of 
overriding ‘rules’ must be provided for in composition programmes with any 
pretensions to model creative, rather than reproductive musical thought. The historical 
fact that theory so often followed, and in the process distorted, practice should in itself 
be warning enough of the pitfalls of regarding compositional processes purely as 



algorithms. It is natural to have recourse to algorithms when modelling creative 
processes, as every computer programme ever devised is in essence algorithmic. 
However, it must also be recognised that if the algorithm employed is reductive and 
constricting in relation to the process it is modelling, the musical interest of what 
emerges will be at best limited, if not utterly predictable. 

3.5 IndagoSonus 
 
Gartland-Jones’ IndagoSonus System is a very interesting approach to partially 
addressing some of these issues (Gartland-Jones 2003). The system uses virtual 
blocks which each have the ability to both play and compose music. As the blocks are 
arranged in various structures they interact with each other in ways that influence the 
emerging music. Each block has a pre-composed ‘home’ musical phrase and the 
ability to compose new phrases based on its home phrase and a phrase that is passed 
to it from another block. A block’s compositional activity is aimed at producing a new 
musical section that has a thematic relationship to both of these pieces. To do this it 
uses an EA which is initialised with the home music and has the incoming phrase as 
its compositional target, allowing the use of an automatic evaluation function that 
measures the closeness of fit to the target. The path taken by the EA generates 
intermediate material related to the home and target pieces. The user can stop the 
evolutionary processes at any stage and restarted it with new incoming phrases, as 
well as setting parameters that control how far the evolutionary process will travel 
between the two pieces. To quote the designer: 
 

“Any number of blocks may be chained or grouped in any 3D structure. If a 
block is passed some music from its neighbour, it first recomposes itself, and 
then passes its new music on to all of its neighbours, and so forth within a pre-
specified range. It is important to clarify that each block holds on to its home 
music throughout, enabling any music composed by it to remain thematically 
related, despite the constant process of re-composition undertaken by each 
block. In this way the composer of the music for all blocks maintains a 
compositional thumbprint on the evolving musical structure. In effect, the 
listener/performer is able to shape the overall music by choosing to send 
musical fragment from blocks they like to influence other blocks.” (Gartland-
Jones and Copley, 2003, p.53) 

 
By this subtle mixing of automatic fitness evaluation and human intervention, not to 
mention the use of multiple interacting EAs, the system makes some headway in 
addressing the fitness bottle-neck problem while avoiding over constraining the 
search space. 

4 Evolutionary Computing in Sound Design 
 
The use of EAs at the sound level is concerned with the manipulation of parameters 
that define a sound using a particular sound synthesis technique (SST), or with 
parameters that define a particular deformation on an input stream (sound effects).  
There are two broad categories of EA application in this area: as an optimisation 
technique for deriving the parameters of an accurate model of a particular sound 
(usually a sampled sound) and for exploratory search in the investigation of new 



sounds. These areas are briefly introduced in this section while highlighting pertinent 
issues. 
 
In the optimisation case a sample of sound, often from a traditional instrument, is used 
as a target waveform. An EA is put to work to derive the parameters of a particular 
SST to produce a sound as close as possible to the target. A fitness function that 
measures the difference between a candidate sound and the target is usually employed 
and there are many technical issues involved in how best to define this. There are a 
number of examples of successful uses of this approach (e.g. Garcia 2001) and it will 
be looked at in more detail later in the book. Sound definitions usually describes a 
singular point in the parameter space of the SST without explicitly detailing how this 
sound changes and deforms from that frozen point. Such deformations of sound, or 
movements in parameter space, are necessary for mapping the sampled instrument to 
a keyboard and note scale and implementing other transformations that add  
expressivity to the sound. In order to map those dynamics from the original source of 
the sampled waveform, generally a large number of waveforms is needed. As an 
absolute minimal requirement, at least three distinct waveforms would have to be used 
for each degree of freedom of the original sound source. For instance, if the source is 
a piano sound, the degrees of freedom of the piano would include: the key position, 
velocity, aftertouch and so on. In practice most instrument sounds do not vary in a 
linear fashion along their axes of freedom and far more than three samples would 
have to be used for each axis. That can very easily result in a prohibitive number of 
samples that places too high a computational demand on the EA. This can be a serious 
problem only if this technique is used to faithfully emulate an original sound source. 
In contrast, if such fidelity is not required, then some interesting possibilities begin to 
emerge. For instance, if the specific parameters are derived from a single waveform, 
then any deviation from these parameters will create sounds that are similar to the 
original but with deformation characteristics that depend on the particular SST used. 
For example, if a piano sound is used to derive the parameters for an FM SST and a 
physical modelling SST, then the deformations afforded by the former would be 
unique to this particular implementation of FM and for the latter unique to the 
particular physical modelling used. In effect there would be two instruments that 
would sound very similar at some performance configuration, but at the same time 
they would behave very differently in terms of sound deformation when the 
performance configuration changes. 
 
The second category of EA-based sound creation, that of developing new sounds, 
requires a somewhat different approach. Whereas there is a large body of knowledge 
that can at least act as a starting point in attempting to formalise the evaluation 
process of EA-based composition systems, in the area of new sound design, where the 
‘quality’ of the sound is to be assessed, there is no equivalent source.  This is partly 
because of the complexity and lack of transparency of SSTs and partly because of the 
difficulty in modelling aesthetic judgements. In this domain the subjective usually 
rules over the objective. Hence the use of human-based interactive selection is the 
norm (Dhalstedt 2001, Mandelis 2001, Mandelis and Husbands 2003, Yee-King 2000, 
Woolf 1999), which raises the issue of the evaluation bottle-neck already discussed in 
relation to composition. Although there are general problems such as maintaining a 
consistent judgement of quality, the time taken to evaluate a sound is usually 
considerably less than that for a composition. This means that it is often feasible to 
run the algorithm for a reasonable number of cycles. The less constrained approach 



necessitated by the lack of formalised knowledge allows for a powerful exploration of 
sound space; the user is free to navigate a world of sonic possibilities, turning up 
interesting and unexpected new forms that can be put to good artistic use.   
 
Genophone (Mandelis 2001, Mandelis 2002) is one such exploratory system, designed 
in part to allow a flexible exploration of sound spaces without the need for detailed 
understandings of SSTs. Aspects of the system will now be briefly described, 
focusing on general issues in the way evolutionary search is used. The system makes 
strong use of genetic recombination which in biological systems is a creative process 
in itself. A biological analogy would be the breeding of animals or plants which 
humans have done for millennia. When pigeons are bread, for example, it is not 
normal (at least not yet) to employ gene level manipulations via genetic engineering. 
Instead, macrocosmic manipulations such as artificial insemination or pair choices are 
enough to manipulate the genome as a whole and consequently the resulting offspring. 
Genophone provides analogous macroevolutionary manipulations to those employed 
in organic breeding: parents can be selected by the user, particular traits can be 
encouraged and manipulated. In addition, via dataglove manipulations, it provides a 
local direct and interactive exploration that facilitates smaller changes when used as a 
performance tool.  
 
The issue of an instrument’s degrees of freedom and the movement in this parametric 
space as “performance” (Pressing 1990, Rovan et al.1997, Wessel and Wright 2000, 
Mulder 1994) was considered as an integral part of an instrument’s (sound) definition 
during the design and implementation of the Genophone system. This was achieved 
by evolving the particular parameter values that produce a desired sound along with a 
performance mapping scheme where a subset of those parameters is mapped onto 
manipulation devices (dataglove and keyboard controls) for use in performance, this 
is illustrated in Figure 4.  
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Figure 4: exploration of sound and performance mapping spaces with Genophone (after Mulder 
1994). 

 
The option of locking individual genes, or even whole sections of the genotype, 
provides an added layer of control over the evolutionary process that helps bridge the 
gap between a totally free-form search and the tight regulation offered by a manual 
sound editor. The inspiration for parameter locking came from the way genes are 
activated and deactivated in biological genomes, producing epigenetic evolutionary 
effects (Singh and Krimbas 2000). 
 
An important difference between the way EAs are generally used in constrained 
searches towards fixed sound targets, on the one hand, and unconstrained exploration 
of sound spaces, on the other, is the choice of initial population. In constrained EAs a 
population of random individuals is often used to jump-start the evolutionary process. 
This is partly to ensure no initial bias exists which may direct the search away from 
the global maximum -- the perfect match to the target. In the unconstrained 
exploratory case, this is not necessary; in fact experiments with Genophone have 
shown that it is not even desirable. These experiments indicated that it is preferable to 
seed the initial population with sounds that have been professionally hand-designed 
and are of some aesthetic quality. A large amount of knowledge is embedded in the 
parametric definitions of these sounds, information that ultimately encodes a set of 
aesthetic values, albeit in an implicit and not easily decipherable way. By using such 
hand-designed sounds as points of departure for the evolutionary search, this 
embedded knowledge can be exploited. Experiments with Genophone also revealed 
that starting from hand-designed origins does not necessarily mean that the resulting 
offspring would sound very much like their parents. In fact sometimes they can sound 
surprisingly dissimilar, yet somehow still retaining some of the original quality of the 
hand-designed parents. It is also very easy at each generation to ‘mate’ a preferred 
offspring with a newly chosen hand-designed sound, thus rapidly diverging from the 
original parent set. 
 
These two distinct uses of evolutionary computing for sound design have been 
described as the “survival of the fittest” and as the “survival of the prettiest”, drawing 
an analogy with the biological processes of natural selection and sexual selection. 
This first is in essence a convergent process whether the second one is divergent.  
 

5 New Musical Possibilities Through Adaptive 
Systems 

 

5.1 Introduction 
 
The themes of the previous two sections are broadened out in this section into a 
discussion of evolutionary and adaptive algorithms as tools for exploring new musical 
possibilities. In particular, it will be argued that adaptive systems can provide a rich 
interactive mechanism for performing as well as composing with the computer.  
 



Musicians have always made use of, and arguably inspired, new technologies. The 
computer opens up an unimaginable scope for developing new sounds, new aesthetics 
and new composition and performance practices. Audio development programmes 
and languages such as MAX/Msp, PD and SuperCollider are broadening the 
community of computer music composers, and making the implementation of systems 
for exploring new musical possibilities easier and quicker. The challenge, of course, is 
to make something that anyone actually wants to listen to. Early computer music 
composers revealed formidable new worlds of acoustic textures that were impossible 
to achieve with acoustic instruments, but it has been suggested that the diminished 
audiences for ‘serious’ computer music may be associated with an over zealous 
enthusiasm for precise and elaborate formalisms (Garnett 2001). Miranda has 
suggested that part of the problem for listeners is that these formal systems ‘lack the 
cultural references that we normally rely on when appreciating music’ (Miranda 2003,  
p.1.) But although lacking the hallmarks of any particular catalogued musical 
tradition, the organisational structures of the dynamics of some evolutionary and 
adaptive systems bear strong similarities with the morphologies and structures which 
appear across all musical styles. The behaviours of some models have an inherent 
liveliness that has been shown to effectively mimic certain musical phenomenon, and 
exhibit complex structural dynamics that have been shown to be musically effective at 
all levels, from timbral morphologies to long term structure at the level of musical 
form. In addition, the responsive nature of some adaptive systems offers an appealing 
mechanism for interactive performances allowing us to integrate the aesthetically 
challenging possibilities of computer music within the traditions of human 
performance practice.  
 

5.2 Generating Structure in Time  
 
Superficially, an evolving population of digital genes may seem to have little in 
common with our concept of musical form. But this model of artificial evolution 
shares with music a very fundamental characteristic: it is a temporal process. That it 
exists in time is one of the few uncontroversially universal features of music, yet 
consideration of dynamic form is rarely a primary consideration in computer-assisted 
composition. A common problem reported by practitioners of computer-based 
approaches (such as rule-based systems and neural networks as well as some 
evolutionary systems) is that despite successfully creating specific elements, there is a 
lack of overall musical energy or flow. For example, while discussing constraint-
based system for harmonisation Lischka notes: “The harmonisations are (in a sense) 
correct. But they are not exciting. What is lacking is some kind of global coherency.” 
(Lischka 1991, p.237). This makes the creation of long term or hierarchical structure a 
real difficulty. It seems likely that these problems are associated with the fact that 
time-based structures are rarely a primary focus, a tendency which perhaps has deeper 
roots in the music theoretic principles from which many models are derived (for a 
discussion of the temporal paradox in musicology see Cook 1990).  
 
There are myriad time-based models that could be used for generating music, and 
many composers have explored their possibilities. The fact that a process is formally 
defined as a function of time does not in any way ensure that the musical outcome 
will be engaging, nor even that the temporal dynamics can be appreciated by the 
listener. Just as the application of EAs demands careful formulation of representation 



schemes, fitness functions and operators, this approach relies on the inspired selection 
and implementation of a suitable model and the definition of a meaningful mapping 
from numerical output to musical space.  
 
The implementation of a model is often motivated by an intuition that it shares an 
organisational structure with a particular musical phenomenon or effect. The musical 
success of the approach is then dependent upon mapping the numerical output into a 
suitable musical domain in a way which preserves the desired structure. In a later 
chapter in this book, Miranda describes various implementations of Cellular Automata 
(CA) models for musical applications. In one of these, Chaosynth, a chemical 
oscillator CA is used to parameterize a granular synthesis engine (Miranda 2000). The 
dynamics of the chemical oscillator CA rule, as it evolves from a random state to 
sustained oscillation, bear strong resemblance to the morphological evolution of 
sound in the voice and many acoustic instruments: their partials converge from a 
random distribution to a stable pattern of oscillation. The mappings used to 
parameterize the granular synthesis engine preserve these characteristics, so the 
sounds produced similarly bear these morphological features, capturing the global 
spectral evolution of an acoustic note onset. Using a complex dynamic model allows 
the description of the changes in amplitude of multiple frequencies over time, and also 
the relations between them. These multiple levels of related dynamic structures are 
not peculiar to the timbral level, indeed almost all polyphonic music can be conceived 
as a complex of distinct, but interdependent voices weaving spatio-temporal forms at 
many levels. The use of complex dynamic systems enables the generation of these 
sorts of rich spatio-temporal structures which are seen at all levels of musical 
organisation. 
 
As well as modeling musical form, specific musical phenomenon can be modeled 
using time-based systems which would be difficult or impossible to capture using 
other approaches. Tim Blackwell’s work on Swarm music (also presented in a later 
chapter in this book) is motivated by the similarity between the self-organisation 
exhibited by the swarm algorithm and the self-organisation, or structure that emerges 
in improvised ensembles of live musicians: 
 

“The development of higher level musical structure arises from interactions at 
lower levels, and we propose here that the self-organisation of social animals 
provides a very suggestive analogy.” Blackwell and Young  2004, p.137. 

 
The swarm system used by Blackwell is an extension of Craig Reynolds ‘Boids’ 
algorithm (Reynolds 1987) which mimics the behaviour of a flocking birds. In this 
simple model, Reynolds shows that the global organisation of the flock can arise from 
simple rules which determine the movements of each bird relative to each other, 
without the need of any ‘leader’ or pre-devised plan. The model is based on three 
simple principles: separation, alignment and cohesion. Separation means each bird 
must steer to avoid bumping into each other or any other object in the environment. 
Alignment keeps the each individuals moving in a similar path by taking the average 
heading of local flockmates. Cohesion keeps the flock together as each bird steers 
toward the average position of local flockmates. Blackwell has employed a similar 
algorithm to parameterise a granular synthesis engine, creating an eerily ‘lifelike’ 
movement of sound swarming through time. 
 



 

5.3 Integrating the interactive machine 
 
In the Boids algorithm above, note that the future position of each agent is described 
in terms of the current state of the other agents: the agents are sensitive to, and 
respond to changes in their environment. This is obvious when we consider what 
happens to a real, or simulated flock when it encounters an obstacle: the flock will 
part to avoid it before rejoining. As well as mapping the behaviour of the flock into 
musical space then, we can apply the mapping in reverse so that sound events (created 
by ‘live’ musicians) in the real world can be mapped into the virtual world to 
influence the behaviour of the flock. This provides a novel and interesting mechanism 
for interaction which extends the classic approaches to interactive music. 
 
Traditional approaches to interactive music are based on models of interaction derived 
from existing musical practices, either allowing performers to control aspects of a 
predetermined score (eg Machover, 1991) mimicking interpersonal relations in 
performance (eg Winkler 1991), or extending the performer’s relation with their 
instrument (Machover and Chung 1989). The interesting thing about the use of 
adaptive systems in an interactive context is that the system amalgamates the 
characteristics of all these categories, creating at once a responsive composition and a 
dynamic, behaving instrument which in performance can feel like another, albeit 
digital, performance partner. Other practitioners have been exploring adaptive models 
in improvised performance (eg Eldridge 2005, Bown and Lexer 2006) and 
performances made with systems such as homeostatic networks and continuous time 
recurrent neural networks demonstrate the success of the approach in integrating an 
experimental machine aesthetic within the rich (and palatable!) traditions of live 
performance. 
 

6 Concluding Remarks 
 
As well as providing a short introduction to evolutionary computing techniques, this 
chapter has described a variety of ways in which they can be used in musical settings, 
highlighting a number of important issues that arise. At a technical level it is crucial to 
appreciate the significance of appropriately designed components for any EA-based 
system, but in an artistic endeavour such as musical composition it is also imperative 
to engage fully with the wider community: 

 
“In order to assess the usefulness of [evolutionary computing] in musically 
creative tasks however, more general discussion of the musical output needs to 
be conducted. It needs to be recognized that the task is not simply one of 
computer science, but must include discussion in the relevant domain. This will 
require the skills and engagement of the wider musical academic community, 
and an increased number of interdisciplinary research projects.” Gartland-Jones 
and Copley (2003), p.54.    

 
Keeping the composer and/or performer firmly in the loop is one way to help 
encourage this. The development of tools to allow composers to sympathetically 



exploit appropriate properties of adaptive algorithms, and the integration of adaptive 
systems within live performances, are very promising directions.    
 
It is early days yet, but there is significant potential for exciting and fruitful 
developments of evolutionary and adaptive computing in music. 
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