The Supervised IBP: Neighbourhood Preserving Infinite Latent Feature Models

Viktoriia Sharmanska² David A. Knowles³ Zoubin Ghahramani¹ Novi Quadrianto¹ 1: Cambridge Machine Learning Group, University of Cambridge 2: IST Austria (Institute of Science and Technology Austria) 3: Computer Science Department, Stanford University

Abstract

WHAT: a probabilistic model to infer binary latent variables that preserve neighbourhood structure of the data

- WHY: to perform a nearest neighbour search for the purpose of retrieval
- WHEN: in dynamic and streaming nature of the Internet data
- HOW: the Indian Buffet Process prior coupled with a preference relation
- **WHERE**: dynamic extension of hash codes

Neighbourhood Relation

- Supervision is in the form of triplets (*sample i*, its *neighbour j*, its *non-neighbour l*).
- Triplets encode neighbourhood preference relation $j \succ l$: sample *i* prefers its neighbour *j* to its non-neighbour *l*.

$$\Pr(j \succeq l | \mathbf{z}_i, \mathbf{z}_j, \mathbf{z}_l, \mathbf{w})$$

$$= \frac{1}{C} \sum_{k} w_k \mathbb{I}[z_i^k = z_j^k] (1 - \mathbb{I}[z_i^k = z_l^k])$$

• The label preference likelihood function is given by

$$\Pr(\mathbf{T}|\mathbf{Z},\mathbf{w}) = \prod_{(i,j,l)\in\mathcal{T}} \Pr(j \succeq l|\mathbf{z}_i, \mathbf{z}_j, \mathbf{z}_l, \mathbf{w}).$$

The Supervised IBP: $Z \rightarrow X$ Linear Gaussian Model

 $\mathbf{x}_n | \mathbf{z}_n, \mathbf{V}, \sigma_x \sim \mathcal{N}(\mathbf{V}\mathbf{z}_n, \sigma_x^2 \mathbf{I}), \ \mathbf{V} \in \mathbb{R}^{M \times K}.$

• **Inference**: alternating between M-H sampling on Z, and slice sampling on w.

 \mathbf{X}_{*}

 μ_*

Experimental Results

Synthetic Experiments

Extending Hash Codes

• Data related likelihood:

the data point $\mathbf{x}_n \in \mathbb{R}^M$ is generated as follows:

• **Prediction**: for a *test* point $\mathbf{x}_* \in \mathbb{R}^M$:

$$\left] \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{Z}\mathbf{Z}^\top + \sigma_x^2 / \sigma_v^2 \mathbf{I} & \mathbf{Z}\mathbf{z}_*^\top \\ \mathbf{z}_* \mathbf{Z}^\top & \mathbf{z}_* \mathbf{z}_*^\top + \sigma_x^2 / \sigma_v^2 \mathbf{I} \end{bmatrix} \right)$$

and conditional $\Pr(\mathbf{x}_* | \mathbf{z}_*, \mathbf{Z}, \mathbf{X}) \sim \mathcal{N}(\mu_*, \boldsymbol{\Sigma}_*)$ with

$$= \mathbf{z}_* (\mathbf{Z}^\top \mathbf{Z} + \sigma_x^2 / \sigma_v^2 \mathbf{I})^{-1} \mathbf{Z}^\top \mathbf{X}$$

$$= \mathbf{z}_* \mathbf{z}_*^\top - \mathbf{z}_* (\mathbf{Z}^\top \mathbf{Z} + \sigma_x^2 / \sigma_v^2 \mathbf{I})^{-1} \mathbf{Z}^\top \mathbf{Z} \mathbf{z}_*^\top.$$

We use the predictive mean of $Pr(\mathbf{x}_* | \mathbf{z}_*, \mathbf{Z}, \mathbf{X})$ and approximate \mathbf{z}_* by solving a linear system of equations, resulting in a continuous estimate $\hat{\mathbf{z}}_*$ of the binary vector \mathbf{z}_* .

• Dataset: Animals with Attributes with 30, 475 images and 50 classes. Features: Colour histograms with a codebook of size 128. Performance metric: *k*-NN accuracy.

• Hash codes: Each class is assigned an Osherson's attribute binary string of learn *D* logistic regression functions, one for each bit position. When a new rives, we evaluate each of the *D* test logistic regressors to generate a *D*-bit hash

• Setup: 27,032 images from 45 classes define *initial image corpus* for learning the setup of t From the remaining five classes, we randomly sample 300 images with uniform class proportions to form a *refinement set* for training, and the test set using 50/50 split. Likewise for a refinement set with 10 new classes.

The Supervised IBP: $X \rightarrow Z$ Linear Probit Model

• Standard stick-breaking IBP:

 $z_n^k | b_k \sim \text{Bernoulli}(b_k); \ b_k = v_k b_{k-1}; \ v_j \sim \text{Beta}(\alpha, 1), \ b_0 = 1.$

Bernoulli (b_k) random variable can be represented as:

$$z_n^k | b_k = \mathbb{I}[u_n^k < \Phi_{\mu,\sigma^2}^{-1}(b_k)], \ u_n^k$$

• Data dependent IBP by linearly parameterising the cut off variable u_n^k :

$$u_n^k \mid \mathbf{x}_n, \mathbf{g}_k \sim \mathcal{N}(u_n^k \mid -\mathbf{x})$$

 $\mathbf{g}_k \in \mathbb{R}^M$ is a vector of regression coefficients for each feature k. Feature presence probability:

 $z_n^k | \mathbf{x}_n, \mathbf{g}_k, b_k \sim \text{Bernoulli}(\Phi_{0,1}(\mathbf{x}_n^\top \mathbf{g}_k + \Phi_{\mu,\sigma^2}^{-1}(b_k))).$

- Inference: We adapt a slice sampling procedure with stick Posterior: $Pr(\mathbf{Z}, \mathbf{b}, \mathbf{w}, \mathbf{G} | \mathbf{X}, \mathbf{T}) \propto$ breaking representation of Teh et al., 2007, and use elliptical slice sampling (Murray et al., 2010) for updating g_k .
- **Prediction**: For a *new* test point $\mathbf{x}_* \in \mathbb{R}^M$: $\Pr(\mathbf{z}_{*}^{k} = 1 | \mathbf{G}, b_{k}, \mathbf{x}_{*}) = \Phi_{0,1}(\mathbf{x}_{*}^{\top} \mathbf{g}_{k} + \Phi_{0,1}^{-1}(b_{k})).$

		Hash	IBP [1]	dd-IBP [3]	dd-IBP [3]	Super IBP	Super IBP	Bayesian	Reference
				Input	Output	LGM (ours)	LPM (ours)	Averaging	
				5 a	nimal categories				
	1 NN	26.3 ± 2.2	30.3 ± 2.0	27.9 ± 6.3	29.7 ± 3.5	33.8 ± 1.6	$ig 42.8\pm2.4$	-0.2%	$ig 40.9 \pm 4.7$
	3 NN		29.5 ± 2.9	29.6 ± 3.6	31.0 ± 1.4	34.6 ± 2.3	41.9 ± 3.4	+5.3%	$ 40.2 \pm 3.4 $
	15 NN		31.5 ± 2.6	27.8 ± 2.8	28.1 ± 3.2	35.5 ± 1.0	44.5 ± 2.1	+4.6%	39.3 ± 3.7
	30 NN		29.5 ± 3.2	24.3 ± 3.0	23.6 ± 3.4	33.8 ± 0.7	45.9 ± 4.1	+1.5%	36.1 ± 2.8
				10 a	nimal categorie	S			
ength D. We	1 NN	12.7 ± 2.5	17.1 ± 3.1	12.9 ± 2.6	15.9 ± 2.3	17.3 ± 1.2	$ 25.0 \pm 2.9 $	+3.2%	$ $ 25.0 \pm 2.2
data point ar-	3 NN		17.9 ± 2.8	13.1 ± 2.4	15.3 ± 2.3	18.2 ± 1.2	25.1 ± 3.0	+8.2%	26.0 ± 1.7
code.	15 NN		16.4 ± 2.5	14.7 ± 2.3	15.1 ± 1.8	18.0 ± 1.5	26.6 ± 2.7	+5.2%	27.8 ± 2.8
	30 NN		17.7 ± 3.4	14.5 ± 1.9	14.0 ± 1.9	18.3 ± 1.4	27.5 ± 2.4	-1.0%	$\boxed{25.8\pm1.4}$

[2] Y. W. Teh, D. Görür, and Z. Ghahramani, Stick-breaking construction for the IBP, AISTATS, 2007 [3] S. J. Gershman, P. I. Frazier and D. M. Blei, Distance dependent infinite latent feature models, arXiv, 2012 [4] I. Murray, R. P. Adams, and D. J. C. MacKay, Elliptical slice sampling, AISTATS, 2010

UNIVERSITY OF CAMBRIDGE IST AUSTRIA

STANFORD UNIVERSITY

 $\sim \mathcal{N}(\mu, \sigma^2).$

 $\mathbf{x}_n^{\top} \mathbf{g}_k, 1),$

 $\Pr(\mathbf{T}|\mathbf{Z}, \mathbf{w})\Pr(\mathbf{Z}|\mathbf{X}, \mathbf{G}, \mathbf{b})\Pr(\mathbf{w}|\gamma_w, \theta_w)\Pr(\mathbf{G}|\sigma_g)\Pr(\mathbf{b}|\alpha).$