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Abstract

In this thesis, we develop principled machine learning methods suited for com-

plex real-world Internet challenges. The Internet has supplied an unprecedented

amount of data; the challenge now is to transform this massive amount of data

into information that supports knowledge creation. Machine learning techniques

have become prevalent for modelling, prediction, and decision making from mas-

sive scale data. This thesis makes contributions in addressing data to knowledge

transformation in the context of machine learning; we introduce non-standard

machine learning problems and devise solutions for those, as well we present

scalable solutions for several existing machine learning problems.

The present work focuses on addressing Internet complexity on output label

dimensions. The first part of this thesis deals with formulation and solution

of non-standard machine learning problems. Traditionally, supervised machine

learning settings draw inference and make prediction from a set of input objects;

each of which is supervised by a desired output value. Internet poses challenges

of weak label supervision and label inconsistency. We focus on the following three

new settings:

1. Learning from only label proportions: A learning setting where instead of

each input is supervised with an output, we are given groups of unlabelled

inputs. Each group is endowed with information on class label proportions.

The number of group is at least as many as number of labels (Chapter 3).

2. Learning input-output correspondences: A learning setting where a set of

inputs and a set of outputs are given however they are not paired (Chapter

4).

3. Learning from several related tasks with distinct label sets: A learning

setting where several related tasks are given however each task has poten-

tially distinct label sets and label correspondences are not readily available

(Chapter 5).
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ix

The second part addresses refinements of existing machine learning models

and algorithms to scale to large data. The contributions of this thesis include a

streaming algorithm for the following two problems:

1. Transductive learning: We present a scalable algorithm for learning with

labelled and unlabelled data simultaneously by matching the output distri-

butions on labelled and unlabelled data (Chapter 6).

2. Storage and indexing management: We present a scalable algorithm for

indexing in the context of webpage tiering. The goal is to allocate pages

to caches such that the most frequently accessed pages reside in the caches

with the smallest latency whereas the least frequently retrieved pages are

stored in the backtiers of the caching system. This indexing and storage

problem is related to a larger class of parametric flow problem (Chapter 7).

The solutions presented in this thesis are centred around two main mathemat-

ical ingredients. First, Hilbert Space embeddings of distributions via averages are

used. This allows distance computation between data distributions in terms of

distances between averages, which, in turn, yield elegant ways to deal with dis-

tributions without the need of estimating them as an intermediate step. Second,

recent advances in field of optimisation are exploited to address the sheer size

and the non-convex nature of mostly Internet problems.

Keywords Weak Label Supervision, Label Inconsistency, Transductive

Learning, Parametric Maximum Flow, Streaming Algorithms, Kernel Embed-

dings, Optimisation;
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Chapter 1

Introduction

The amount of Internet data corresponds to stack of
books stretching from Earth to Pluto 10 times.

Richard Wray

Approximately 1.5 billion people use the Internet. People write news articles,

blogs, and reviews; people upload videos, audios, and photos. People become web

content creators. This directly translates to the availability of half a Zettabyte

of data. Synergistically with rapid progress in machine learning models and

algorithms, as well as rapid rises in computing power and storage, the challenge

of the 21st century consists of finding ways to transform this complex massive yet

noisy and sparse Internet data coming from a variety of sources into insights in

support of knowledge creation. This thesis makes contributions in addressing data

to knowledge transformation in the context of machine learning; we introduce

non-standard machine learning problems and devise solutions for those, as well

we present scalable solutions for several existing machine learning problems.

Machine learning techniques have become prevalent for drawing inference and

making prediction from massive scale data. Given input-output data pairs, the

goal of learning is to infer a latent function that maps inputs to outputs. This

function will then be used to predict an output for a given unseen input. In

classification, the most frequently applied setting of machine learning and the

one that is considered in this thesis, the output is the set of possible labels.

Other machine learning settings include regression, structured estimation and

novelty detection and variants of classification such as online and batch learning,

transductive learning, co-training, active learning, among others. Consider as

an illustrative example, a task of categorising web videos (user-generated videos

from video sharing websites). Here the inputs are the web videos and the outputs

1
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are the categories such as entertainment, music, news and politics, science and

technology, among others.

The complex nature of Internet data manifests itself along both the input

(feature) and output (label) dimensions. On the input dimensions, we deal not

only with potentially millions of features but also the features might come from

multiple modalities or data sources. Web videos admit the conventional repre-

sentation of audio-visual features, the associated text (the filenames, titles, or

descriptions) and even the intricate social network representation (the relation-

ship among videos through the users, links, or recommendations). On the label

dimensions, the information is sparse. For instance, there might be millions of

web videos but only a few of them are labelled by a particular user or labelled

with a particular tag. Adding to the sparsity challenge, Internet data tend to

have multiple sets of different labels. In the case of our illustrative example, the

categorisation of web videos from several different video sharing services depends

heavily on the editors of each web service. Different editors have very different

perception of video categories, thus the label categories are often ‘inconsistent’.

The focus of this thesis is on Internet applications for the following two reasons:

• The Internet offers new challenges that do not naturally fit into existing

machine learning methods;

• The Internet requires large-scale solution to problems.

1.1 Thesis Contribution

This thesis aims to address research challenges for Internet applications in the

context of machine learning. Challenging web applications lead to development

and investigation of non-standard machine learning settings. The present work

focuses on addressing Internet complexity on output label dimensions. Specifi-

cally, we introduce problems and present models and algorithms for the following

two non-standard learning frameworks:

• Weak label supervision

Traditional classification setting infers a statistical model based on observed

input-output data pairs. We introduce a new problem where instead of

each input is supervised with an output, we are given groups of unlabelled

inputs (Chapter 3). Each group is endowed with information on class label

proportions. The number of groups is at least as many as number of class
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labels. This seemingly contrived setting has plethora of applications in areas

like politics, spam filtering, e-commerce, and improper content detection.

We also introduce a learning framework where a set of inputs and a set

of outputs are given however they are not paired (Chapter 4). The goal

of learning is now to infer a correspondence or a permutation that maps

each input to its output. This has applications in data visualisation, image

search browsing, photo album summarisation, cross-domain matching, to

name a few.

• Label inconsistency

In machine learning it is folk knowledge that if several prediction tasks are

related, then learning them simultaneously can improve performance. For

instance, a web videos categoriser trained with data from several different

video sharing sites is likely to be more accurate than one that is trained

with data from a single video site. We introduce a new setting of jointly

learning several related tasks where each task has potentially distinct label

sets and label correspondences are not readily available (Chapter 5). This

is in contrast with existing settings which either assume that the label sets

shared by different tasks are the same or that there exists a label mapping

oracle.

The above contributions on new machine learning settings constitute the first

part of this thesis. The second part deals with refinements of existing machine

learning models and algorithms to scale to large data. The contributions of this

thesis include a scalable algorithm for the following two problems:

• Transductive learning

Internet data, while very large, is very sparse on its label, i.e. only a minute

amount of them are human annotated. In the transductive setting, this

unlabelled data is harnessed to improve the performance of classifier simply

trained on annotated data. We present a transductive algorithm exploiting

a simple fact that the distributions over the outputs on annotated and

unannotated data should match (Chapter 6). As our solution is amenable

to an online optimisation method, it can process received data one at a time

and then discard it in an excess data stream.

• Storage and indexing management

Finding a needle in a haystack best describes a process of locating relevant

data points in monstrous Internet space. Thus, each data point needs to
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have a label index before it is stored for a later efficient retrieval. We propose

an algorithm for webpage tiering for search engine indices that can process

billion of webpages in seconds (Chapter 7). Our presented algorithm solves

an integer linear program in an online fashion. This indexing and storage

problem is related to a larger class of parametric maximum flow problem and

therefore our algorithm has potential applications also in those problems.

The set of publications related to this thesis are listed below:

1. N. Quadrianto, A. J. Smola, T. S. Caetano, Q. V. Le. Estimating Labels

from Label Proportions. International Conference on Machine Learning

ICML, 2008 (Quadrianto et al., 2008);

2. N. Quadrianto, L. Song, A. J. Smola. Kernelized Sorting. Advances in

Neural Information Processing Systems NIPS 21, 2008 (Quadrianto et al.,

2009b);

3. N. Quadrianto, J. Petterson, A. J. Smola. Distribution Matching for Trans-

duction. Advances in Neural Information Processing Systems NIPS 22,

2009 (Quadrianto et al., 2009e);

4. N. Quadrianto, A. J. Smola, T. S. Caetano, Q. V. Le. Estimating Labels

from Label Proportions. Journal of Machine Learning Research JMLR,

vol. 10, 2009 (Quadrianto et al., 2009a);

5. N. Quadrianto, A. J. Smola, L. Song, T. Tuytelaars. Kernelized Sorting.

IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI, vol.

32, 2010 (Quadrianto et al., 2010c);

6. N. Quadrianto, A. J. Smola, T. S. Caetano, S.V.N. Vishwanathan, J. Pet-

terson. Multitask Learning without Label Correspondences. Advances in

Neural Information Processing Systems NIPS 23, 2010 (Quadrianto et al.,

2010d);

7. G. Leung, N. Quadrianto, A. J. Smola, K. Tsioutsiouliklis. Optimal Web-

scale Tiering as a Flow Problem. Advances in Neural Information Process-

ing Systems NIPS 23, 2010 (Leung et al., 2010);

8. N. Quadrianto, K. Kersting, T. Tuytelaars, W. L. Buntine. Beyond 2D-

Grids: A Dependence Maximization View on Image Browsing. ACM In-

ternational Conference on Multimedia Information Retrieval MIR, 2010

(Quadrianto et al., 2010a);
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9. N. Quadrianto and C.H. Lampert. Learning Multi-View Neighborhood Pre-

serving Projections, International Conference on Machine Learning ICML,

2011 (Quadrianto & Lampert, 2011a).

Besides the above contributions, the author has also carried out research in

other areas such as Gaussian processes regression and state estimation. For the

reason of consistency, these contents are not included in this thesis. The research

contributions for Gaussian processes regression include:

1. N. Quadrianto, K. Kersting, M. D. Reid, T. S. Caetano, W. L. Buntine.

Kernel Conditional Quantile Estimation via Reduction Revisited. IEEE

International Conference on Data Mining ICDM, 2009 (Quadrianto et al.,

2009d);

2. A. Asthana, R. Goecke, N. Quadrianto, T. Gedeon. Learning based Auto-

matic Face Annotation for Arbitrary Poses and Expressions from Frontal

Images Only. IEEE Computer Society Conference on Computer Vision and

Pattern Recognition CVPR, 2009 (Asthana et al., 2009).

The research contributions for state estimation include:

1. W. P. Malcolm, N. Quadrianto, L. Aggoun. State Estimation Schemes

for Independent Component Coupled Hidden Markov Models. Journal of

Stochastic Analysis and Applications, vol. 28, 2010 (Malcolm et al., 2010);

2. N. Quadrianto, T. S. Caetano, J. Lim, D. Schuurmans. Convex Relax-

ation of Mixture Regression with Efficient Algorithms. Advances in Neural

Information Processing Systems NIPS 22, 2010 (Quadrianto et al., 2009c).

The author has also contributed book chapters covering widely used machine

learning techniques. Those manuscripts include:

1. N. Quadrianto and C. H. Lampert. Kernel-based Learning. Encyclopedia

of Systems Biology, Springer, 2011 (Quadrianto & Lampert, 2011b);

2. N. Quadrianto, K. Kersting, Z. Xu. Gaussian Processes. Encyclopedia of

Machine Learning, Springer, 2010 (Quadrianto et al., 2010b);

3. N. Quadrianto and W. L. Buntine. Regression. Encyclopedia of Machine

Learning, Springer , 2010 (Quadrianto & Buntine, 2010c);

4. N. Quadrianto and W. L. Buntine. Linear Regression. Encyclopedia of

Machine Learning, Springer, 2010 (Quadrianto & Buntine, 2010b);
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5. N. Quadrianto and W. L. Buntine. Linear Discriminant. Encyclopedia of

Machine Learning, Springer, 2010 (Quadrianto & Buntine, 2010a).

1.2 Thesis Structure

The rest of this thesis will be organized into seven chapters. The main contents

of each chapter are summarised below:

Chapter 2 Background In this chapter, we will cover background knowledge

needed for our later theory and algorithm development. This includes a brief tour

to kernel methods. Subsequently, we list essential properties of kernels. Partic-

ularly, we put emphasis on the reproducing kernel Hilbert spaces and universal

kernels. These two aspects of kernels will play a key role in the subsequent ker-

nel embeddings approach for distribution analysis. Optimisation lies at almost

every heart of machine learning problems. In the last three sections, we pile up

necessary optimisation background including convex optimisation, non-convex

optimisation (convex-concave procedure) and stochastic optimisation (stochastic

gradient descent). The dependencies of subsequent chapters and the sections in

this background chapter are depicted in Figure 1.1.

Section 2.3
Kernel Embeddings 

of Distribution

Section 2.4
Convex 

Optimisation

Section 2.5
Non-Convex 
Optimisation

Section 2.6
Stochastic 

Optimisation

Chapter 3
Estimating Labels 

from Label 
Proportions

Chapter 4
Kernelised Sorting

Chapter 5
Multitask Learning 

without Label 
Correspondences

Chapter 7
Optimal Tiering as a 

Flow Problem

Chapter 6
Distribution Matching 

for Transduction

Figure 1.1: Dependency Diagram of Chapters and Background Sections. Overlaps

denote dependencies.
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Part I: Formulation and Solution for Non-Standard Machine Learning

Problems

Chapter 3 Estimating Labels from Label Proportions In this chapter,

we introduce a learning setting where we are given sets of unlabelled observations,

each set with known label proportions; the goal is to predict the labels of another

set of observations, possibly with known label proportions. This setting occurs

in areas like e-commerce, politics, spam filtering and improper content detection.

We present consistent estimators which can reconstruct the correct labels with

high probability in a uniform convergence sense. Our method works by modelling

a conditional exponential likelihood and approximating the unknown mean of

sufficient statistics. The approximation is done by exploiting the convergence

properties of a sample mean operator to its population counterpart and by solving

a linear system of equations formed by the known proportions. Experiments on

benchmark datasets show that our method works well in practice.

Chapter 4 Kernelised Sorting In this chapter, we introduce a learning frame-

work where a set of data inputs and a set of data outputs are given however they

are not paired; the goal of learning is to infer the latent input-output correspon-

dences. This is achieved by maximising the dependency between input-output

pairs of observations. We use a kernel embeddings based dependency measure

called the Hilbert Schmidt Independence Criterion. This problem can be cast as

one of maximising a quadratic assignment objective with special structure and we

present a simple algorithm for finding a locally optimal solution to it. We show

applications of this setting in data visualisation, photo album summarisation,

image search engine browser, estimation and cross-domain matching.

Chapter 5 Multitask Learning without Label Correspondences In this

chapter, we introduce a setting of jointly learning several related tasks where each

task has potentially distinct label sets, and label correspondences are not readily

available. Our method directly maximises the mutual information among the

labels, and we show that the resulting objective function can be decomposed into a

difference of convex functions and thus is amenable to an efficient optimisation via

the convex-concave procedure. Our proposed approach has a direct application

for data integration with different label spaces, and we show one such application

in integrating Yahoo! and DMOZ web directories.
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Part II: Scalable Solution for Existing Machine Learning Problems

Chapter 6 Distribution Matching for Transduction In this chapter, we

present a scalable algorithm for transductive learning, learning with labelled and

unlabelled data simultaneously, based on distribution matching. We developed

an algorithm that exploits the fact that for a good classifier, the distributions

over the outputs on labelled data and unlabelled data should match. We cast

the goal as a two-sample problem which can be solved efficiently by using a

distance measure in Hilbert Space. One key advantage of our approach is that

it is ‘plug and play’, i.e. it is applicable to all estimation problems ranging from

classification and regression to structured estimation by just defining appropriate

loss functions. Further, by formulating our solution as an online optimisation

method, our approach scales well and this was demonstrated in our experiments

by solving a multi-category problem with millions of observations.

Chapter 7 Optimal Tiering as a Flow Problem In this chapter, we present

a scalable algorithm for performing storage and indexing management. Our al-

gorithm solves an integer linear program in an online fashion. It exploits total

unimodularity of the constraint matrix and a Lagrangian relaxation to solve the

problem as a convex online game. The algorithm generates approximate solutions

of maximum flow problems by performing stochastic gradient descent on a set of

flows. We apply the algorithm to optimise tier arrangement of over 84 million

web pages on a layered set of caches to serve an incoming query stream optimally.

Chapter 8 Conclusion and Future Directions In this chapter, we sum-

marise the main results in this thesis. We also discuss some future directions in

developing machine learning models and algorithms for complex real-world In-

ternet challenges. These include addressing Internet complexity on input feature

dimensions.



Chapter 2

Background

In this chapter, we will cover essential background knowledge needed for our later

models and algorithms development for addressing Internet challenges. We will

start with the concept of kernels as measures of similarity, discuss the theoreti-

cal properties of kernels, and list a number of kernel examples. We then outline

several estimation and learning methods on classification, regression and dimen-

sionality reduction problems utilizing these kernels. We put emphasis on the

application of kernels as an embedding approach for distribution analysis. The

last three sections are dedicated to the background on mathematical program-

ming including convex, non-convex, and stochastic optimisation.

2.1 Kernels

Kernels (Aronszajn, 1950) are non-linear measures of pairwise similarity between

arbitrary data objects that generalise the Euclidean inner product, which is a

linear measures of similarity between two vectors. By use of the so-called kernel

trick we can obtain a non-linear version of many linear methods for data analysis

(vide Section 2.2): first, we formulate the method in a way that refers to the data

only in term of inner product between data points. Subsequently, we replace all

occurrences of the inner products by evaluations of the kernel function.

From a practical point of view, the most favourable properties of kernel-based

learning methods are their modularity, i.e. the complete detachment between the

choice of similarity function encoded by kernels and the design of the algorithm

itself, and flexibility, i.e. the possibility to compute similarity between discrete

objects such as strings, trees, and graphs.

Assume that we have a set of m objectsD = {x1, . . . , xm} at hand, for example

9
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the web videos. We denote the set of all possible objects X , such that xi ∈ X
for i = 1, . . . ,m. Our dataset is drawn independently and identically distributed

(i.i.d.) from an unknown probability distribution P on X with a density p(x).

Prior to performing any analysis on this data, the first issue that needs to be

tackled is how to represent this set of data D, that is, define a representation

function φ : X → F for each possible object x ∈ X . Further data analysis is

subsequently performed on this set of representations {φ(x1), . . . , φ(xm)}. Most

classical techniques work only if the feature space F is a vector space of finite

dimension, i.e. Rd. This is a significant restriction, as it means, for example, that

we cannot represented a web video by the variable length sequence of time series

information, but we have to resort to feature representation or similar procedures

that come with a loss of information.

2.1.1 From Data Representation to Similarity Matrix

Kernel-based learning overcomes the limitation that data must be represented

as finite dimensional vectors. It no longer probes the objects based on their

individual data representation but through a set of similarity measures between

pairs of objects (refer to Figure 2.1). That is, a set of m data points is translated

into a symmetric m ×m similarity matrix K ∈ Rm×m with Ki,j = k(xi, xj) and

k : X × X → R is the positive definite kernel function. All kernel methods rely

exclusively on such square similarity matrices. This is particularly appealing in

many applications in which comparing two objects is often an easier task than

representing the object by a finite sized vector.

Any similarity measure can be used as part of a kernel-based learning method

if it fulfils the properties of a positive definite kernel function.

Definition 1 (Positive Definite Kernels) Let X be a nonempty set. A sym-

metric function k : X × X → R is a positive definite kernel on X if
m∑

i,j=1

ci cj k(xi, xj) ≥ 0, (2.1)

for all m ∈ N, x1, . . . , xm ∈ X and c1, . . . , cm ∈ R.

We will hereafter denote positive definite kernels simply as kernels. Note that the

positive definiteness of a kernel function translates into the positive definiteness

of the similarity matrix K, which is also called a Gram matrix. This positive

definiteness has an important implication not only on the theoretical side but

also on the effectiveness of kernel methods in many practical applications.
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X φ( )

K =

 1.0 0.7 0.1
0.7 1.0 0.3
0.1 0.3 1.0



=??

D

Figure 2.1: Two different ways of representing the same data set. X is the set

of user-generated videos from YouTubeTM and D is a data set of three particular

videos. Traditionally, a representation φ(x) for each element of x ∈ X first needs

to be defined prior to any data analysis which sometimes might not be trivial

(upper right). Kernel methods represent the same data set in term of a matrix

of pairwise similarity between elements, irrespective of any complexity associated

with each element (lower right).

2.1.2 Examples of Kernels

In this thesis, we will mainly deal with vectorial data. Table 2.1 gives some ex-

amples of a kernel function defined on vectors. All the functions listed in the

table are symmetric and positive definite, thus constitute a kernel function. Be-

sides vectors, kernels have also been defined on discrete objects such as strings,

trees, and graphs. For more comprehensive examples on kernels, we refer inter-

ested readers to (Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004;

Schölkopf et al., 2004; Hofmann et al., 2008).

2.1.3 Reproducing Kernel Hilbert Spaces

We will now establish a theoretical foundation of kernel as an implicit way to

construct a representation function φ. Calculating the similarity value between

two objects x1, x2 ∈ X by means of a kernel function is equivalent to forming

vector representation φ(x1), φ(x2) ∈ F and evaluating their inner product in

the feature space F . However, by using a kernel, the vector representation is

only present implicitly, and we do never have to compute it explicitly. This is a
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Name k(x, x′) θ

linear kernel 〈x, x′〉 NA

polynomial kernel (〈x, x′〉+ c)d, c > 0, d ∈ N {c, d}
Gaussian kernel exp

(− 1
σ2 ‖x− x′‖2) {σ}

Laplace kernel exp
(− 1

σ2 ‖x− x′‖
) {σ}

delta kernel 1(x=x′) =

1 if x = x′

0 otherwise
NA

Table 2.1: Examples of Kernel Functions on Rn. θ denotes the set of hyper-

parameters.

major advantage to the methods that require traditional feature representations,

as there are cases where the feature space associated with a kernel is very high

dimensional, or even infinite-dimensional. Representations in such feature spaces

would be difficult or even impossible to compute explicitly, whereas computing

the kernel matrix remains possible. Note that, the feature map φ associated

with a kernel k is usually not unique. For example, the degree 2 (homogeneous)

polynomial kernel, k(x, x′) = 〈x, x′〉2, can have φ(x) = [x(1)2, x(2)2,
√

2x(1)x(2)],

φ(x) = [x(1)2, x(2)2, x(1)x(2), x(2)x(1)] and many other variants as the feature

space. However, there is a special feature space which is unique for a given

kernel. We state the result of this special feature space construction assuming

only the positive definiteness of the kernel function in the form of a theorem (see

for example (Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004)).

Theorem 2 (Kernels as Feature Representations) For any kernel k on a

space X , there exist a Hilbert space1 F and a mapping φ : X → F such that

k(x, x′) = 〈φ(x), φ(x′)〉F , for any x, x′ ∈ X , (2.2)

where 〈·, ·〉F is the inner product in the space F .

Proof Given a kernel function k, define a map from X into the space of functions

mapping X into R (denoted as F ′ := {f : X → R}) as φ(x) = k(x, ·)2. That is,

φ(x) : X → R is a function which has a value of k(x, x′) at x′ ∈ X . We can then

1A Hilbert space is a linear space endowed with an inner product that is complete in the
norm corresponding to that inner product.

2We use a · to indicate the argument of the function.
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construct the following vector space:

F ′ := span{φ(x) : x ∈ X} =

{
n∑
i=1

αik(xi, ·) : i ∈ N, αi ∈ R, xi ∈ X
}
. (2.3)

For f, g ∈ F ′ be given by fα(·) =
∑n

i=1 αik(xi, ·) and gβ(·) =
∑n′

j=1 βjk(xj, ·), we

can define

〈fα, gβ〉 =
n∑
i=1

n′∑
j=1

αiβjk(xi, xj). (2.4)

We need to show that 〈fα, gβ〉 is in fact an inner product by checking the following

3 criteria:

• Symmetry:

〈fα, gβ〉 =
n∑
i=1

n′∑
j=1

αiβjk(xi, xj) =
n′∑
j=1

n∑
i=1

βjαik(xj, xi) = 〈gβ, fα〉 ;

• Bilinearity:

〈fα, gβ〉 =
n∑
i=1

n′∑
j=1

αiβjk(xi, xj) =
n∑
i=1

αigβ(xi) =
n′∑
j=1

βjfα(xj).

We still need to show that (2.4) is well-defined, i.e. it is independent of

the representation of f and g. We do so by re-defining the functions as

fα(·) =
∑n̂

i=1 α̂ik(x̂i, ·) = fα̂(·) and gβ(·) =
∑n̂′

j=1 β̂jk(x̂j, ·) = gβ̂(·) and

evaluating:

〈
fα̂, gβ̂

〉
=

n̂∑
i=1

n̂′∑
j=1

α̂iβ̂jk(x̂i, x̂j)

=
n̂∑
i=1

α̂igβ(x̂i) =
n̂∑
i=1

n′∑
j=1

α̂iβjk(x̂i, xj)

=
n′∑
j=1

βjfα(xj) =
n∑
i=1

n′∑
j=1

αiβjk(xi, xj)

= 〈fα, gβ〉 ; (2.5)

• Positive definiteness: 〈f, f〉 =
∑n

i,j=1 αiαjk(xi, xj) ≥ 0 follows directly from

the positive definiteness of k.
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We have just defined an inner product space F ′. By including all the limit

functions in F ′, we can obtain the Hilbert space F .

Remark 3 (Reproducing Property) We have the following property:

〈f, k(x, ·)〉 =
n∑
i=1

αik(xi, x) = f(x) for any f ∈ F ′. (2.6)

Further, this property implies

k(x, x′) = 〈k(x, ·), k(x′, ·)〉 . (2.7)

Proof Plugging in k(x, ·) as g(·) to (2.4) shows the first property. While, re-

placing f in (2.6) with k(x′, ·) shows the second property.

Due to this property, the Hilbert space defined in the theorem above is also

called the reproducing kernel Hilbert Space (RKHS), associated with the repro-

ducing kernel k. An alternate way to define a RKHS is by defining continuous

evaluational operators and subsequently invoking the Riesz representer theorem

to construct the reproducing kernel (Schaback, 2007). The Moore-Aronszajn

theorem (Aronszajn, 1950) guarantees the existence of a unique RKHS for every

positive definite kernel and vice versa.

2.1.4 Universal Kernels

We describe properties of RKHS that will be useful for the later development

of kernel-based embedding of distributions in Section 2.3. We focus on compact

X ⊂ Rd. For construction of universal kernels on compact metric space X 6⊂ Rd

such as for trees, graphs and histograms, refer to (Christmann & Steinwart, 2010).

Definition 4 (Continuous Kernel (Steinwart, 2001)) Let k be a kernel on

a compact space X , and φ : X → F be the feature map to the RKHS of k, that is,

φ(x) = k(x, ·). Then k is called a continuous kernel if and only if φ is continuous.

Definition 5 (Universal Kernel (Steinwart, 2001)) Let C(X ) be a space of

continuous functions on a compact domain X . A continuous kernel k on X is

called universal if the RKHS F induced by k is dense in C(X ) in L∞ sense, that

is, for every function f ∈ C(X ) and every ε > 0, there exists a function g ∈ F
such that ‖f − g‖∞ < ε.
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From the list of kernels in Table 2.1, Gaussian and Laplace are examples

of a universal kernel. Linear and polynomial kernels while continuous are not

universal. Delta kernel is not continuous, thus not universal. Several criteria of

universality are available (Steinwart, 2001), and can be used to check whether a

kernel is universal.

Two most important characteristics of universal kernels are (Steinwart, 2001):

1. Every universal kernel separates1 all compact subsets;

2. Every feature map of a universal kernel is injective.

The first characteristic implies that for any finite subset X = {x1, . . . , xm} ⊆
X , the classes corresponding to every possible label assignment can always be

correctly separated by a function in the RKHS. While the second characteristic

means a unique observation will be represented as a unique element in the RKHS.

This second characteristic plays a crucial role in the kernel embeddings.

2.1.5 Regularised Risk Functionals

Recall that, in the supervised machine learning setting, we are given m input-

output pairs D = {(xi, yi)}mi=1 (training set), where xi ∈ X (the set of inputs) and

yi ∈ Y (the set of outputs). The output set Y is a discrete set of possible labels for

classification problems. These data pairs are drawn independently and identically

distributed (i.i.d.) from an unknown probability distribution P on X × Y with

a density p(x, y). Earlier we have seen how to implicitly define representation

of the data via kernel similarity matrix; we can now draw our attention to the

learning task of inferring a function, f ∈ F for some function spaces F , that

maps inputs to outputs, f : X → Y . This function f will then be used to predict

an output y ∈ Y for a given unseen input x ∈ X . To assess the quality of this

inferred function, we need a notion of loss function, l : X × Y × Y → R+. The

loss function measures the loss or penalty incurred for predicting the example xi

to have a value of f(xi) when the true output value is yi. For example, in binary

classification, the 0/1-loss l(x, y, f(x)) = 1
2
(1 − sgn(yf(x))) where the signum

function is defined as sgn(x) =

−1 if x ≤ 0

1 otherwise
can be used. It assigns a unit

1We say k separates A and B means that there exists a pair (w, b) ∈ F × R such that
〈φ(x), w〉+ b ≥ 0 for all x ∈ A and 〈φ(y), w〉+ b < 0 for all y ∈ B.
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penalty for a misprediction and no penalty for a correct prediction. Finding the

best function f can then be casted as a risk minimisation problem:

min
f∈F

R(f), (2.8)

where the risk R(f) is defined as

R(f) :=

∫
X×Y

l(x, y, f(x))p(x, y)dxdy = Ep(x,y)[l(x, y, f(x))]. (2.9)

We are faced by a problem that the risk in (2.9) can not be minimised directly

since the underlying probability distribution that generates the observed data

is unknown. A step forward is to replace the density p(x, y) by its empirical

counterpart based on the available training data. We are now trying to infer a

function by minimising the empirical risk

Remp(f) :=
1

m

m∑
i=1

l(xi, yi, f(xi)). (2.10)

Though (2.10) might appear to be the solution, for too rich function space F , the

deviation between the empirical risk and the expected risk might be substantial;

this is so called an overfitting problem (Tikhonov, 1943, 1963; Vapnik, 1995). A

way to restrict the richness of the function space is to introduce a regularisation

term Ω(f) to the empirical risk objective function. We now find a function from

the following class of regularised risk functionals (Tikhonov, 1943, 1963; Vapnik,

1995):

Rreg(f) = Remp(f) + λΩ(f). (2.11)

The regularisation term Ω(f) controls the richness of the function space such that

the chosen function is able to generalise well to unseen data points. The regular-

isation parameter λ > 0 balances the relative influence of loss and regularisation

terms.

Kernel-based methods select a function from a possibly infinite dimensional

RKHS; this appears to be a hard optimisation problem. However, by virtue of

the following theorem (Kimeldorf & Wahba, 1971; Schölkopf & Smola, 2002), the

search in possibly an infinite-dimensionals space can be conveniently transformed

to Euclidean space.

Theorem 6 (Representer Theorem) Let X be a set of input data points en-

dowed with a kernel k and F its corresponding RKHS and Y be a set of out-

put data points. Let {(x1, y1), . . . , (xm, ym)} ⊂ X × Y be a finite set of input-

output pairs, Ω : [0,∞) → R be a strictly monotonic increasing function, and



2.1. KERNELS 17

l̃ : (X ×Y ×Y)m → R∪{∞} be an arbitrary loss function. Then each minimiser

f ∈ F of the regularised risk functional

l̃((x1, y1, f(x1)), . . . , (xm, ym, f(xm))) + Ω(‖f‖F) (2.12)

admits a representation of the form

f(x) =
m∑
i=1

αik(xi, x). (2.13)

Proof From Theorem 2, we know that the kernel k satisfies

k(x, x′) = 〈φ(x), φ(x′)〉F , for any x, x′ ∈ X , (2.14)

where 〈·, ·〉F is the inner product in the RKHS F . We decompose f ∈ F into a

part f || ∈ F which lives inside the span of φ(x1), . . . , φ(xm) and its orthogonal

complement f⊥ ∈ F . We have

f =
m∑
i=1

αiφ(xi) + f⊥ (2.15)

with αi ∈ R and f⊥ satisfying, for all i ∈ {1, . . . ,m}, 〈f⊥, φ(xi)
〉

= 0. By the

reproducing property of F , for an arbitrary input data point xj, we have

f(xj) =

〈
m∑
i=1

αiφ(xi) + f⊥, φ(xj)

〉
(2.16)

=
m∑
i=1

αi 〈φ(xi), φ(xj)〉 . (2.17)

Hence, we see that the term f⊥ is irrelevant for the loss term in (2.12). We now

check the effect of f⊥ on the regularisation term. We have

Ω(‖f‖) = Ω

(∥∥∥∥∥
m∑
i=1

αiφ(xi) + f⊥

∥∥∥∥∥
)

(2.18)

= Ω


√√√√∥∥∥∥∥

m∑
i=1

αiφ(xi)

∥∥∥∥∥
2

+ ‖f⊥‖2

 (2.19)

≥ Ω

(∥∥∥∥∥
m∑
i=1

αiφ(xi)

∥∥∥∥∥
)
, (2.20)

where the middle equality is due to the orthogonality of f⊥ to
∑m

i=1 αiφ(xi) and

the last inequality is due to the strict monotonicity of Ω. We see that taking f⊥
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to be 0 strictly reduces the regularisation term while has no effect on the loss

term, thus any minimiser of (2.12) must have f⊥ = 0.

The above representer theorem shows that the solution of an optimisation

problem in possibly an infinite-dimensional RKHS F lies in the span of m par-

ticular kernels centred on the given data points. On the practical side, this is

computationally attractive as it reduces a potentially infinite dimensional opti-

misation problem to m-dimensional problem where m is the number of given data

points. Monotonicity of the regulariser Ω is necessary for the representer theorem

to hold, however, it does not prevent the problem in (2.12) to have many solu-

tions. For ensuring a unique minimiser, we would need the convexity of the loss

term and the reguralization term (for information on convexity, refer to Section

2.4). If the regulariser does not have a strict monotonicity property, then poten-

tially there will be minimisers of (2.12) which do not admit the representation.

However, it still follows that there exists at least another minimiser that does

admit the representation form.

2.2 Kernel-Based Learning Methods

Once we have defined a suitable similarity measure (kernel) for the data we want

to analyse, several techniques are readily available. Particularly successful are

technique that were originally developed for linear analysis of vector-valued data,

and that are made applicable in a general, non-linear setting by the kernel trick.

2.2.1 Kernel Classification

The most widely used kernel-based classification method is Support Vector Clas-

sification (SVC) (Boser et al., 1992; Cortes & Vapnik, 1995). Given input-output

pairs D = {(xi, yi)}mi=1 where xi ∈ X and yi ∈ {1,−1}, SVC requires solving the

optimisation problem

max
α1,...,αm∈R

−1

2

m∑
i,j=1

αiαjyiyjk(xi, xj) +
m∑
i=1

αi. (2.21)

The above optimisation problem is the so-called dual problem of (2.12) with a

loss function l̃((x1, y1, f(x1)), . . . , (xm, ym, f(xm))) expressed as the average of a

hinge loss term, l(x, y, f(x)) = max(0, 1 − yf(x)), and a quadratic regulariser,
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Ω(‖f‖F) = ‖f‖2
F . From the solution we obtain a prediction f(x) =

∑
i αik(xi, x)

from which we obtain the label assignment as F (x) = sgn(f(x)).

2.2.2 Kernel Regression

Another common task in data analysis is the prediction of a function with real-

valued output, that is a regression task. A straight-forward kernel-based re-

gression method is Kernel Ridge Regression (KRR) (Saunders et al., 1998) that

generalises linear least-squares regression. Given a data set D = {(xi, yi)}mi=1

where xi ∈ X and yi ∈ R, KRR predicts the function

f(x) =
m∑
i=1

αik(xi, x) =
m∑
i=1

m∑
j=1

yj[(λI[m×m] +K)−1]ij︸ ︷︷ ︸
αi

k(xi, x), (2.22)

where I[m×m] is the m ×m identity matrix, K is the m ×m kernel matrix, and

λ is a small ridge parameter that avoids overfitting. The form of the predictive

function is a result of solving (2.12) with a loss function that is decomposable

into a sum of squared loss terms, l(x, y, f(x)) = (y − f(x))2, and a quadratic

regulariser. Another successful kernel method for regression is Support Vector

Regression (SVR) (Vapnik, 1995). SVR has been shown to be particularly robust

against outliers in the data thanks to the ingenious ε-insensitive loss function,

l(x, y, f(x)) = max(0, |y − f(x)| − ε).

2.2.3 Kernel-Based Dimensionality Reduction

Kernel-based learning also allows the computation of a low-dimensional vector

representation for potentially high-dimensional non vectorial data. The best

known kernel method for this tasks is Kernel Principal Component Analysis

(Schölkopf et al., 1996), which generalises Principal Component Analysis (Jol-

liffe, 1986). Kernel Principal Component Analysis is of particular interest when

performing interactive data analysis, as it provides a low-dimensional representa-

tion suitable, e.g., for visualisation, even in cases where it is difficult to manually

define a finite-dimensional vector representation, such as for strings and graphs.

For a given set of objects D = {xi, . . . , xm} where xi ∈ Rd, we first compute the

kernel matrix K ∈ Rm×m. From this, we compute the so-called centred kernel

matrix K̃ = K − 1
m

1[m×m]K − 1
m
K1[m×m] + 1

m2 1[m×m]K1[m×m] where 1[m×m] is

the m × m-dimensional matrix in which all entries are 1. Let λ1, . . . , λm and
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v1, . . . , vm denote the eigenvalues and eigenvectors of K̃, sorted in decreasing or-

der of the eigenvalues. An n-dimensional representation x̂1, . . . , x̂m ∈ Rn of D is

then given by

[x̂i]j = λj[vj]i (2.23)

for j = 1, . . . , n where [·]j denotes the j-th component of a vector.

2.2.4 Other Kernel-Based Learning Methods

Besides for the problems of classification, regression and dimensionality reduction,

there are also kernel-based learning methods for multiple other data analysis

problems such as novelty detection, clustering, correlation analysis, to name a

few. References to those methods can be found in many textbooks and article

on kernel-based learning, such as (Schölkopf & Smola, 2002; Shawe-Taylor &

Cristianini, 2004; Schölkopf et al., 2004; Hofmann et al., 2008).

2.3 Kernel Embeddings of Distribution

The previous section describes applications of the kernel trick in deriving a non-

linear version of many linear methods that was shown to excel in a wide range of

learning tasks. In contrast, this section is devoted to the recent interest in consid-

ering basic linear statistics in RKHS instead in the usual Euclidean space (Smola

et al., 2007a). For example, the usual notion of mean in Euclidean corresponds

to the notion of mean element in RKHS. As we will see later, this RKHS element

characterises a probability distribution and is useful, for instance, for comparing

distributions. In comparison to the long standing measure of distance between

distributions such as Kullback-Leibler divergence, the distance measure via mean

element is directly estimated from samples; it avoids the need of estimating the

distributions as an intermediate step. Below we give the existence and definition

of the mean element:

Theorem 7 Let PX be a probability distribution on X and k be a kernel on

X with its corresponding RKHS F . If E(x)∼PX [
√
k(x, x)] < ∞, there exists an

element E(x)∼PX [k(x, ·)] ∈ F such that for all f ∈ F we have Ex∼PX [f(x)] =

E(x)∼PX [〈f, k(x, ·)〉] = 〈f, µ[PX ]〉.
Proof We note that the mapping f 7→ E(x)∼PX [f(x)] is a bounded linear func-

tional on F if the condition E(x)∼PX [
√
k(x, x)] <∞ is satisfied due to the follow-
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ing chain of (in)-equalities:

|E(x)∼PX [f(x)]| ≤ E(x)∼PX [| 〈f, k(x, ·)〉 |]
≤ ‖f‖F E(x)∼PX [‖k(x, ·)‖F ]

= ‖f‖F E(x)∼PX [
√
k(x, x)]. (2.24)

The condition is easily satisfied for a bounded kernel k. The existence of the

element E(x)∼PX [k(x, ·)] ∈ F is then due to the Riesz representation theorem.

Definition 8 (Mean Element) We call the element µ[PX ] := E(x)∼PX [k(x, ·)]
as a mean element.

Expectations of function f with respect to PX are computed simply by taking its

inner products with the mean element µ[PX ] in the RKHS.

Typically, we will have access to independent and identically distributed

(i.i.d.) samples X = {(xi)}mi=1 from PX , thus we can only compute an empir-

ical estimate of the mean element, i.e.

µ[X] :=
1

m

m∑
i=1

k(xi, .), (2.25)

which is obviously in F . The empirical means of f with respect to the data

samples are 1
m

∑m
i=1 f(xi) = 1

m

∑m
i=1 〈f, k(xi, .)〉 = 〈f, µ[X]〉.

The attractiveness of embedding distribution to Hilbert space lies in the fol-

lowing two reasons, which we will state in the form of theorems:

Theorem 9 (Injectivity of Mean Mapping (Smola et al., 2007a)) Let k be

a universal kernel, then the mapping PX 7→ µ[PX ] is injective.

Theorem 10 (Concentration of Measure (Smola et al., 2007a)) The de-

viation between the empirical quantity of the mean element µ[X] estimated from

m samples and its expectation value µ[PX ] is in the order of O(m−
1
2 ).

Theorem 9 says that the mean element µ[PX ] is a characterisation of distribution

PX , that is, different distributions have different mean elements in F . Theorem

10 ensures that µ[X], the empirical quantity that can be easily computed from

samples, can be seen as a good proxy for µ[PX ]. Consequently, the first theorem

allows us to use mean elements to define a distance between distributions and

the second theorem ensures that the defined distance measure can be computed

from observed samples.
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2.3.1 Distance between Distributions

The mean element µ[PX ] can be used as a distance measure between distributions

PX and PY (Smola et al., 2007a):

D(PX , PY ) := ‖µ[PX ]− µ[PY ]‖2

= ‖µ[PX ]‖2 + ‖µ[PY ]‖2 − 2 〈µ[PX ], µ[PY ]〉
= E

(x)∼PX
E

(x′)∼PX
[k(x, x′)] + E

(y)∼PY
E

(y′)∼PY
[k(y, y)]− 2 E

(x)∼PX
E

(y)∼PY
[k(x, y)],

(2.26)

where x′ is a random variable independent of x drawn from distribution PX ,

likewise, y′ and y are independent random variables drawn according to PY .

Empirical Estimate Suppose we have at our disposition m i.i.d. samples

{x1, . . . , xm} of PX and n i.i.d. samples {y1, . . . , yn} of PY , then the sample esti-

mate ofD(PX , PY ) can be easily computed by substituting the empirical estimates

of the mean elements µ[X] := 1
m

∑m
i=1 k(xi, .) and µ[Y ] := 1

n

∑n
i=1 k(yi, .):

D(X, Y ) =
1

m2

m∑
i,j=1

k(xi, xj) +
1

n2

n∑
i,j=1

k(yi, yj)− 2

mn

m,n∑
i,j=1

k(xi, yj). (2.27)

The above sample estimate is a consistent but biased estimator. An unbiased

empirical estimator of D(PX , PY ) is a U-statistic (Serfling, 1980), and for the ex-

plicit form of the estimator, refer to Smola et al. (2007a). However, this unbiased

estimator imposes a restriction that the same number of samples are drawn from

both PX and PY , that is (m = n).

2.3.2 Hilbert-Schmidt Independence Criterion (HSIC)

The above embedding of distribution approach can also be used to measure the

dependence between two random variables x and y on domains X and Y re-

spectively (Smola et al., 2007a). Let k be a kernel on X with RKHS F and

G be the RKHS on Y with kernel l. Denote a joint space, Z = X × Y and h

be a kernel on this product space Z with its corresponding RKHS H. Let the

joint distribution on Z be PXY and the marginal distributions be PX and PY .

We note that X and Y are independent if and only if the joint distribution fac-

torizes as a product of its marginals, PXY = PXPY . A distance between PXY

and PXPY in term of the mean elements µ[PXY ] := E(x,y)∼PXY [h((x, y), ·)] and

µ[PX × PY ] := E(x)∼PXE(y)∼PY [h((x, y), ·)] can then be used as an independence
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measure. Assuming that the RKHS H is a direct product F ⊗ G of the RKHSs

on X and Y which leads to a factorized kernel h((x, y), (x′, y′)) = k(x, x′)l(y, y′),

the distance-based measure of dependence is now

D(PXY , PXPY ) = ‖µ[PXY ]− µ[PX × PY ]‖2

=
∥∥E(x,y)∼PXY [k(x, ·)l(y, ·)]− E(x)∼PX [k(x, ·)]E(y)∼PY [l(y, ·)]∥∥2

= E
(x,y)∼PXY

E
(x′,y′)∼PXY

[k(x, x′)l(y, y′)]

+ E
x∼PX

E
x′∼PX

[k(x, x′)] E
(y)∼PY

E
(y′)∼PY

[l(y, y′)]

− 2 E
(x,y)∼PXY

[ E
x′∼PX

[k(x, x′)] E
(y′)∼PY

[l(y, y′)]]. (2.28)

The above measure is what Gretton et al. (2005) show to be the Hilbert-Schmidt

norm of the covariance operator between RKHSs, thus the name Hilbert-Schmidt

Independence Criterion (HSIC). For universal kernels, this measure is zero if and

only if x and y are independent.

Empirical Estimate Given a sample Z = {(x1, y1), . . . , (xm, ym)} of size m

drawn from PXY an empirical estimate of HSIC can be derived by estimating the

terms in (2.28) using the kernel matrices K ∈ Rm×m and L ∈ Rm×m for the set

X = {x1, . . . , xm} and the set Y = {y1, . . . , ym} respectively, i.e. Kij = k(xi, xj)

and Lij = l(yi, yj). The sample estimate for each term is as follow:

E
(x,y)∼PXY

E
(x′,y′)∼PXY

[k(x, x′)l(y, y′)] →
sample

1

m2
tr(KL)

E
(x,y)∼PXY

[ E
x′∼PX

[k(x, x′)] E
(y′)∼PY

[l(y, y′)]] →
sample

1

m3
1>[m×m]KL1[m×m]

E
x∼PX

E
x′∼PX

[k(x, x′)] E
(y)∼PY

E
(y′)∼PY

[l(y, y′)] →
sample

1

m4
1>[m×m]K1[m×m]1

>
[m×m]L1[m×m].

Combining the above sample estimate terms, the empirical estimate of HSIC is

given by

D(Z) = m−2 trHKHL = m−2 tr K̄L̄. (2.29)

The term Hij = δij −m−1 centres the observations of set X and set Y in feature

space. Finally, K̄ := HKH and L̄ := HLH denote the centred versions of K

and L respectively. Note that (2.29) is a consistent but biased estimate where

the expectations with respect to x, x′, y, y′ have all been replaced by empirical

averages over the set of observations (for further properties of this empirical

estimator and the unbiased sample estimate refer to (Smola et al., 2007a) and

references therein).
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2.4 Convex Optimisation

Optimisation lies at almost every heart of machine learning problems (Bennett

et al., 2006). Consider the regularised risk functionals in Section 2.1.5. After an

appropriate choice of a loss function and a regulariser, finding the best function f

in (2.11) constitutes solving an optimisation problem with Rreg(f) as the objec-

tive function. In general, minimising an arbitrary objective function is difficult,

however for a certain class of functions, called convex functions, the optimisa-

tion efforts become considerably easier. Minimisation of a convex function over

a convex feasible set admits a property that every local optimum is in fact a

global optimum. It is then not surprising that many machine learning algorithms

are (re)-formulated in terms of convex optimisation problems. For an introduc-

tion to the field of convex optimisation refer to (Boyd & Vandenberghe, 2004);

we briefly touch upon definitions of crucial ingredients of convex optimisation

problem, these are convex functions and convex sets.

Definition 11 (Convex Set) A set C ⊂ Rd is said to be convex if for any x1,

x2 ∈ C and any λ with 0 ≤ λ ≤ 1, we have

λx1 + (1− λ)x2 ∈ C. (2.30)

Geometrically, the above means any line segment between any two points x1 and

x2 from the set C must lie in C.

Definition 12 (Convex Function) A function f defined on a set X ⊂ Rd is

convex if for any x1, x2 ∈ X and any 0 ≤ λ ≤ 1 such that λx1 + (1− λ)x2 ∈ X ,

we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (2.31)

Geometrically, the above inequality means a line segment between (x1, f(x1)) and

(x2, f(x2)) must lie above the graph of the function f .

For a differentiable function f : X → R, we can test whether the function is

convex by checking the following condition:

f(x2) ≥ f(x1) + 〈x2 − x1,∇f(x)|x1〉 ∀ x1, x2 ∈ X . (2.32)

The condition means that its first order Taylor approximation is always a lower

bound for a convex function. Further, the function f is called strictly convex

if the inequalities in (2.31) or (2.32) are strict whenever x1 6= x2. For a twice
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differentiable function, the convexity condition is even simpler; the Hessian of the

function must be positive semi-definite, that is

∇2f(x) � 0. (2.33)

For a positive definite Hessian, ∇2f(x) � 0, the function is strictly convex.

The following lemma describes a relation between convex functions and convex

sets:

Lemma 13 (Relationship between Convex Sets and Convex Functions)

For a convex function f : X → R and for every c ∈ R, the following set, called

c-sublevel set,

Xc := {x ∈ X |f(x) ≤ c} (2.34)

is convex.

Proof For x1, x2 ∈ Xc, we have f(x1), f(x2) ≤ c. By convexity of the function

f , we also have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ c ∀ 0 ≤ λ ≤ 1, (2.35)

and thus λx1 + (1− λ)x2 ∈ Xc.
Note that, the converse is not true, that is, a function can have all its sublevel

sets convex, but not be a convex function. We are now ready to state a theorem

that shows a minimisation of a strictly convex function over a convex feasible set

admits exactly one global optimum. We use the term convex minimisation to

refer to a minimisation problem with a convex feasible set and a convex objective

function.

Theorem 14 (Global Optimum of Convex Minimisation) Let f : X → R
be a convex function on a convex set X ⊂ Rd. If the function f attains its

minimum, then the set where the minimum value is attained is convex. Further,

for a strictly convex function this set is a singleton.

Proof Suppose c is the minimal value of f on X . Then the c-sublevel set

Xc := {x ∈ X |f(x) ≤ c} is convex by Lemma 13. If f is strictly convex, then for

x1, x2 ∈ Xc with x1 6= x2 and any 0 ≤ λ ≤ 1, we have

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) = λc+ (1− λ)c = c. (2.36)
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Where the inequality follows from the definition of strictly convex. This is a

contradiction since we start off with the assumption that f attains its minimum

on Xc. Hence Xc can not contain x1, x2 with x1 6= x2 and must therefore be a

singleton.

Lemma 15 (Optimality Criterion for a Differentiable Convex Function)

Let f : X → R be a differentiable convex function. Then x is a minimiser of f if

and only if

〈y − x,∇f(x)〉 ≥ 0 ∀ y ∈ X . (2.37)

Proof We want to show the forward implication; suppose x is the optimum but

(2.37) does not hold, that is, for some y ∈ X , we have

〈y − x,∇f(x)〉 < 0. (2.38)

Take a line segment z(λ) = (1 − λ)x + λy with 0 ≤ λ ≤ 1. Since the set X is

convex, z(λ) lies in X . However, by

d

dλ
f(z(λ))|λ=0 = 〈y − x,∇f(x)〉 < 0, (2.39)

so there exist a small positive λ ∈ [0, 1] such that f(z(λ)) < f(x). This is a

contradiction to x being optimal. To show the reverse implication, we note that

f(y) ≥ f(x) by (2.32) whenever (2.37) holds.

For an (unconstrained) convex minimisation problem, the condition for x to be

optimal in (2.37) reduces to the gradient vanishing sufficient and necessary con-

dition, ∇f(x) = 0. To show this, consider the set X to be an open set. Take

y = x − ε∇f(x) for ε ∈ R. For a positive and small ε, the condition in (2.37)

becomes 〈y − x,∇f(x)〉 = 〈−ε∇f(x),∇f(x)〉 = −ε ‖∇f(x)‖2 ≥ 0; we conclude

∇f(x) = 0. Convex optimisation appears in many machine learning problems

such as the regularised risk functionals in Section 2.1.5 provided the objective

function is decomposed into convex loss functions coupled with convex regularis-

ers.
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2.5 Stochastic Optimisation

Recall that in the regularised risk functional framework (Section 2.1.5), the com-

putation of the best function f involves minimising the following term:

Rreg(f) =
1

m

m∑
i=1

l(xi, yi, f(xi))︸ ︷︷ ︸
Remp(f)

+λΩ(f). (2.40)

The empirical risk term Remp(f) is expressed as the average over loss terms

l(xi, yi, f(xi)) for the whole training set comprising m data samples {(xi, yi)}mi=1.

We consider the function space F to be the set of functions linearly parameterised

by w ∈ W , that is f(x) := 〈w, φ(x)〉, where W = Rd for linear classifiers or W is

a RKHS for kernel methods. Since each f ∈ F is identified by a corresponding

parameter w, we rewrite the regulariser Ω(f), the regularised risk Rreg(f), the em-

pirical risk Remp(f), and the loss term l(xi, yi, f(xi)) as Ω(w), Rreg(w), Remp(w)

and l(xi, yi, w), respectively. Traditional gradient based optimisation methods

update the parameter w based on the gradient information accumulated over the

whole m training samples. That is, for example in the context of regularised risk

functionals, the following iterative scheme is adopted:

wt+1 ← wt − η
{

1

m

m∑
i=1

∇l(xi, yi, w)|wt + λ∇Ω(w)|wt
}

(2.41)

t← t+ 1,

for appropriately chosen learning rate or stepsize η. This type of optimisation

technique is known as a batch algorithm. For general objective functions, the

gradient descent methods converge to a local optimum or saddle point. For

convex loss functions and regularisers, the above iterative procedure does not

depend on the starting point of the iterates, wt=0. This is due to the property

that at the fixed point of the iterates w∗, the gradient ∇Rreg(w) vanishes. By

the convexity property, this is a sufficient and necessary condition for w∗ to be a

(globally) optimal solution. In Internet setting, datasets can however involve large

numbers of data samples which might make the batch techniques computationally

prohibitive. Batch gradient based methods are also not suited for the situation

where data arrives in a continuous stream and a model needs to be built as data

arrives. In contrast, stochastic gradient based methods (Bottou, 1998) process

small sub-samples (mini-batches) of training samples to calculate the gradient

information, and can be more suited to handle large datasets.
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2.5.1 Stochastic Gradient Descent

We describe the simplest stochastic optimisation algorithm, called Stochastic

Gradient Descent (SGD). Stochastic gradient based methods substitute the reg-

ularised risk Rreg(w) by an instantaneous estimate Rt which is computed from

a mini-batch of size k comprising a subset of samples drawn from the dataset,

{(xti, yti)}ki=1:

Rt(w) =
1

k

k∑
i=1

l(xti, y
t
i , w) + λΩ(w). (2.42)

If we take k = 1, we obtain an algorithm which processes data one at a time as

it arrives.

Algorithm 1 Stochastic Gradient Descent

Input maximum iterations T , batch size k, and parameter τ

Initialize t = 0 and w0 = 0

while t < T do

Choose a k mini-batch data points {(xti, yti)}ki=1

Calculate gradient ∇Rt(w)|wt
Calculate stepsize ηt =

√
τ
τ+t

Update wt+1 ← wt − ηt∇Rt(w)|wt
Set t← t+ 1

end while

Return wT .

The parameter update of SGD then takes the following form:

wt+1 ← wt − ηt∇Rt(w)|wt , (2.43)

where ηt denotes the stepsize at time t. For convex loss and regulariser and for

the stepsize decays as O(1/
√
t), Zinkevich (2003) shows that SGD asymptotically

converges to the true minimiser of R(w). One example is a stepsize of the form

ηt =
√

τ
τ+t

with a tuning parameter τ > 0. Refer to Algorithm 1 for pseudo-codes.

2.6 Non-Convex Optimisation

Many machine learning problems, prominently in the real-world Internet appli-

cation areas, involve non-convex objective functions. Non-convex optimisation
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problems are significantly harder than the convex counterpart as they can have

many local optima and not all of them are global optima. As gradient based

optimisation methods such as in (2.41) converge to a local optimum, the initial

guess or the starting point of the optimisation effort has a significant effect on

the quality of the solution. We describe one algorithm which is applicable when-

ever the objective function can be decomposed explicitly as the difference of two

convex functions.

2.6.1 Convex-ConCave Procedure

The Convex-ConCave Procedure (CCCP) (Yuille & Rangarajan, 2003) works as

follow: for a function f(w) that can be decomposed into the difference of two

convex functions, that is

f(w) = g(w)− h(w), (2.44)

where g and h are convex functions; an upper bound can be found by (linearising)

replacing h with its first order Taylor expansion at w′

f(w) ≤ g(w)− h(w′)− 〈∇h(w)|w′ , w − w′〉 . (2.45)

The CCCP then performs the following iterative scheme on the upper bound

(refer to Algorithm 2 for pseudo-codes):

wt+1 ← arg min
w
{g(w)− h(wt)− 〈w − wt,∇h(w)|wt〉} (2.46)

t← t+ 1,

This upper bound is convex and thus at each iteration of CCCP, a convex opti-

misation problem is solved (provided the feasible set is a convex set).

Algorithm 2 Convex-ConCave Procedure

Input maximum iterations T , initial parameter w0, convex functions g, h

Initialize t = 0

while t < T do

Update wt+1 ← arg min
w
{g(w)− h(wt)− 〈w − wt,∇h(w)|wt〉}

Set t← t+ 1

end while

Return wT .
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Lemma 16 (Monotonically Decreasing Objective Values) Let f be a func-

tion which can be decomposed into the difference of two convex functions g and

h. The sequence f(wt), f(wt+1), . . . generated by the iterative scheme in (2.46) is

monotonically decreasing.

Proof We have

f(wt+1) ≤ g(wt+1)− h(wt)− 〈∇h(w)|wt , wt+1 − wt〉 ≤ g(wt)− h(wt) = f(wt).

(2.47)

The first inequality follows from (2.45), while the second inequality follows from

(2.46). The decomposable property of the function f gives the last equality.

We define a stationary point of a function f as a point where the gradient

vanishes, i.e. ∇f(w) = 0. For non-convex functions, this stationary point could

be a local minimum, a local maximum or a saddle point. The following lemma

shows a relationship between the fixed point of the iterates generated by the iter-

ative scheme in (2.46) and the stationary point of the original objective function

f .

Lemma 17 (Fixed Point of CCCP) A fixed point of the iterates generated by

(2.46) is a stationary point of f .

Proof At each iteration t, the resulting optimisation problem is convex thus the

sufficient condition for wt+1 to be an optimal solution is

∇ (g(w)− h(wt)− 〈w − wt,∇h(w)|wt〉) wt+1 = 0. (2.48)

The above means ∇g(w)|wt+1 = ∇h(w)|wt . Let w∗ be a fixed point of the iterates.

Then ∇g(w)|w∗ = ∇h(w)|w∗ which implies ∇f(w∗) = 0 and therefore w∗ be the

stationary point of the original objective function f .

We could instead directly perform the gradient based technique in (2.41) for

non-convex objective function, however, the CCCP method is arguably more

efficient since it converges to a stationary point without the need to play around

with the learning rate η.

In the DC (difference of convex) programming literature, Dinh & An (1988)

propose a general purpose solver for solving a difference of convex functions where
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g and h are lower semi-continuous convex functions. The class of lower semi-

continuous functions forms a larger class of functions than the class of differen-

tiable functions. Whenever h is differentiable, the algorithm of Dinh & An (1988)

reduces to CCCP.

The following remark implies that the above CCCP is applicable to large class

of optimisation problems (Yuille & Rangarajan, 2003, Theorem 1).

Remark 18 (Difference of Convex Functions) Any function with a bounded

Hessian can always be decomposed into the difference of two convex functions.
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Chapter 3

Estimating Labels from Label

Proportions

Traditionally, different types of learning problems assume different problem set-

tings. In supervised learning, we are given sets of labelled instances. Another

learning type called unsupervised learning focuses on the setting where unlabelled

instances are given. Recently, it has been realised that unlabelled instances when

used in conjunction with a small amount of labelled instances can deliver consider-

able learning performance improvement in comparison to using labelled instances

alone. This leads to a semi-supervised or transduction learning setting.

In this chapter, we introduce a learning setting where groups of unlabelled

instances are given. The number of group is at least as many as number of

classes. Each group is endowed with information on class label proportions. We

called this informative group as aggregate (see Figure 3 for an illustration). The

goal of learning is to predict the labels of another set of observations, possibly

with known label proportions.

This type of learning problem appears in areas like e-commerce, politics, spam

filtering and improper content detection, as we illustrate below.

3.1 Motivating Examples

Assume that an Internet services company wants to increase its profit in sales.

Obviously sending out discount coupons will increase sales, but sending coupons

to customers who would have purchased the goods anyway decreases the margins.

Alternatively, failing to send coupons to customers who would only buy in case of

a discount reduces overall sales. We would like to identify the class of would-be

33
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(a) Supervised Learning (b) Unsupervised Learning

(c) Semi - supervised Learning (d) Learning from Proportions

Figure 3.1: Different types of learning problems (colours encode class la-

bels). 3.1(a) - supervised learning: only labelled instances are given;

3.1(b) - unsupervised learning: only unlabelled instances are given; 3.1(c)

- semi-supervised learning: both labelled and unlabelled instances are given;

3.1(d): learning from proportions: at least as many data aggregates (groups

of data with their associated class label proportions) as there are number of classes

are given.
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customers who are most likely to change their purchase decision when receiving

a coupon. The problem is that there is no direct access to a sample of would-be

customers. Typically only a sample of people who buy regardless of coupons

(those who bought when there was no discount) and a mixed sample (those who

bought when there was discount) are available. The mixing proportions can be

reliably estimated using random assignment to control and treatment groups.

How can we use this information to determine the would-be customers?

Politicians face the same problem. They can rely on a set of always-favourable

voters who will favour them regardless, plus a set of swing voters who will make

their decision dependent on what the candidates offer. Since the candidate’s

resources (finance, ability to make election promises, campaign time) are limited,

it is desirable for them to focus their attention on that part of the demographic

where they can achieve the largest gains. Previous elections can directly reveal the

profile of those who favour regardless, that is those who voted in favour where low

campaign resources were committed. Those who voted in favour where substantial

resources were committed can be either swing voters or always-favourable. So in

a typical scenario there is no separate sample of swing voters.

Likewise, consider the problem of spam filtering. Datasets of spam are likely

to contain almost pure spam (this is achieved e.g. by listing e-mails as spam bait),

while user’s inboxes typically contain a mix of spam and non-spam. We would

like to use the inbox data to improve estimation of spam. In many cases it is

possible to estimate the proportions of spam and non-spam in a user’s inbox much

more cheaply than the actual labels. We would like to use this information to

categorise e-mails into spam and non-spam.

Similarly, consider the problem of filtering images with “improper content”.

Datasets of such images are readily accessible thanks to user feedback, and it is

reasonable to assume that this labelling is highly reliable. However the rest of

images on the Internet (those not labelled) is a far larger dataset, albeit without

labels (after all, this is what we would like to estimate the labels for). That said,

it is considerably cheaper to obtain a good estimate of the proportions of proper

and improper content in addition to having one dataset of images being of likely

improper content. We would like to obtain a classifier based on this information.
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3.2 Problem Definition

In this chapter, we present a method that makes use of the knowledge of label

proportions directly. As motivated by the above examples, our method would be

practically useful in many domains such as identifying potential customers, poten-

tial voters, spam e-mails and improper images. We also prove bounds indicating

that the estimates obtained are close to those from a fully labelled scenario.

Before defining the problem, we emphasise that the formal setting is more

general than the above examples might suggest. More specifically, we may not

require any label to be known, only their proportions within each of the involved

datasets. Also the general problem is not restricted to the binary case but instead

can deal with large numbers of classes. Finally, it is possible to apply our method

to problems where the test label proportions are unknown, too. This simple

modification allows us to use this technique whenever covariate shift via label

bias is present.

Formally, in a learning from proportions setting, we are given n sets of ob-

servations Xi =
{
xi1, . . . , x

i
mi

}
of respective sample sizes mi (calibration set)

i = 1, . . . , n as well as a set X = {x1, . . . , xm} (test set). Moreover, we are given

the fractions πiy of labels y ∈ Y (|Y| ≤ n) contained in each set Xi. These frac-

tions form a full (column) rank mixing matrix, π ∈ Rn×|Y| with the constraint

that each row sums up to 1 and all entries are nonnegative. The marginal prob-

ability p(y) of the test set X may or may not be known. Note that the label

dictionaries Yi do not need to be the same across all sets i (define Y := ∪i Yi)
and we also allow for πiy = 0 if needed. It is our goal to design algorithms which

are able to obtain conditional class probability estimates p(y|x) solely based on

this information.

As an illustration, take the spam filtering example. We have X1 = “mail in

spam box” (only spam) and X2 = “mail in inbox” (spam mixed with non-spam).

Also suppose that we may know the proportion of spam vs non-spam in our inbox

is 1 : 9. That means, we know: π1,spam = 1.0, π1,non−spam = 0, π2,spam = 0.1 and

π2,non−spam = 0.9. The test set X then may be X2 itself, for example. Thus, the

marginal probability of the test set will simply be: p(y = spam) = 0.1, p(y =

non− spam) = 0.9. The goal is to find p(spam|mail) in X. Note that, in general,

our setting is different and more difficult than that of transduction. The latter

requires at least some labelled instances of all classes are given. In the spam

filtering example, we have no pure non-spam instances.

Key to our proposed solution is a conditional independence assumption, x ⊥⊥
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i | y. In other words, we assume that the conditional distribution of x is indepen-

dent of the index i, as long as we know the label y. This is a crucial assumption:

after all, we want the distributions within each class to be independent of which

aggregate they can be found in. If this were not the case it would be impossible

to infer about the distribution on the test set from the (biased) distributions over

the aggregates.

3.3 The Model

Our idea relies on uniform convergence properties of the expectation operator

and of corresponding risk functionals (Altun & Smola, 2006; Dud́ık & Schapire,

2006). In doing so, we are able to design estimators with the same performance

guarantees in terms of uniform convergence as those with full access to the label

information.

At the heart of our reasoning lies the fact that many estimators rely on data

by solving a convex optimisation problem. We begin our exposition by discussing

how this strategy can be employed in the context of exponential families. Subse-

quently we state convergence guarantees and we discuss how our method can be

extended to other estimates such as Csiszar and Bregman divergences and other

function spaces.

3.3.1 Exponential Families

Denote by X the space of observations and let Y be the space of labels. Moreover,

let φ(x, y) : X×Y → H be a feature map into a Reproducing Kernel Hilbert Space

(RKHS) F with kernel k((x, y), (x′, y′)). In this case we may state conditional

exponential models via

p(y|x, θ) = exp (〈φ(x, y), θ〉 − g(θ|x)) with g(θ|x) = log
∑
y∈Y

exp 〈φ(x, y), θ〉 ,

(3.1)

where the normalisation g is called the log-partition function, often referred to

as the cumulant generating function. Note that while in general there is no need

for Y to be discrete, we make this simplifying assumption in order to be able to

reconstruct the class probabilities efficiently. For {(xi, yi)} drawn i.i.d. from a
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distribution p(x, y) on X × Y the conditional log-likelihood is given by

log p(Y |X, θ) =
m∑
i=1

[〈φ(xi, yi), θ〉 − g(θ|xi)] = m 〈µXY , θ〉 −
m∑
i=1

g(θ|xi) (3.2)

where the empirical mean in feature space µXY is defined as in Table 3.1. In

order to avoid overfitting one commonly maximises the log-likelihood penalised

by a prior p(θ). This means that we need to solve the following optimisation

problem

θ∗ := argmin
θ

[− log{p(Y |X, θ)p(θ)}] . (3.3)

For instance, for a Gaussian prior on θ, i.e. for

− log p(θ) = λ ‖θ‖2 + const. (3.4)

we have

θ∗ = argmin
θ

[
m∑
i=1

g(θ|xi)−m 〈µXY , θ〉+ λ ‖θ‖2

]
. (3.5)

The problem is that in our setting we do not know the labels yi, so the sufficient

statistics µXY cannot be computed exactly. Note, though that the only place

where the labels enter the estimation process is via the mean µXY . Our strategy

is to exploit the fact that this quantity, however, is statistically well behaved

and converges under relatively mild technical conditions at rate O(m−
1
2 ) to its

expected value

µxy := E(x,y)∼p(x,y)[φ(x, y)], (3.6)

as will be shown in Theorem 21. Our goal therefore will be to estimate µxy and

use it as a proxy for µXY , and only then solve (3.5) with the estimated µ̂XY

instead of µXY . We will discuss explicit convergence guarantees in Section 3.5

after describing how to compute the mean operator in detail.

3.3.2 Estimating the Mean Element

In order to obtain θ∗ we would need µXY , which is impossible to compute exactly,

since we do not have the labels Y . However, we know that µXY converges to µxy.

Hence, if we are able to approximate µxy then this, in turn, will be a good estimate

for µXY .
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Table 3.1: Major quantities of interest

Numbers on the left represent the order in which the corresponding quantity is

computed in the algorithm (letters denote the variant of the algorithm: ‘a’ for

general feature map φ(x, y) and ‘b’ for factorising feature map φ(x, y) = ψ(x)⊗
ϕ(y)). Lowercase subscripts refer to model expectations, uppercase subscripts

are sample averages.

Expectations with respect to the model:

µxy := E(x,y)∼p(x,y)[φ(x, y)]

µclass
x [y, y′] := E(x)∼p(x|y)[φ(x, y′)]

µset
x [i, y′] := E(x)∼p(x|i)[φ(x, y′)]

µclass
x [y] := E(x)∼p(x|y)[ψ(x)]

µset
x [i] := E(x)∼p(x|i)[ψ(x)]

Expectations with respect to data:

µXY := 1
m

∑m
i=1 φ(xi, yi)

(1a) µset
X [i, y′] := 1

mi

∑
x∈Xi φ(x, y′) (known)

(1b) µset
X [i] := 1

mi

∑
x∈Xi ψ(x) (known)

Estimates:

(2) µ̂class
x = (π>π)−1π>µset

X

(3a) µ̂XY =
∑

y∈Y p(y)µ̂class
x [y, y]

(3b) µ̂XY =
∑

y∈Y p(y)ϕ(y)⊗ µ̂class
x [y]

(4) θ̂∗ solution of (3.5) for µXY = µ̂XY .

Our quest is therefore as follows: express µxy as a linear combination over

expectations with respect to the distributions on the datasets X1, . . . , Xn (where

n ≥ |Y|). Secondly, show that the expectations of the distributions having gen-

erated the sets Xi (µset
x [i, y′], see Table 3.1), can be approximated by empirical

means (µset
X [i, y′], see Table 3.1). Finally, we need to combine both steps to provide

guarantees for µXY .

It will turn out that in certain cases some of the algebra can be sidestepped,

in particular whenever we may be able to identify several sets with each other

(e.g. the test set X is one of the calibration datasets Xi) or whenever φ(x, y)

factorizes into ψ(x)⊗ ϕ(y). We will discuss these simplifications in Section 3.4.
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Mean Element Since µxy is a linear operator mapping p(x, y) into a Hilbert

Space we may expand µxy via

µxy = E(x,y)∼p(x,y)[φ(x, y)] =
∑
y∈Y

p(y)Ex∼p(x|y)[φ(x, y)] =
∑
y∈Y

p(y)µclass
x [y, y] (3.7)

where the shorthand µclass
x [y, y] is defined in Table 3.1. This means that if we

were able to compute µclass
x [y, y] we would be able to “reassemble” µxy from its

individual components. We now show that µclass
x [y, y] can be estimated directly.

Our conditional independence assumption, p(x|y, i) = p(x|y), yields the fol-

lowing:

p(x|i) =
∑
y

p(x|y, i)p(y|i) =
∑
y

p(x|y)πiy. (3.8)

In the above equation, we form a mixing matrix π with the element πiy = p(y|i).
This allows us to define the following means

µset
x [i, y′] := Ex∼p(x|i)[φ(x, y′)]

(3.8)
=
∑
y

πiyµ
class
x [y, y′].

Note that in order to compute µset
x [i, y′] we do not need any label information

with respect to p(x|i). It is simply the expectation of φ(·, y′) on the distribution

of bag i. However, since we have at least |Y| of those equations and we assumed

that π has full column rank, they allow us to solve a linear system of equations

and compute µclass
x [y, y] from µset

x [i, y′] for all i. In shorthand we may use

µset
x = πµclass

x and hence µclass
x = (π>π)−1π>µset

x (3.9)

to compute µclass
x [y, y] for all y ∈ Y . With some slight abuse of notation we have

µclass
x and µset

x represent the matrices of terms µclass
x [y, y′] and µset

x [i, y′] respectively.

There will be as many matrices as the dimensions of φ(x, y), thus (3.9) has to be

solved separately for each dimension of φ(x, y).

Obviously we cannot compute µset
x [i, y′] explicitly, since we only have samples

from p(x|i). However the same convergence results governing the convergence of

µXY to µxy also hold for the convergence of µset
X [i, y′] to µset

x [i, y′]. Hence we may

use the empirical average µset
X [i, y′] as the estimate for µset

x [i, y′] and from that find

an estimate for µXY .

Big Picture Overall, our strategy is as follows: use empirical means on the

bags Xi to approximate expectations with respect to the bag distribution. Use
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Algorithm 3 Learning from Label Proportions

Input datasets X, {Xi}, probabilities πiy and p(y)

for i = 1 to n and y′ ∈ Y do

Compute empirical means µset
X [i, y′]

end for

Compute µ̂class
x = (π>π)−1π>µset

X

Compute µ̂XY =
∑

y∈Y p(y)µ̂class
x [y, y]

Solve the minimisation problem

θ̂∗ = argmin
θ

[
m∑
i=1

g(θ|xi)−m 〈µ̂XY , θ〉+ λ ‖θ‖2

]

Return θ̂∗.

the latter to compute expectations with respect to a given label, and finally, use

the means conditional on the label distribution to obtain µxy which is a good

proxy for µXY (see Algorithm 3).

µset
X [i, y′] −→ µset

x [i, y′] −→ µclass
x [y, y′] −→ µxy −→ µXY

For the first and last step in the chain we can invoke uniform convergence results.

The remaining two steps in the chain follow from linear algebra. As we shall

see, whenever there are considerably more bags than classes we can exploit the

overdetermined system to our advantage to reduce the overall estimation error

and use a rescaled version of (3.9).

3.4 Special Cases

In some cases the calculations described in Algorithm 3 can be carried out more

efficiently. They arise whenever the matrix π has special structure or whenever

the test set and one of the training sets coincide. Moreover, we may encounter

situations where the fractions of observations in the test set are unknown and we

would like, nonetheless, to find a good proxy for µXY .

3.4.1 Minimal number of sets

Assuming that |Y| = n and that π has full rank it follows that (π>π)−1π> = π−1.

Hence we can obtain the proxy for µXY more directly via µclass
x = π−1µset

x .
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3.4.2 Testing on one of the calibration sets

Note that there is no need for requiring that the test set X be different from one

of the calibration sets (vide example in Problem Definition). In particular, when

X = Xi the uncertainty in the estimate of µXY can be greatly reduced provided

that the estimate of µXY as given in (3.9) contains a large fraction of the mean

of at least one of the classes. We will discuss this situation in more detail when

it comes to binary classification since there the advantages will be most obvious.

3.4.3 Special feature map

Whenever the feature map φ(x, y) factorises into ψ(x) ⊗ ϕ(y) we can simplify

calculation of the means considerably. More specifically, instead of estimating

O(|Y| · n) parameters we only require calculation of O(n) terms. The reason for

this is that we may pull the dependency on y out of the expectations. Defining

µclass
x [y], µset

x [i], and µset
X [i] as in Table 3.1 allows us to simplify

µ̂XY =
∑
y∈Y

p(y)ϕ(y)⊗ µ̂class
x [y] where µ̂class

x = (π>π)−1π>µset
X . (3.10)

Here the last equation is understood to apply to the vector of means µx :=

(µ[1], . . . , µ[n]) and µX accordingly. A significant advantage of (3.10) is that we

only need to perform O(n) averaging operations rather than O(n · |Y|). Obviously

the cost of computing (π>π)−1π> remains unchanged but the latter is negligible

compared to the operations in Hilbert Space. Note that ψ(x) ∈ RD denotes

an arbitrary feature representation of the inputs, which in many cases can be

defined implicitly via a kernel function. As the joint feature map φ(x, y) factorises

into ψ(x) ⊗ ϕ(y), we can write the inner product in the joint representation

as 〈φ(x, y), φ(x′, y′)〉 = 〈ψ(x), ψ(x′)〉 〈ϕ(y), ϕ(y′)〉 = k(x, x′)k(y, y′). In general,

the kernel function on inputs and labels can be different. Specifically, for a

label diagonal kernel k(y, y′) = δ(y, y′), the standard winner-takes-all multiclass

classification is recovered (Tsochantaridis et al., 2005). With this setting, the

input feature ψ(x) can be defined implicitly via a kernel function by invoking the

Representer Theorem (Theorem 6).

3.4.4 Binary classification

One may show (Hofmann et al., 2008) that the feature map φ(x, y) takes on a

particularly appealing form of φ(x, y) = yψ(x) where y ∈ {±1}. This follows
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since we can always re-calibrate 〈φ(x, y), θ〉 by an offset independent of y such

that φ(x, 1) + φ(x,−1) = 0.

If we moreover assume that X1 only contains class 1 and X2 = X contains a

mixture of classes with labels 1 and −1 with proportions p(1) =: ρ and p(−1) =

1− ρ respectively, we obtain the mixing matrix

π =

[
1 0

ρ 1− ρ

]
⇒ π−1 =

[
1 0
−ρ
1−ρ

1
1−ρ

]

Plugging this into (3.10) yields

µ̂XY = ρµset
X [1]− (1− ρ)

[
−ρ
1−ρµ

set
X [1] + 1

1−ρµ
set
X [2]

]
= 2ρµset

X [1]− µset
X [2]. (3.11)

Consequently, taking a simple weighted difference between the averages on two

sets, e.g. one set containing spam whereas the other one containing an unlabelled

mix of spam and non-spam, allows one to obtain the sufficient statistics needed

for estimation.

3.4.5 Overdetermined Systems

Assume that we have significantly more bags n than class labels |Y|, possibly with

varying numbers of observations mi per bag. In this case it would make sense to

find a weighting of the bags such that those which are largest and most relevant

for the test set are given the highest degree of importance. Instead of stating the

problem as one of solving a linear system we now restate it as one of solving an

approximation problem. To simplify notation we assume that the feature map

factorises, i.e. that φ(x, y) = ψ(x)⊗ ϕ(y). A weighted linear combination of the

squared discrepancy between the class means and the set means is given by

minimise
µclass
x

n∑
i=1

wi

∥∥∥∥∥µset
X [i]−

∑
y∈Y

πiyµ
class
x [y]

∥∥∥∥∥
2

(3.12)

where wi are some previously chosen weights which reflect the importance of each

bag. Typically we might choose wi = O(m
− 1

2
i ) to reflect the fact that convergence

between empirical means and expectations scales with O(m−
1
2 ). Before we discuss

specific methods for choosing a weighting, let us review the statistical properties

of the estimator.
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Remark 19 (Underdetermined Systems) Similarly, when we have less bags

n than class labels |Y|, we can state the problem as one of solving a regularised

least squares problem as follows

minimise
µclass
x

n∑
i=1

∥∥∥∥∥µset
X [i]−

∑
y∈Y

πiyµ
class
x [y]

∥∥∥∥∥
2

+ λΩ(µclass
x [y] ∀ y ∈ Y) (3.13)

For example, we can let Ω(µclass
x [y]∀ y ∈ Y) =

∑
y∈Y

∥∥µclass
x [y]− µclass

x [y + 1]
∥∥2

.

This makes sense whenever different labels have related means µclass
x [y].

3.5 Convergence Bounds

The obvious question is how well µ̂XY manages to approximate µXY and secondly,

how badly any error in estimating µXY would affect the overall quality of the solu-

tion. We approach this problem as follows: first we state the uniform convergence

properties of µXY and similar empirical operators relative to µxy. Secondly, we

apply those bounds to the cases discussed above, and thirdly, we show that the

approximate minimiser of the log-posterior has a bounded deviation from what

we would have obtained by knowing µXY exactly. Much of the reasoning follows

the ideas of Altun & Smola (2006).

3.5.1 Uniform Convergence for Mean Elements

An important tool in studying uniform convergence properties of random vari-

ables are Rademacher averages (Ledoux & Talagrand, 1991; Mendelson, 2002).

They are needed to state the key results in our context.

Definition 20 (Rademacher Averages) Let X be a domain and p a distribu-

tion on X and assume that X := {x1, . . . , xm} is drawn iid from p. Moreover, let

F be a class of functions X → R. Furthermore denote by σi Rademacher random

variables, i.e. {±1} valued with zero mean. The Rademacher average is

Rm(F , p) := EXEσ

[
sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

σif(xi)

∣∣∣∣∣
]
. (3.14)

This quantity measures the flexibility of the function class F — in our case linear

functions in φ(x, y). In other words, the Rademacher average measure the ability

of the function class to predict random labels. Thus, choosing a function class

with low Rademacher average lowers the chance of detecting spurious pattern.

Altun & Smola (2006) state the following result:
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Theorem 21 (Convergence of Empirical Means) Denote by φ : X → B a

map into a Banach space B, denote by B∗ its dual space and let F the class of

linear functions on B with bounded B∗ norm by 1. Let R > 0 such that for all

f ∈ F we have |f(x)| ≤ R. Moreover, assume that X is an m-sample drawn

from p on X . For ε̄ > 0 we have that with probability at least 1− exp(−ε̄2m/R2)

the following holds:

‖µX − µx‖B ≤ 2Rm(F , p) + ε̄ (3.15)

Theorem 22 (Bartlett & Mendelson (2002)) Whenever B is a Reproducing

Kernel Hilbert Space with kernel k(x, x′) the Rademacher average can be bounded

from above by Rm(F) ≤ m−
1
2 [Ex[k(x, x)]]

1
2

Our approximation error can be bounded as follows. From the triangle inequality

we have:

‖µ̂XY − µXY ‖ ≤ ‖µ̂XY − µxy‖+ ‖µxy − µXY ‖ .
For the second term we may employ Theorem 21 directly. To bound the first

term note that by linearity

ε := µ̂XY − µxy =
∑
y

p(y)
[
(π>π)−1π>ε̂

]
y,y

(3.16)

where we define the “matrix” of coefficients

ε̂ [i, y′] := µset
x [i, y′]− µset

X [i, y′]. (3.17)

In the more general case of overdetermined systems we have

ε =
∑
y

p(y)
[
(π>Wπ)−1π>Wε̂

]
y,y

(3.18)

Now note that all ε̂ [i, y′] also satisfy the conditions of Theorem 21 since the

sets Xi are drawn iid from the distributions p(x|i) respectively. We may bound

each term individually in this fashion and subsequently apply the union bound

to ensure that all n · |Y| components satisfy the constraints. Hence each of the

terms needs to satisfy the constraint with probability 1 − δ/(n|Y|) to obtain an

overall bound with probability 1− δ. To obtain bounds we would need to bound

the linear operator mapping ε̂ into ε.

Note that this statement can be improved since all errors ε̂[i, y′] and ε̂[j, y′]

for i 6= j are independent of each other simply by the fact that each bag Xi was

sampled independently from the other. We will discuss this in the context of

choosing a practically useful value of W below.
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3.5.2 Special Cases

A closed form solution in the general case is not particularly useful since it de-

pends heavily on the kernel k, the mixing proportions π and the class probabilities

on the test set. However, for a number of special cases it is possible to provide

more detailed explicit analysis: firstly the situation where φ(x, y) = ψ(x)⊗ ϕ(y)

and secondly, the binary classification setting where φ(x, y) = yψ(x) and X2 = X,

where much tighter bounds are available.

Special feature map with full rank

Here we only need to deal with n rather than with n × |Y| empirical estimates,

i.e. µset
X [i] vs. µset

X [i, y′]. Hence (3.16) and (3.17) specialise to

ε =
∑
y

p(y)
n∑
i=1

ϕ(y)⊗ [(π>π)−1π>
]
yi
ε̂[i] (3.19)

ε̂ [i] := µset
x [i]− µset

X [i]. (3.20)

Assume that with high probability each ε̂[i] satisfies ‖ε̂[i]‖ ≤ ci (we will deal with

the explicit constants ci later). Moreover, assume for simplicity that |Y| = n and

that π has full rank (otherwise we need to follow through on our expansion using

(π>π)−1π> instead of π−1). This implies that

‖ε‖2 =
∑
i,j

〈ε̂[i], ε̂[j]〉 ×
∑
y,y′

p(y)p(y′)k(y, y′)
[
π−1
]
yi

[
π−1
]
y′j

≤
∑
i,j

cicj

∣∣∣[π−1
]>
Ky,pπ−1

∣∣∣
ij

(3.21)

where Ky,p
y,y′ = k(y, y′)p(y)p(y′). Combining several bounds we have the following

theorem:

Theorem 23 Assume that we have n sets of observations Xi of size mi, each of

which drawn from distributions with probabilities πiy of observing data with label y.

Moreover, assume that k((x, y), (x′, y′)) = k(x, x′)k(y, y′) ≥ 0 where k(x, x) ≤ 1

and k(y, y) ≤ 1. Finally, assume that m = |X|. In this case the mean element

µXY can be estimated by µ̂XY with probability at least 1− δ with precision

‖µXY − µ̂XY ‖ ≤
[
2 +

√
log((n+ 1)/δ)

]
×
[
m−

1
2 +

[∑
i,j

m
− 1

2
i m

− 1
2

j

∣∣∣[π−1
]>
Ky,pπ−1

∣∣∣
ij

] 1
2
]
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Proof We begin our argument by noting that both for φ(x, y) and for ψ(x) the

corresponding Rademacher averages Rm for functions of RKHS norm bounded

by 1 is bounded by m−
1
2 . This is a consequence of all kernels being bounded by

1 in Theorem 22 and k ≥ 0.

Next note that in Theorem 21 we may set R = 1, since for ‖f‖ ≤ 1 and

k((x, y), (x, y)) ≤ 1 and k(x, x) ≤ 1 it follows from the Cauchy Schwartz inequal-

ity that |f(x)| ≤ 1. Solving δ ≤ exp−mε2 for ε yields ε ≤ m−
1
2

[
2 +

√
log (1/δ)

]
.

Finally, note that we have n + 1 deviations which we need to bound: one

between µXY and µxy, and n for each of the ε[i] respectively. Dividing the failure

probability δ into n+1 cases yields bounds of the formm−
1
2

[
2 +

√
log ((n+ 1)/δ)

]
and m

− 1
2

i

[
2 +

√
log ((n+ 1)/δ)

]
respectively. Plugging all error terms into (3.21)

and summing over terms yields the claim and substituting this back into the tri-

angle inequality proves the claim.

Binary Classification

Next we consider the special case of binary classification where X2 = X. Using

(3.11) we see that the corresponding estimator is given by

µ̂XY = 2ρµset
X [1]− µset

X [2]. (3.22)

Since µ̂XY shares a significant fraction of terms with µXY we are able to obtain

tighter bounds as follows:

Theorem 24 With probability 1− δ (for 1 > δ > 0) the following bound holds:

‖µ̂XY − µXY ‖ ≤ 2ρ
[
2 +

√
log(2/δ)

] [
m
− 1

2
1 +m

− 1
2

+

]
m+ is the number of observations with y = 1 in X2.

Proof Denote by µ[X+] and µ[X−] the averages over the subsets of X2 with

positive and negative labels respectively. By construction we have that

µXY = ρµ[X+]− (1− ρ)µ[X−]; µ̂XY = 2ρµset
X [1]− ρµ[X+]− (1− ρ)µ[X−]

Taking the difference yields 2ρ [µset
X [1]− µ[X+]]. To prove the claim note that we

may use Theorem 21 both for
∥∥µset

X [1]− Ex∼p(x|y=1)[ψ(x)]
∥∥ and

for
∥∥µ[X+]− Ex∼p(x|y=1)[ψ(x)]

∥∥. Taking the union bound and summing over

terms proves the claim.

The bounds we provided show that µ̂XY converges at the same rate to µxy as

µXY does, assuming that the sizes of the sets Xi increase at the same rate as X.
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Overdetermined Systems

Given the optimal value of weighting W , the class mean can be reconstructed

as a solution of a weighted least square problem in (3.12) and this minimiser is

given by

µ̂class
x = (π>Wπ)−1π>Wµset

X where W = diag(w1, . . . , wn) and wi > 0. (3.23)

It is easy to see that whenever n = |Y| and π has full rank there is only one

possible solution regardless of the choice of W . For overdetermined systems the

choice of W may greatly affect the quality of the solution and it is therefore

desirable to choose a weighting which minimises the error in estimating µXY .

In choosing a weighting, we may take advantage of the fact that the errors

ε̂[i] are independent for all i. This follows from the fact that all bags are drawn

independently of each other. Moreover, we know that E[ε̂[i]] = 0 for all i. Finally

we make the assumption that k(y, y′) = δ(y, y′), that is, that the kernel in the

labels is diagonal. In this situation our analysis is greatly simplified and we have:

ε =
∑
y

ϕ(y)⊗ p(y)(π>Wπ)−1πWε̂ (3.24)

and hence E
[‖ε‖2] =

n∑
i=1

∑
y

E
[‖ε̂[i]‖2]W 2

ii

[
π>i (π>Wπ)−1

]2
y
p2(y) (3.25)

Using the assumption that E
[‖ε̂[i]‖2] = O(m−1

i ) we may find a suitable scale of

the weight vectors by minimising

n∑
i=1

∑
y

W 2
ii

mi

[
π>i (π>Wπ)−1

]2
y
p2(y) (3.26)

with respect to the diagonal matrix W . Note that the optimal value of W depends

both on the mixtures of the bags πi and on the propensity of each class p(y). That

is, being able to well estimate a class which hardly occurs at all is of limited value.

3.5.3 Stability Bounds

To complete our reasoning we need to show that our bounds translate into guar-

antees in terms of the minimiser of the log-posterior. In other words, estimates

using the correct mean µXY vs. its estimate µ̂XY do not differ by a significant

amount. For this purpose we make use of (Altun & Smola, 2006, Lemma 17).
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Lemma 25 Denote by f a convex function on H and let µ, µ̂ ∈ H. Moreover let

λ > 0. Finally denote by θ∗,∈ H the minimiser of

L(θ, µ) := f(θ)− 〈µ, θ〉+ λ ‖θ‖2 (3.27)

with respect to θ and θ̂∗ the minimiser of L(θ̂, µ̂) respectively. In this case the

following inequality holds: ∥∥θ∗ − θ̂∗∥∥ ≤ λ−1 ‖µ− µ̂‖ . (3.28)

This means that a good estimate for µ immediately translates into a good estimate

for the minimiser of the approximate log-posterior. This leads to the following

bound on the risk minimiser.

Corollary 26 The deviation between θ∗, as defined in (3.3) and θ̂∗, the min-

imiser of the approximate log-posterior using µ̂XY rather than µXY , is bounded

by O(m−
1
2 +

∑
im
− 1

2
i ).

Finally, we may use (Altun & Smola, 2006, Theorem 16) to obtain bounds on

the quality of θ̂∗ when considering how well it minimises the true negative log-

posterior. Using the bound

L(θ̂∗, µ)− L(θ∗, µ) ≤ ∥∥θ̂∗ − θ∗∥∥ ‖µ̂− µ‖ (3.29)

yields the following bound for the log-posterior:

Corollary 27 The minimiser θ̂∗ of the approximate log-posterior using µ̂XY rather

than µXY incurs a penalty of at most λ−1 ‖µ̂XY − µXY ‖2.

3.5.4 Stability Bounds under Perturbation

Denote 1 ∈ {1}|Y| as the vector of all ones and 0 ∈ {0}|Y| as the vector of all

zeros. Let ∆ be the perturbation matrix such that the perturbed mixing matrix

π̃ is related to the original mixing matrix π by π̃ = π + ∆. Note that the

perturbed mixing matrix π̃ still needs to have non-negative entries and each row

sums up to 1, π̃1 = 1. The stochasticity constraint on the perturbed mixing

matrix imposes special structure on the perturbation matrix, i.e. each row of

perturbation matrix must sum up to 0, ∆1 = 0. Let θ̂∗ be the minimiser of (3.5)

with mean µ̂XY approximated via mixing matrix π. Similarly, define θ̃∗ for µ̃XY

with mixing matrix π̃. We would like to bound the distance
∥∥∥θ̂∗ − θ̃∗∥∥∥ between

the minimisers. Our perturbation bound relies on Lemma 25 and on the fact that

we can bound the errors made in computing an (pseudo-) inverse of a matrix:
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Lemma 28 (Stability of Inverses) For any matrix norm ‖.‖ and full rank

matrices π and π + ∆, the error between the inverses of π and π + ∆ is bounded

by ∥∥π−1 − (π + ∆)−1
∥∥ ≤ ∥∥π−1

∥∥∥∥(π + ∆)−1
∥∥ ‖∆‖ . (3.30)

Proof We use the following identity π−1 − (π + ∆)−1 = (π + ∆)−1∆π−1. The

identity can be shown by left multiplying both sides of equation with (π +

∆). Finally, by submultiplicative property of a matrix norm, the inequality

‖π−1∆(π + ∆)−1‖ ≤ ‖π−1‖ ‖∆‖ ‖(π + ∆)−1‖ follows.

Theorem 29 (Stability of Pseudo-Inverses: Wedin (1973)) For any uni-

tarily invariant matrix norm ‖.‖ and full column rank matrices π and π+ ∆, the

error between the pseudo-inverses of π and π + ∆ is bounded by∥∥π† − (π + ∆)†
∥∥ ≤ µ

∥∥π†∥∥
σ∞

∥∥(π + ∆)†
∥∥
σ∞ ‖∆‖ , (3.31)

where µ denotes a scalar constant depending on the matrix norm, ‖.‖σ∞ de-

notes the spectral norm of a matrix, and the pseudo-inverse π† defined as π† :=

(π>π)−1π>.

Proof See (Wedin, 1973, Theorem 4.1) for a proof.

Remark 30 For full rank matrices, the constant term µ in Theorem 29 is equal

to unity regardless of the matrix norm considered (Wedin, 1973).

First, we would like to bound the difference between µ̂XY and µ̃XY , i.e. εp :=

µ̂XY − µ̃XY . For the special feature map with full rank, this translates to

εp =
∑
y

p(y)
n∑
i=1

ϕ(y)⊗ [π−1 − π̃−1
]
yi
µset
X [i] (3.32)

‖εp‖2 =
∑
i,j

〈
µset
X [i], µset

X [j]
〉× [(π−1 − π̃−1)>Ky,p(π−1 − π̃−1)

]
ij
. (3.33)

Lemma 31 Define Ky,p := V >y,pVy,p. With the spectral norm ‖.‖σ∞ and a full

rank mixing matrix π, the following bound holds:

‖µ̂XY − µ̃XY ‖σ∞ ≤ ‖Vy,p‖σ∞
∥∥π−1

∥∥
σ∞ ‖∆‖σ∞

∥∥(π + ∆)−1
∥∥
σ∞

[∑
i,j

〈
µset
X [i], µset

X [j]
〉] 1

2

.

(3.34)
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Proof We first upper bound
[
(π−1 − π̃−1)>Ky,p(π−1 − π̃−1)

]
ij

by∥∥(π−1 − π̃−1)>Ky,p(π−1 − π̃−1)
∥∥
σ∞. We factorize Ky,p as V >y,pVy,p since Ky,p is a

positive (semi-) definite matrix. The element Ky,p
y,y′ = k(y, y′)p(y)p(y′) is obtained

by multiplying a kernel k(y, y′) with a rank-one kernel k′(y, y′) = p(y)p(y′) where p

is a positive function. This conformal transformation preserves the positive (semi-

) definiteness ofKy,p (Schölkopf & Smola, 2002). Thus,
∥∥(π−1 − π̃−1)>Ky,p(π−1 − π̃−1)

∥∥
σ∞ ≤

‖Vy,p(π−1 − π̃−1)‖2

σ∞ ≤[‖Vy,p‖σ∞ ‖(π−1 − π̃−1)‖σ∞
]2 ≤ [‖Vy,p‖σ∞ ‖π−1‖σ∞ ‖∆‖σ∞ ‖(π + ∆)−1‖σ∞

]2
. The

last inequality follows directly from Lemma 28.

Corollary 32 Define Ky,p := V >y,pVy,p. With the spectral norm ‖.‖σ∞ and a full

column rank mixing matrix π, the following bound holds:

‖µ̂XY − µ̃XY ‖σ∞ ≤
√

2 ‖Vy,p‖σ∞
∥∥π†∥∥

σ∞ ‖∆‖σ∞
∥∥(π + ∆)†

∥∥
σ∞

[∑
i,j

〈
µset
X [i], µset

X [j]
〉] 1

2

.

(3.35)

Proof Similar to Lemma 31 with the constant factor µ in Theorem 29 equals to√
2 for a spectral norm.

Combining Lemma 31 for the full rank mixing matrix case (or Corollary 32

for the full column rank mixing matrix case) with Lemma 25, we are ready to

state the stability bound under perturbation:

Lemma 33 (Stability Bound under Perturbation) The distance εs between

the two minimisers, θ̂∗ and θ̃∗, is bounded by

εs ≤ λ−1 ‖µ̂XY − µ̃XY ‖ . (3.36)

It is clear from (3.34) and (3.35) that the stability of our algorithm under per-

turbation will depend on the size of the perturbation and on the behaviour

of the (pseudo-) inverse of the perturbed mixing matrix. Note that by the

triangle inequality, the distance in (3.28) can be decomposed as
∥∥∥θ∗ − θ̂∗∥∥∥ ≤∥∥∥θ∗ − θ̃∗∥∥∥+

∥∥∥θ̃∗ − θ̂∗∥∥∥ and the second term in RHS vanishes whenever the size of

perturbation ∆ is zero.
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3.6 Extensions

3.6.1 Function Spaces

Note that our analysis so far focused on a specific setting, namely maximum-a-

posteriori analysis in exponential families. While this is a common and popular

setting, the derivations are by no means restricted to this. We have the entire class

of (conditional) models described by Altun & Smola (2006); Dud́ık & Schapire

(2006) at our disposition. They are characterised via

minimise
p

−H(p) subject to ‖Ez∼p [φ(z)]− µ‖ ≤ ε

Here p is a distribution, H is an entropy-like quantity defined on the space of

distributions, and φ(z) is some evaluation map into a Banach space. This means

that the optimisation problem can be viewed as an approximate maximum en-

tropy estimation problem, where we do not enforce exact moment matching of µ

but rather allow ε slack. In both Altun & Smola (2006) and Dud́ık & Schapire

(2006) the emphasis lay on unconditional density models: the dual of the above

optimisation problem. In particular, it follows that for H being the Shannon-

Boltzmann entropy, the dual optimisation problem is the maximum a posteriori

estimation problem, which is what we are solving here.

In the conditional case, p denotes the collection of probabilities p(y|xi) and the

operator Ez∼p [φ(z)] = 1
m

∑m
i=1 Ey|p(y|xi) [φ(xi, y)] is the conditional expectation

operator on the set of observations. Finally, µ = 1
m

∑m
i=1 φ(xi, yi), that is, it

describes the empirical observations. We have two design parameters:

Function Space

Depending on which Banach Space norm we may choose to measure the deviation

between µ and its expectation with respect to p in terms of e.g. the `2 norm, the `1

norm or the `∞ norm. The latter leads to sparse coding and convex combinations.

This means that instead of solving an optimisation problem of the form of (3.5)

we would minimise expression of the form
m∑
i=1

g(θ|xi)−m 〈µXY , θ〉+ λ ‖θ‖pB∗ (3.37)

where p ≥ 1 and B∗ is the Banach space of the natural parameter θ which is

dual to the space B associated with the evaluation functionals φ(x, y). The most

popular choice for B∗ is `1 which leads to sparse coding (Candes & Tao, 2005;

Chen et al., 1995).
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Entropy and Regularity

Depending on the choice of entropy and divergence functionals we obtain a range

of diverse estimators. For instance, if we were to choose the unnormalized entropy

instead of the entropy, we would obtain algorithms more akin to boosting. We

may also use Csiszar and Bregmann divergences. The key point is that our

reasoning of estimating µXY based on an aggregate of samples with unknown

labels but known label proportions is still applicable.

3.6.2 Unknown test label proportions

In many practical applications we may not actually know the label proportions

on the test set. For instance, when deploying the algorithm to assess the spam

in a user’s mailbox we will not know what the fraction would be. Nor is it likely

that the user would be willing or able or trustworthy enough to provide a reliable

estimate. This means that we need to estimate those proportions in addition to

the class means µclass
x .

We may use a fairly straightforward simplification of the covariate shift correc-

tion procedure of Huang et al. (2007) in this context. The basic idea is to exploit

the fact that there the map p(x) → µ[p(x)] = Ex[ψ(x)] is injective for universal

kernels (Section 2.1.4). This means that as long as the conditional distributions

p(x|y) are different for different choices of y we will be able to recover the test

label proportions by the simple procedure of minimising the distance between

µ[p] and
∑

y αyµ[p(x|y)]. While we may not have access to the true expectations

we are still able to estimate µclass
x [y] for all y ∈ Y . This leads to the optimisation

problem

minimise
α

∥∥∥∥∥ 1

m

m∑
i=1

ψ(xi)−
∑
y∈Y

αyµ
class
X [y]

∥∥∥∥∥
2

(3.38)

subject to αy ≥ 0 and
∑
y∈Y

αy = 1. (3.39)

Here the sum is taken over the elements of the test set, that is xj ∈ X. Very

similar bounds to those by Huang et al. (2007) can be obtained and they are

omitted for the sake of brevity as the reasoning is essentially identical.

Note that obviously (3.38) may be used separately from the previous discus-

sion, that is, when the training proportions are known but the test proportions

are not. However, we believe that the most significant benefit is obtained in
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using both methods in conjunction since many practical situations exhibit both

problems simultaneously.

3.7 Related Work and Alternatives

While being highly relevant in practice, the problem has not seen as much atten-

tion by researchers as one would expect. Some of the few works which cover a

related subject are those by Chen et al. (2006); Musicant et al. (2007), and by

Kück & de Freitas (2005). We hope that our work will stimulate research in this

area (for example, Rüping (2010)) as relevant problems are fairly widespread.

Transduction

In transduction one attempts to solve a related problem: the patterns xi on the

test set are known, usually also some label proportions on the test set are known

but obviously the actual labels on the test set are not known. One way of tackling

this problem is to perform transduction by enforcing a proportionality constraint

on the unlabelled data, e.g. via a Gaussian Process model (Gärtner et al., 2006;

Mann & McCallum, 2007).

At first glance these methods might seem applicable for our problem but they

do require that we have at least some labelled instances of all classes at our

disposition which need to be drawn in an unbiased fashion. This is clearly not

the case in our setting. That said, it is well possible to use our setting in the

context of transduction, that is, to replace the unknown mean µtest
XY on the test set

by the empirical estimate on the training set. Such strategies lead to satisfactory

performance on par with (albeit not exceeding) existing transduction approaches.

Self consistent proportions

Kück & de Freitas (2005) introduced a more informative variant of the binary

multiple-instance learning, in which groups of instances are given along with

estimates of the fraction of positively-labelled instances per group. The authors

build a fully generative model of the process which determines the assignment of

observations to individual bags. Such a procedure is likely to perform well when

a large number of bags is present.

In order to deal with the estimation of the missing variables a MCMC sampling

procedure is used. While Kück & de Freitas (2005) describe the approach only

for a binary problem, it could be extended easily to multiclass settings.
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In a similar vein, Chen et al. (2006) and Musicant et al. (2007) also use

a self-consistent approach where the conditional class estimates need to match

the observed ones. Consequently it shares the same similar drawbacks, since we

typically only have as many sets as classes.

Conditional Probabilities

A seemingly valid alternative approach is to try building a classifier for p(i|x)

and subsequently recalibrating the probabilities to obtain p(y|x), e.g. via p(y|i).
At first sight this may appear promising since this method is easily implemented

by most discriminative methods. The idea would be to reconstruct p(y|x) by

p(y|x) =
∑
i

πiyp(i|x). (3.40)

However, this is not a useful estimator in our setting for a simple reason: it

assumes the conditional independence y ⊥⊥ x | i, which obviously does not hold.

Instead, we have the property that i ⊥⊥ x| y, that is, the distribution over x for a

given class label does not depend on the bag. This mismatch in the probabilistic

model can lead to disastrous estimates as the following simple example illustrates:

Example 1 Assume that X ,Y = {1, 2} and that p(y = 1|x = 1) = p(y = 2|x =

2) = 1. In other words, the estimation problem is solvable since the classes are

well separated. Moreover, assume that π is given by

π =

[
0.5− ε 0.5 + ε

0.5 0.5

]
for 0 < ε� 1.

Here, p(i|x) is useless for estimating p(y|x), since we will only exceed random

guessing by at most ε. On the other hand, it is easily possible to obtain a good

estimate for µXY by our proposed procedure.

The reason for this failure can be found in the following expansion

p(y|x) =
∑
i

p(y|x, i)p(i|x) 6=
∑
i

p(y|i)p(i|x) since p(y|x, i) 6= p(y|i). (3.41)

The problem with (3.41) is that the estimator does not really attempt to compute

the probability p(y|x), which we are interested in but instead, it attempts to

discern which mixture distribution pi the observation x most likely originated

from. For this to work we would need good probability estimates as the basis of

reweighting. Our approach tackles the problem at the source by recalibrating the

sufficient statistics directly.
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Reduction to Binary

For binary classification and real-valued classification scores we may resort to a

rather straightforward heuristic: build a classifier which is able to distinguish

between the sets X1 and X2 and subsequently threshold labels such that the

appropriate fraction of observations in X1 and X2 matches the proper labels.

The intuition is that since the bags X1 and X2 do contain some information

about how the two classes differ, we should be able to use this information to

distinguish between different class labels.

It is likely that one might be able to obtain a proper reduction bound in this

context. However, extensions to multi-class are highly nontrivial. It also turns

out that even in the binary case this method, while overall fairly competitive, is

inferior to our approach.

Density Estimation

One way of obtaining p(x|i) is to carry out density estimation. While, in prin-

ciple, this approach is flawed because of the incorrect conditional independence

assumptions, it can still lead to acceptable results whenever each of the bags

contains one majority class. This allows us to obtain

p(x|y) =
∑
i

[
π−1
]
yi
p(x|i) (3.42)

To re-calibrate the probability estimates Bayes’ theorem is invoked to compute

posterior probabilities. Since this approach involves density estimation it tends

to fail fairly catastrophically for high-dimensional data due to the curse of di-

mensionality. These problems are also manifest in the experiments.

3.8 Experiments

Datasets: We use binary and three-class classification datasets from the UCI

repository1 and the LibSVM site.2 If separate training and test sets are available,

we merge them before performing nested 10-fold cross-validation. Since we need

to generate as many splits as classes, we limit ourselves to three classes.

For the binary datasets we use half of the data for X1 and the rest for X2. We

also remove all instances of class 2 from X1. That is, the conditional class prob-

1http://archive.ics.uci.edu/ml/
2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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abilities in X2 match those from the repository, whereas in X1 their counterparts

are deleted.

For three-class datasets we investigate two different partitions. In scenario A

we use class 1 exclusively in X1, class 2 exclusively in X2, and a mix of all three

classes weighted by (0.5 · p(1), 0.6 · p(2), 0.7 · p(3)) to generate X3. In scenario B

we use the following splits c1 · 0.4 · p(1) c1 · 0.2 · p(2) c1 · 0.2 · p(3)

c2 · 0.1 · p(1) c2 · 0.2 · p(2) c2 · 0.1 · p(3)

c3 · 0.5 · p(1) c3 · 0.6 · p(2) c3 · 0.7 · p(3)


Here the constants c1, c2 and c3 are chosen such that the probabilities are properly

normalized. As before, X3 contains half of the data.

Model Selection: As stated, we carry out a nested 10-fold cross-validation

procedure: 10-fold cross-validation to assess the performance of the estimators;

within each fold, 10-fold cross-validation is performed to find a suitable value for

the parameters.

For supervised classification, i.e. discriminative sorting, such a procedure is

quite straightforward because we can directly optimize for classification error.

For kernel density estimation (KDE), we use the log-likelihood as our criterion.

Due to the high number of hyper-parameters (at least 8) in MCMC, it is

difficult to perform nested 10-fold cross-validation. Instead, we choose the best

parameters from a simple 10-fold crossvalidation run. In other words, we are

giving the MCMC method an unfair advantage over our approach by reporting

the best performance during the model selection procedure.

Finally, for the re-calibrated sufficient statistics µ̂XY we use the estimate of

the log-likelihood on the validation set as the criterion for cross-validation, since

no other quantity, such as classification errors is readily available for estimation.

Algorithms: For discriminative sorting we use an SVM with a Gaussian

RBF kernel whose width is set to the median distance between observations

(Schölkopf, 1997); the regularisation parameter is chosen by cross-validation. The

same strategy applies for our algorithm. For KDE, we use Gaussian kernels.

Cross-validation is performed over the kernel width. For MCMC, 10 000 samples

are generated after a burn-in period of 10 000 steps (Kück & de Freitas (2005)).

Optimisation: Bundle methods (Smola et al., 2007b; Teo et al., 2007)

are used to solve the optimisation problem in Algorithm 3. For our regularised

log-likelihood, the solver converges to ε precision in O(log(1/ε)) steps.

Results: The experimental results are summarised in Table 3. Our method
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outperforms KDE and discriminative sorting. In terms of computation, our ap-

proach is somewhat more efficient, since it only needs to deal with a smaller

sample size (only X rather than the union of all Xi). The training time for our

method is less than 2 minutes for all cases, whereas MCMC on average takes 15

minutes and maybe even much longer when the number of active kernels and/or

observations are high. Note that KDE fails on two datasets due to numerical

problems (high dimensional data).

Our method also performs well on multiclass datasets. As described in Sec-

tion 3.5.2, the quality of our minimiser of the negative log-posterior depends on

the mixing matrix and this is noticeable in the reduction of performance for the

dense mixing matrix (scenario B) in comparison to the better conditioned sparse

mixing matrix (scenario A). In other words, for ill conditioned π even our method

has its limits, simply due to numerical considerations of effective sample size.

Unknown test label proportions: In this experiment, we use binary and

three-class classification datasets with the same split procedure as in the previous

experiment but we select testing examples by a biased procedure to introduce

unknown test label proportions. To describe our biased procedure, consider a

random variable ξi for each point in the pool of possible testing samples where

ξi = 1 means the i-th sample is being included and ξi = 0 means the sample is

discarded. In our case, the biased procedure only depends on the label y, i.e.

P (ξ = 1|y = 1) = 0.5 and P (ξ = 1|y = −1) = 1.0 for binary problems and

P (ξ = 1|y = 1) = 0.6, P (ξ = 1|y = 2) = 0.3, and P (ξ = 1|y = 3) = 0.1 for three-

class problems. We then estimate the test proportion by solving the quadratic

program in (3.38) with interior point methods (or any other successive optimisa-

tion procedure). Since we are interested particularly to assess the effectiveness

of our test proportion estimation method, in solving (3.38) we assume that we

can compute µclass
X [y] directly, i.e. the instances are labelled. The mean square

error rates of test proportions for several binary and three-class datasets are pre-

sented in Table 4. The results show that our proportion estimation method works

reasonably well.

Overdetermined systems: Here we are interested to assess the performance

of our estimator with optimized weights when we have more datasets n than class

labels |Y| with varying number of observations mi per dataset. We simulate the
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Table 3. Classification error on UCI/LibSVM datasets

Errors are reported in mean ± standard error. The best result and those not

significantly worse than it, are highlighted in boldface. We use a one-sided paired

t-test with 95% confidence.

MM: Mean Map (our method); KDE: Kernel Density Estimation; DS: Discriminative

Sorting (only applicable for binary classification); MCMC: the sampling method;

BA: Baseline, obtained by predicting the major class. †: Program fails (too high

dimensional data - only KDE). ‡: Program fails (large datasets - only MCMC).

Data MM KDE DS MCMC BA

ionosphere 18.4±3.2 17.5±3.2 12.2±2.6 18.0±2.1 35.8

iris 10.0±3.6 16.8±3.4 15.4±1.1 21.1±3.6 29.9

optdigits 1.8±0.5 0.7±0.4 9.8±1.2 2.0±0.4 49.1

pageblock 3.8±2.3 7.1±2.8 18.5±5.6 5.4±2.8 43.9

pima 27.5±3.0 34.8±0.6 34.4±1.7 23.8±1.8 34.8

tic 31.0±1.5 34.6±0.5 26.1±1.5 31.3±2.5 34.6

yeast 9.3±1.5 6.5±1.3 25.6±3.6 10.4±1.9 39.9

wine 7.4±3.0 12.1±4.4 18.8±6.4 8.7±2.9 40.3

wdbc 7.8±1.3 5.9±1.2 10.1±2.1 15.5±1.3 37.2

sonar 24.2±3.5 35.2±3.5 31.4±4.0 39.8±2.8 44.5

heart 30.0±4.0 38.1±3.8 28.4±2.8 33.7±4.7 44.9

breastcancer 5.3±0.8 14.2±1.6 3.5±1.3 4.8±2.0 34.5

australian 17.0±1.7 33.8±2.5 15.8±2.9 30.8±1.8 44.4

svmguide3 20.4±0.9 27.2±1.3 25.5±1.5 24.2±0.8 23.7

adult 18.9±1.2 24.5±1.3 22.1±1.4 18.7±1.2 24.6

cleveland 19.1±3.6 35.9±4.5 23.4±2.9 24.3±3.1 22.7

derm 4.9±1.4 27.4±2.6 4.7±1.9 14.2±2.8 30.5

musk 25.1±2.3 28.7±2.6 22.2±1.8 19.6±2.8 43.5

german 32.4±1.8 41.6±2.9 37.6±1.9 32.0±0.6 32.0

covertype 37.1±2.5 41.9±1.7 32.4±1.8 41.1±2.2 45.9

splice 25.2±2.0 35.5±1.5 26.6±1.7 28.8±1.6 48.4

gisette 10.3±0.9 † 12.2±0.8 50.0±0.0 50.0

madelon 44.1±1.5 † 46.0±2.0 49.6±0.2 50.0

cmc 37.5±1.4 43.8±0.7 45.1±2.3 46.9±2.6 49.9

bupa 48.5±2.9 50.8±5.1 40.3±4.9 50.4±0.8 49.7

protein A 43.3±0.4 48.9±0.9 N/A 65.5±1.7 60.6

protein B 46.9±0.3 55.2±1.5 N/A 66.1±2.1 60.6

dna A 14.8±1.2 28.1±0.6 N/A 39.8±2.6 41.6

dna B 31.3±1.3 30.4±0.7 N/A 41.5±0.1 41.6

senseit A 19.8±0.1 44.2±0.0 N/A ‡ 44.2

senseit B 21.1±0.1 44.2±0.0 N/A ‡ 44.2
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problem in binary settings with the following split (n = 8)

c1 · 0.25 · p(1) c1 · 0.10 · p(2)

c2 · 0.15 · p(1) c2 · 0.10 · p(2)

c3 · 0.05 · p(1) c3 · 0.20 · p(2)

c4 · 0.05 · p(1) c4 · 0.10 · p(2)

c5 · 0.05 · p(1) c5 · 0.00 · p(2)

c6 · 0.05 · p(1) c6 · 0.05 · p(2)

c7 · 0.05 · p(1) c7 · 0.15 · p(2)

c8 · 0.35 · p(1) c8 · 0.30 · p(2)


and the split (n = 6) in three-class settings is as follows

c1 · 0.30 · p(1) c1 · 0.10 · p(2) c1 · 0.00 · p(3)

c2 · 0.10 · p(1) c2 · 0.10 · p(2) c2 · 0.20 · p(3)

c3 · 0.05 · p(1) c3 · 0.00 · p(2) c3 · 0.05 · p(3)

c4 · 0.05 · p(1) c4 · 0.20 · p(2) c4 · 0.05 · p(3)

c5 · 0.00 · p(1) c5 · 0.05 · p(2) c5 · 0.10 · p(3)

c6 · 0.50 · p(1) c6 · 0.55 · p(2) c6 · 0.60 · p(3)


We use BFGS to obtain the optimal weights of the minimization problem in

(3.26). We perform 10-fold cross validation with respect to the log-likelihood.

The error rates are presented in Table 5. For all cases except one, the estimator

with optimised weights improves error rates compared with the unweighted one.

Table 4. Unknown test label proportion case

Square errors of estimating the test proportions on UCI/LibSVM datasets. The

10-run errors are reported in mean ± standard error.

Binary datasets

Data MSE

australian 0.00804±0.00275

breastcancer 0.00137±0.00063

adult 0.00610±0.00267

derm 0.00398±0.00175

gisette 0.00331±0.00108

wdbc 0.00319±0.00103

Three-class datasets

Data MSE

protein 0.00290±0.00066

dna 0.00339±0.00075

senseit 0.00072±0.00031

Stability of Mixing Matrices: Lastly, we are interested to assess the per-

formance of our proposed method when the given mixing matrix π are perturbed



3.9. CONCLUSION 61

Table 5. Overdetermined systems

Errors of weighted/unweighted estimators for overdetermined systems on

UCI/LibSVM datasets. The 10-fold cross validation errors are reported in mean

± standard error. The numbers in boldface are significant with 95% confidence

(one-sided paired t-test).

Binary datasets

Data unweighted weighted

wdbc 23.29±2.68 14.22±1.79

australian 34.44±4.03 29.58±3.71

svmguide3 24.28±2.20 18.50±1.73

gisette 8.77±1.05 7.69±0.51

splice 33.43±1.65 21.12±2.59

Three-class datasets

Data unweighted weighted

protein 57.46±0.02 57.46±0.02

senseit 28.25±2.60 23.51±0.78

dna 20.01±1.26 16.80±1.19

so that they do not exactly match how the data is generated. We used binary

classification datasets and defined the perturbed mixing matrix as

π̃ = π + ∆ =

[
1 0

ρ 1− ρ

]
+

[
−ε1 ε1

ε2 −ε2

]
.

We varied ε1 ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
and ε2 ∈ {0.0, 0.1, 0.3, 0.5} and measured the performance as a function of the

size of the perturbation, η = ‖∆‖2 = tr(∆>∆). Note that unperturbed mixing

matrix refer to the case of {ε1, ε2} = {0, 0}. The experiments are summarised in

Figure 3.8. The results suggest that for a reasonable size of perturbations, our

method is stable.

3.9 Conclusion

In this chapter we obtained a rather surprising result, namely that it is possible

to consistently reconstruct the labels of a dataset if we can only obtain informa-

tion about the proportions of occurrence of each class (in at least as many data
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Figure 3.2: Performance accuracy of binary classification datasets (n = |Y| = 2)

as a function of the amount of perturbation applied to the mixing matrix,

‖∆‖2 = tr(∆>∆) with ∆ = π̃ − π. 3.2(a): Adult, 3.2(b): Australian and

3.2(c): Breastcancer datasets. x-axis denotes ‖∆‖2 as a function of ε1 ∈
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Color coded plots denote ‖∆‖2 as

a function of ε2 ∈ {0.0, 0.1, 0.3, 0.5}, for example red colored plot refers to per-

formance when only label proportions of the first set are perturbed.

aggregates as there are classes). In particular, we proved that up to constants,

our algorithm enjoys the same rates of convergence afforded to methods which

have full access to all label information.

This finding has significant implications with regard to the amount of privacy

afforded by summary statistics. In particular, it implies that whenever accu-

rate summary statistics exist and whenever the available individual statistics are

highly dependent on the summarised random variable we will be able to per-

form inference on the summarised variable with a high degree of confidence. In

other words, some techniques used to anonymise observations, e.g. demographic

data, may not be really safe (at least when it is possible to estimate the missing

information, provided enough data).

Chiaia et al. (2007) applied a summarisation technique to infer drug use based

on the concentration of metabolites in the sewage of cities, suburbs or at an even

more finely grained resolution. While this only provides aggregate information

about the proportions of drug users, such data, in combination with detailed

demographic information might be used to perform more detailed inference with

regard to the propensity of individuals to use controlled substances. It is in these

types of problem where our method could be applied straightforwardly.



Chapter 4

Kernelised Sorting

In this chapter, we introduce a learning setting where we are given a set of data

inputs and a set of data outputs, however they are not paired. The goal of

learning is to infer the input-output correspondences. This type of learning has

applications in areas like data visualisation, photo album summarisation, hybrid

keyword-based and content-based search engine, estimation and cross-domain

matching, as shown in our experiments.

4.1 Motivating Examples

Matching pairs of objects is a fundamental operation of unsupervised learning.

For instance, we might want to match a photo with a textual description of a

person, a map with a satellite image, or a music score with a music performance.

In those cases it is desirable to have a compatibility function which determines

how one set may be translated into the other. For many such instances we may

be able to design a compatibility score based on prior knowledge or to observe

one based on the co-occurrence of such objects. This has led to good progress in

areas such as graph matching (Gold & Rangarajan, 1996; Caetano et al., 2007;

Cour et al., 2006).

In some cases, however, such a match may not exist or it may not be given to

us beforehand. That is, while we may have a good understanding of two sources

of observations, say X and Y , we may not understand the mapping between the

two spaces. For instance, we might have two collections of documents purportedly

covering the same content, written in two different languages. Here it should be

our goal to determine the correspondence between both sets and to identify a

mapping between the two domains (Jebara, 2004). In yet other cases, matching

63
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by minimization of a distance function is a popular strategy for point assignment

(Caetano et al., 2006; Walder et al., 2006; Steinke et al., 2007).

4.2 Problem Definition

We present a method which is able to perform the above matchings without the

need of a cross-domain similarity measure and we shall show that if such measures

exist it generalises existing approaches.

The basic idea underlying our algorithm is simple. Denote byX = {x1, . . . , xm} ⊆
X the set of inputs and Y = {y1, . . . , ym} ⊆ Y the set of outputs between which

we would like to find a correspondence. That is, we would like to find some

element π of the permutation group Πm on m elements

Πm :=
{
π|π ∈ {0, 1}m×m where π1m = 1m, π

>1m = 1m
}

such that the set of pairs Z(π) :=
{

(xi, yπ(i)) for 1 ≤ i ≤ m
}

corresponds to max-

imally dependent random variables. We use π(i) to denote permutation mapping

of i-th element and π to denote permutation matrix whose entries are all 0 except

that in row i, the entry π(i) equals 1. Here 1m ∈ Rm is the vector of all ones. We

seek a permutation π such that the mapping xi → yπ(i) and its converse mapping

from y to x are simple.

4.3 The Model

Our method relies on the fact that one may estimate the dependence between sets

of random variables even without knowing the cross-domain mapping. Various

dependence criteria are available. We choose the Hilbert Schmidt Independence

Criterion (Section 2.3.2) between two sets and we maximise over the permutation

group to find a good match. As a side-effect we obtain an explicit representa-

tion of the covariance. We show that our method generalises sorting. When

using a different measure of dependence, namely an approximation of the mutual

information, our method is related to an algorithm proposed by Jebara (2004).

Formally, for a given measure D(Z(π)) of the dependence between x and y

we define nonparametric sorting of X and Y as follows:

π∗ := argmax
π∈Πm

D(Z(π)). (4.1)
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This chapter is concerned with measures of D and approximate algorithms for

(4.1). In particular we will investigate the Hilbert Schmidt Independence Crite-

rion (HSIC).

4.3.1 Kernelised Sorting

We use HSIC to construct a mapping between X and Y by permuting Y to max-

imise dependence. There are several advantages in using HSIC as a dependence

criterion. First, HSIC satisfies concentration of measure conditions. That is, for

random draws of observation from Prxy, HSIC provides values which are very

similar. This is desirable, as we want our mapping to be robust to small changes.

Second, HSIC is easy to compute, since only the kernel matrices are required and

no density estimation is needed. The freedom of choosing a kernel allows us to

incorporate prior knowledge into the dependence estimation process. The conse-

quence is that we are able to generate a family of methods by simply choosing

appropriate kernels for X and Y .

Lemma 34 With D(Z(π)) as in equation (2.29), the nonparametric sorting prob-

lem, called Kernelised Sorting, is given by

π∗ = argmaxπ∈Πm tr K̄π>L̄π. (4.2)

Proof We only need to establish that Hπ> = π>H since the rest follows im-

mediately from the definition of (2.29). Since π1m = 1m and π>1m = 1m, then

Hπ = (Im − 1
m

1m1>m)π = (π − 1
m

1m1>mπ) = (π − 1
m

1m1>m) = (π − 1
m
π1m1>m) =

π(Im − 1
m

1m1>m) = πH. Hence H and π matrices commute.

Note that the optimisation problem (4.2) is in the form of Koopmans-Beckmann

equation (Finke et al., 1987) and is in general NP hard as it is an instance of a

quadratic assignment problem (Garey & Johnson, 1979). Nonetheless the objec-

tive function is indeed reasonable. We demonstrate this by proving that sorting

is a special case of the optimisation problem set out in (4.2). For this we need the

following inequality due to Polya, Littlewood, Hardy, and Blackwell (Sherman,

1951):

Lemma 35 Let a, b ∈ Rm where a is sorted ascendingly. If argsort b denotes the

vector of ranks of ascendingly sorted entries of vector b, then a>πb is maximised

for π = argsort b.

Consider the case of scalar random variables and a linear kernel:
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Lemma 36 Let X = Y = R and let k(x, x′) = xx′ and l(y, y′) = yy′. Moreover,

assume that x is sorted ascendingly. In this case (2.29) is maximised by either

π = argsort y or by π = argsort −y.

Proof Under the assumptions we have that K̄ = Hxx>H and L̄ = Hyy>H.

Hence we may rewrite the objective as
[
(Hx)>π(Hy)

]2
. This is maximised by

sorting Hy ascendingly. Since the centring matrix H only changes the offset but

not the order this is equivalent to sorting y. We have two alternatives, since the

objective function is insensitive to sign reversal of y.

This means that sorting is a special case of Kernelised Sorting, hence the name.

The ambiguity in the solution of the optimisation problem arises from the fact

that instead of having direct access to the entries xi we only access them by

means of the kernel k(xi, xj). In this context changes of all observations via

x← −x leave the kernel unchanged, hence they cannot be detected in the sorting

operation. When solving the general problem, it turns out that a projection onto

the principal eigenvectors of K̄ and L̄ is a good initialisation of an optimisation

procedure.

4.3.2 Diagonal Dominance

In some cases the biased estimate of HSIC as given by (2.29) leads to rather

undesirable results, in particular in the case of document analysis. This arises

from the fact that kernel matrices on texts tend to be diagonally dominant: a

document tends to be much more similar to itself than to others, hence the values

of the diagonal entries Kii considerably exceed those of the off-diagonal terms. In

this case the O(1/m) bias of (2.29) is significant. After all, it is due to the terms

in trHKHL which contain matching index pairs {ii} with respect to K and L

that are responsible for the bias. While their number is only O(m) (the total

number of terms is O(m2)), they can still cause considerable damage on finite

amounts of data.

Unfortunately, the minimum variance unbiased estimator (Smola et al., 2007a)

does not have a computationally appealing form. This can be addressed as follows

at the expense of a slightly less efficient estimator with a considerably reduced

bias: we replace the expectations (2.28) by sums where no pairwise summation
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indices are identical. This leads to the objective function

1
m(m−1)

∑
i 6=j

KijLij + 1
m2(m−1)2

∑
i 6=j,u6=v

KijLuv

− 2
m(m−1)2

∑
i,j 6=i,v 6=i

KijLiv.

This estimator still has a small degree of bias, albeit significantly reduced since

it only arises from the product of expectations over (potentially) independent

random variables. Using the shorthand K̃ij = Kij(1− δij) and L̃ij = Lij(1− δij)
for kernel matrices where the main diagonal terms have been removed we arrive

at the expression (m− 1)−2 trHK̃HL̃. The advantage of this term is that it can

be used as a drop-in replacement in Lemma 34 without any need for changing

the optimisation algorithm.

4.3.3 Stability Analysis

Before discussing practical issues of optimisation let us briefly study the statistical

properties of the objective function. First note that the solution argmaxπ tr K̄π>L̄π

is not stable under sampling in general. A simple example may illustrate this.

Assume that X = {1, 2, 3} and that Y = {1, 2, 2 + ε}. In this case the identity

permutation [(1)(2)(3)] is sufficient for maximal alignment between X and Y .

Now replace the third element in Y , that is 2+ ε by 2− ε. In this case the permu-

tation [(1)(2, 3)] which swaps the elements 2 and 3 is optimal. Nonetheless, by a

suitable choice of ε we can make the change in the objective function arbitrarily

small.

What we can prove, however, is that changes in the minimum value of the

objective function are well controlled under the optimisation procedure. This

relies on McDiarmid’s concentration inequality (McDiarmid, 1989) and on the

fact that the minima of close functions are close:

Lemma 37 Denote by f and g functions on a domain X with |f(x)− g(x)| < ε

for all x ∈ X . In this case |minx∈X f(x)−minx∈X g(x)| < ε.

Proof Consider x∗ = arg minx∈X g(x), then |f(x∗) − g(x∗)| < ε. Since f(x∗) ≥
minx∈X f(x), then |minx∈X f(x)− g(x∗)| ≤ |f(x∗)− g(x∗)| < ε.

Lemma 38 (Concentration Inequality McDiarmid (1989)) Denote by f :

Xm → R a function satisfying

|f(. . . , xi−1, x, xi+1, . . .)− f(. . . , xi−1, x
′, xi+1, . . .)| ≤ c/m
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for all x, x′, xi ∈ X . Moreover, let Pr be a distribution on X . In this case

for X = {x1, . . . , xm} drawn from Pm we have that with probability exceeding

1− 2 exp (−mε2/c2) the following bound holds:

|f(X)− EX∼Prm [f(X)]| ≤ ε. (4.3)

Lemma 39 (Stability of optimal alignment) Denote by

A(X, Y ) := m−2 argminπ∈Πm trπ>K̄πL̄ the minimum of the alignment objective

function for the sets X and Y . Moreover, assume that the kernels k and l are

bounded by |k(x, x′)|, |l(y, y′)| ≤ R. In this case |A(X, Y ) − EX,Y [A(X, Y )]| ≤ ε

holds with probability at least 1− 4 exp (−mε2/8R2).

Proof The first step in the proof is to check that if we replace any xi by some x′i
or alternatively some yj by y′j the value of A(X, Y ) only changes by 2R/m. This

can be seen by using the fact that HSIC can be seen as the difference between

the joint and the marginal expectation of the feature map k(x, ·)l(y, ·).
Secondly, to deal with the fact that we have expectations over X and Y we ap-

ply the concentration inequality twice and chain the arguments. To guarantee a

total deviation of at most ε we apply a bound of ε/2 to the deviation between the

empirical average and the expectation EX , and one more between the expectation

EX and EX,Y . Applying the union bound for the corresponding probabilities of

failure prove the claim.

The consequence of this analysis is that while the optimal assignment it-

self is not stable, at least the objective function has this desirable property, i.e.

for random draws of observations from joint distribution, the objective function

provides values which are very similar. This means that in practice also most

assignments are rather stable when it comes to subsampling. This is evident in

the experiments of Section 4.7.2.

4.4 Optimisation

Quadratic assignment problems (Finke et al., 1987) are notoriously hard and

have attracted a rather diverse set of algorithms from simulated annealing, tabu

search and genetic algorithms to ant colony optimisation. Below we present a

rather simple method which is guaranteed to obtain a locally optimal solution by

exploiting convexity in the optimisation problem. It is very simple to implement

provided that a linear assignment solver is available.
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4.4.1 Convex-ConCave Procedure

To find a local maximum of the matching problem we may take recourse to a

well-known algorithm, namely the Convex-ConCave Procedure (CCCP) (Section

2.6.1). For the problem in Lemma 34, h(w) = 0 and thus CCCP corresponds to

a successive maximisation of linear lower bounds.

Lemma 40 Define π as a doubly stochastic matrix (4.4). The function tr K̄π>L̄π

is convex in π.

Proof Since K̄, L̄ � 0 we may factorise them as K̄ = U>U and L̄ = V >V .

Hence by the circularity of the trace we may rewrite the objective function as∥∥V πU>∥∥2
or as ‖(U ⊗ V )vec(π)‖2 with vec(.) denotes stacking column vectors of

a matrix. This is clearly a convex quadratic function in π.

Note that the set of feasible permutations π is constrained in a unimodular

fashion, that is, the set

Pm :=

{
M ∈ Rm×m where Mij ≥ 0 and∑

iMij = 1 and
∑

jMij = 1

}
(4.4)

has only integral vertices, namely admissible permutation matrices. This means

that the following procedure will generate a succession of permutation matrices

which will yield a local maximum for the assignment problem:

πi+1 ← (1− λ)πi + λ argmax
π∈Pm

[
tr K̄π>L̄πi

]
(4.5)

Here choosing λ = 1 in the last step will ensure integrality. The optimisation

subproblem is well known as a Linear Assignment Problem and effective solvers

are freely available (Jonker & Volgenant, 1987).

Lemma 41 The algorithm described in (4.5) for λ = 1 terminates in a finite

number of steps.

Proof We know that the objective function may only increase for each step of

(4.5). Moreover, the solution set of the linear assignment problem is finite. Hence

the algorithm does not cycle.

We refer to Algorithm 4 for a summarisation of the Kernelised Sorting algo-

rithm.
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Algorithm 4 Kernelised Sorting

Input Two sets of objects X = {x1, . . . , xm} and Y = {y1, . . . , ym}
Compute kernel similarity matrix K on set X

Compute kernel similarity matrix L on set Y

Center the kernel matrices: K̄ := HKH and L̄ := HLH with Hij = δij −m−1

while not converge do

Solve linear assignment problem

πi+1 ← argmax
π∈Pm

[
tr K̄π>L̄πi

]
with Pm :=

{
π ∈ [0, 1]m×m where πij ≥ 0 and

π1m = 1m, π
>1m = 1m

}
end while

Return Locally optimum permutation matrix π∗

Non-convex Objective Function

When using the bias corrected version of the objective function the problem is

no longer guaranteed to be convex. In this case we need to add a line-search

procedure along λ ∈ [0, 1] which maximises

trHK̃H[(1− λ)πi + λπ̂i]
>HL̃H[(1− λ)πi + λπ̂i], (4.6)

with π̂i = argmaxπ∈Pm

[
tr K̃π>L̃πi

]
. Since the function is quadratic in λ we only

need to check whether the search direction remains convex in λ; otherwise we

may maximise the term by solving a simple linear equation.

Initialisation

Since quadratic assignment problems are in general NP hard we may obviously

not hope to achieve an optimal solution. That said, a good initialisation is critical

for good estimation performance. This can be achieved by using Lemma 36. That

is, if K̄ and L̄ only had rank 1, the problem could be solved by sorting X and

Y in matching fashion. Instead, we use the projections onto the first principal

vectors as initialisation in our experiments.
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4.4.2 Relaxation to a constrained eigenvalue problem

Yet another alternative is to find an approximate solution of the problem in

Lemma 34 by solving

maximise
η

η>Mη subject to Aη = b (4.7)

Here the matrix M = K̄ ⊗ L̄ ∈ Rm2×m2
is given by the outer product of the

constituting kernel matrices, η ∈ Rm2
is a vectorized version of the permutation

matrix π, and the constraints imposed by A and b amount to the polytope con-

straints imposed by Πm. This approach has been proposed by Cour et al. (2006)

in the context of balanced graph matching.

Note that the optimisation algorithm for (4.7) as proposed by Cour et al.

(2006) is suboptimal. Instead, it is preferable to use the exact procedure de-

scribed in Gander et al. (1989) which is also computationally somewhat more

efficient. Nonetheless the problem with the relaxation (4.7) is that it does not

scale well to large estimation problems as the size of the optimisation problem

scales O(m4). Moreover, the integrality of the solution cannot be guaranteed:

while the constraints are totally unimodular, the objective function is not linear.

This problem can be addressed by subsequent projection heuristics. Given the

difficulty of the implementation and the fact that it does not even guarantee an

improvement over solution at the starting point we did not pursue this approach

in our experiments.

4.5 Extensions

4.5.1 Multivariate Dependence Measures

A natural extension is to align several sets of observations. For this purpose we

need to introduce a multivariate version of the Hilbert Schmidt Independence

Criterion. One way of achieving this goal is to compute the Hilbert Space norm

of the difference between the expectation operator for the joint distribution and

the expectation operator for the product of the marginal distributions, since this

difference only vanishes whenever the joint distribution and the product of the

marginals are identical.
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Multivariate Mean Operator

Formally, let there be T random variables xi ∈ Xi which are jointly drawn from

some distribution p(x1, . . . , xm). Moreover, denote by ki : Xi × Xi → R the

corresponding kernels. In this case we can define a kernel on X1 ⊗ . . . ⊗ XT by

k1 · . . . kT . The expectation operator with respect to the joint distribution and

with respect to the product of the marginals is given by Smola et al. (2007a). For

instance, the joint expectation operator can be written as follows:

f(x1, . . . , xT )→ Ex1,...,xT [f (x1, . . . , xT )] (4.8)

= Ex1,...,xT

[〈
f,

T∏
i=1

ki(xi, ·)
〉]

=

〈
f,Ex1,...,xT

[
T∏
i=1

ki(xi, ·)
]〉

Hence we can express the joint expectation operator and the product of the

marginal expectation operators in Hilbert space via

Ex1,...,xT

[
T∏
i=1

ki(xi, ·)
]

and
T∏
i=1

Exi [ki(xi, ·)] (4.9)

respectively. Straightforward algebra shows that the squared norm of the differ-

ence between both terms is given by

ExTi=1,x
′T
i=1

[
T∏
i=1

ki(xi, x
′
i)

]
+

T∏
i=1

Exi,x′i
[ki(xi, x

′
i)] (4.10)

−2ExTi=1

[
T∏
i=1

Ex′i
[k(xi, x

′
i)]

]
.

which we refer to as multiway HSIC. A biased empirical estimate of the above

is obtained by replacing sums by empirical averages. Denote by Ki the kernel

matrix obtained from the kernel ki on the set of observations Xi := {xi1, . . . , xim}.
In this case the empirical estimate of (4.10) is given by

HSIC[X1, . . . , XT ] (4.11)

=1>m

[
T⊙
i=1

Ki

]
1m +

T∏
i=1

1>mKi1m − 2 · 1>m
[

T⊙
i=1

Ki1m

]

where �Tt=1∗ denotes elementwise product of its arguments (the ’.*’ notation of

Matlab).
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Optimisation

To apply this new criterion to sorting we only need to define T permutation

matrices πi ∈ Πm and replace the kernel matrices Ki by π>i Kiπi.

Without loss of generality we may set π1 = 1, since we always have the

freedom to fix the order of one of the T sets with respect to which the other sets

are to be ordered. In terms of optimisation the same considerations as presented

in Section 4.4 apply. That is, the objective function is convex in the permutation

matrices πi and we may apply the CCCP to find a locally optimal solution.

4.5.2 Semi-Supervised Kernelised Sorting

Kernelised Sorting aims to find a correspondence between two sets of objects

from different domains which only requires a similarity measure within each of

the two domains. Other than the within-domain similarities, no other information

is provided to guide the correspondence. In other words, Kernelised Sorting can

be viewed as an unsupervised technique. However, for some applications such as

search engines, it might be beneficial to introduce a small amount of supervision

to guide or adjust the correspondence.

Assume now that we wish to enforce a specific preference preference on a sub-

set of objects, P = {(xi, yj) for (i, j) ⊂ {1, . . . ,m} × {1, . . . ,m}}. To solve this,

additional constraints associated with the preference are added to the original

optimisation problem in (4.2) as follows:

π∗ = argmaxπ tr K̄π>L̄π (4.12)

s.t. πij = 1 ∀(i, j) ∈ P

However, the above method is sub-optimal whenever |P| << m in the sense

that neighbouring objects of the constraints are not mapped in the proximal

locations of the constraints. As it is considerably cheaper to simply satisfy the

constraints independently and to enforce smoothness on the rest of the objects as

if without the constraints. This sub-optimality can be addressed by re-weighting

the preference constraint with the within-domain similarities, as follows:

π∗ = argmaxπ tr K̄π>L̄π (4.13)

s.t.
∑
k,l

πk,lKk,iWi,jLj,l ≤
∑
i,j

Km,iWi,jLj,n + C ∀(m,n) ∈ P ,
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for appropriately chosen constant C and W ∈ {0, 1}m×m with wij = 1 ∀(i, j) ∈ P ,

otherwise wij = 0. The partial Lagrangian formulation will look like

π∗ = argminπ− tr K̄π>L̄π −
∑

z=(m,n)∈P

αz

(∑
k,l

πk,lKk,iWi,jLj,l −
∑
i,j

Km,iWi,jLj,n − C
)

(4.14)

Here αz ≥ 0 are nonnegative constants which act as Lagrange multipliers to

ensure all re-weighted preference constraints are met. Exploiting the fact that

each of our preference constraints is differ only by a constant, we can turn these

multiple in-equality constraints into a single constraint as follows:

π∗ = argminπ− tr K̄π>L̄π − α (trπTKWL
)

(4.15)

where α ≥ 0 is the Lagrange multiplier. The above problem corresponds to adding

a linear mixing matrix to the original Kernelised Sorting objective function in

(4.2) thus the modified objective function is still convex in π. This means that

the optimisation problem in (4.15) is still amenable to the CCCP with succession

of linear assignment solvers.

4.6 Related Work

Matching and layout are clearly problems that have attracted a large degree of

prior work. We now discuss a number of algorithms which are related to or special

cases of what we proposed by means of Kernelised Sorting.

4.6.1 Mutual Information

Probably the most closely related work is that of Jebara (2004), who aligns

bags of observations by sorting via minimum volume PCA. Here, we show that

when using mutual information, our scheme leads to a criterion very similar to

the one proposed by Jebara (2004). Mutual information, defined as I(X, Y ) =

h(X) + h(Y )− h(X, Y ), is a natural means of studying the dependence between

random variables xi and yπ(i). In general, this is difficult, since it requires density

estimation. However, this can be circumvented via an effective approximation,

where instead of maximizing the mutual information directly, we maximise a

lower bound to the mutual information. First, we note that only the last term

matters since the first two are independent of π. Maximizing a lower bound
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on the mutual information then corresponds to minimizing an upper bound on

the joint entropy h(X, Y ). An upperbound for the entropy of any distribution

with variance Σ is given by the differential entropy of a normal distribution with

covariance Σ, which can be computed as

h(p) =
1

2
log |Σ|+ constant. (4.16)

Hence the problem reduces to minimizing the joint entropy J(π) := h(X, Y ),

where x and y are assumed jointly normal in the Reproducing Kernel Hilbert

Spaces spanned by the kernels k, l and k · l. By defining a joint kernel on X ×Y
via k((x, y), (x′, y′)) = k(x, x′)l(y, y′) we arrive at the optimisation problem

argmin
π∈Πm

log |HJ(π)H| where Jij = KijLπ(i),π(j). (4.17)

Note that this is related to the optimisation criterion proposed by Jebara (2004)

in the context of sorting via minimum volume PCA. What we have obtained

here is an alternative derivation of Jebara (2004)’s criterion based on information

theoretic considerations.

The main difference with our work is that Jebara (2004) uses the setting to

align a large number of bags of observations by optimizing log |HJ(π)H| with re-

spect to re-ordering within each of the bags. Obviously (4.17) can be extended to

multiple random variables, simply by taking the pointwise product of a sequence

of kernel matrices. In terms of computation (4.17) is considerably more expensive

to optimise than (4.2) since it requires computation of inverses of matrices even

for gradient computations.

4.6.2 Object Layout

A more direct connection exists between object layout algorithms and Kernelised

Sorting. Assume that we would like to position m objects on the vertices of

a graph, such as a layout grid for photographs with the desire to ensure that

related objects can be found in close proximity. We will now show that this is

equivalent to Kernelised Sorting between a kernel on objects and the normalised

graph Laplacian induced by the graph.

To establish our claim we need some additional notation. Denote by G(V,E)

an undirected graph with a set of vertices V and edges E. With some abuse of

notation we will denote by G also the symmetric edge adjacency matrix. That

is, Gij = 1 if there is an edge between vertex i and j and Gij = 0 if no edge is
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present. This definition naturally extends to weighted graphs simply by allowing

that Gij ≥ 0 rather than Gij ∈ {0, 1}. Moreover, we denote by di :=
∑

j Gij the

degree of vertex i in the graph and we let D := diag(d) be a diagonal matrix

containing the degrees. Finally we denote by

L := D −G (4.18)

the graph Laplacian L.

It is well known, see e.g. (Fiedler, 1973; Chung-Graham, 1997), that local

smoothness functionals on graphs can be expressed in terms of L. More specifi-

cally we have ∑
i,j

Gij ‖φ(xi)− φ(xj)‖2 = trKL (4.19)

where φ(xi) can be treated as the vertex value andKij = k(xi, xj) = 〈φ(xi), φ(xj)〉.
Basically, expression (4.19) sums over the squared differences between the values

of adjacent vertices. The smaller the number trKL, the smoother the vertex

values vary across the graph. By construction, (4.19) is translation invariant,

that is, changes from φ(xi) ← φ(xi) − µ leave the functional unchanged. Hence

we have trKL = trHKHL.

If we were to layout objects such that similar objects are assigned to adjacent

vertices in G, we can maximise the smoothness by minimizing trHKHπ>Lπ.

Here the main difference to (4.2) is that we are minimizing a convex form rather

than maximizing it.

Such difference can be removed by a simple substitution of L by ‖L‖ I − L.

Indeed, note that the eigenvalues of L range between 0 and ‖L‖. The transfor-

mation ‖L‖ I −L shifts the eigenvalues into positive territory while changing the

objective function only by a constant independent of π, thus leading to a Ker-

nelised Sorting problem for the “kernel” L′ = ‖L‖ I − L. This is also consistent

with the definition of a kernel which is the inverse of a regularisation operator

(Girosi, 1997; Smola et al., 1998). That is, while in a regularisation operator

large eigenvalues correspond to properties of a function which are undesirable,

the converse is true in a kernel, where large eigenvalues correspond to simple

functions (Schölkopf et al., 1998).

A consequence of these considerations is that for object layout there exists an

alternative strategy for optimisation: first relax the set of permutation matrices

Πm into the set of doubly stochastic matrices Pm and solve the relaxed problem

minπ∈Pm trHKHπ>Lπ exactly; and then employ the CCCP procedure described



4.6. RELATED WORK 77

in section 4.4.1 to find a locally optimal integral solution. While theoretically

appealing, this approach nonetheless suffers from a range of problems: the number

of variables required to deal with in the quadratic program is O(m2) which makes

an efficient implementation a challenge even for modest amounts of data, unless

the special structure of the quadratic form in π is exploited.

4.6.3 Morphing

In object morphing one may use a compatibility function defined on local simi-

larity between source and destination matches. Assume that X, Y ∈ R are sets

of scalars (e.g. intensity values in an image). In this context Walder et al. (2006);

Steinke et al. (2007) use scoring functions of the form

1

2

m∑
i=1

(
xi − yπ(i)

)2
=

1

2

∑
i

x2
i + y2

π(i) −
∑
i

xiyπ(i). (4.20)

Whenever π is a bijection1 the first two terms are independent of π and the

problem of matching becomes one of maximizing
∑

i xiyπ(i), ie. X>πY . By the

same argument as in the proof of Lemma 36 this can be rewritten in the form of

argmax
π∈Πm

trXX>πY Y >π> (4.21)

simply by squaring the objective function of X>πY . The only ambiguity left is

that of an arbitrary sign, i.e. we might end up minimizing the match between X

and Y rather than maximizing it. That said, our argument shows that morphing

and Kernelised Sorting have closely related objective functions.

4.6.4 Smooth Collages

The generation of collages is a popular application in the processing of composite

images. In this process one uses a template image Y (often a company logo or

a face of a person) and a collection X = {x1, . . . , xm} of reference images to

generate a collage where the individual “pixels” of the collage are taken from the

set of reference images such that the collage best resembles the template. This

problem is easily solved by a linear assignment algorithm as follows:

Denote by d(x, y) a distance function between an image x and a pixel y in

the template. Moreover, denote by yi a pixel in Y . In this case the optimal

1Note that this is not required by Walder et al. (2006); Steinke et al. (2007). In fact, their
objective function is not even symmetric between source and destination images.



78 CHAPTER 4. KERNELISED SORTING

assignment of reference images to Y is achieved by finding the permutation π

which minimises∑
i

d(xi, yπ(i)) = tr π>D where Dij := d(xi, yj). (4.22)

In other words, one attempts to find an overall allocation of reference images to

the template such that the sum of distances is minimised. While this is desirable

in itself, it would also be best if there were some spatial coherence between images.

This is achieved by mixing the objective function of (4.22) with the Kernelised

Sorting objective. Since this constitutes only a linear offset of the optimisation

problem of (4.2) it can be solved in an identical way to what is required in

Kernelised Sorting, namely by a CCCP procedure.

4.7 Applications

To investigate the performance of our algorithm (it is a fairly nonstandard un-

supervised method) we applied it to a variety of different problems ranging from

visualisation to matching and estimation.

In all our experiments, the maximum number of iterations used in the updates

of π is 100 and we terminate early if progress is less than 0.001% of the objective

function.

4.7.1 Data Visualisation

In many cases we may want to visualise data according to the metric structure

inherent in it. In particular, we may want to align it according to a given template,

such as a grid, a torus, or any other fixed structure. Such problems occur when

presenting images or documents to a user.

While there is a large number of algorithms for low dimensional object layout

(Maximum Variance Unfolding (MVU) (Weinberger & Saul, 2006), Local-Linear

Embedding (LLE) (Roweis & Saul, 2000), . . . ), most of them suffer from the prob-

lem that the low dimensional presentation is nonuniform. This has the advantage

of revealing cluster structure but given limited screen size the presentation is un-

desirable.

Alternatively, one can use the Self-Organizing Map (SOM) (Kohonen, 1982)

or the Generative Topographic Mapping (GTM) (Bishop et al., 1998) to layout

images according to a pre-defined grid structure. These methods, however, often
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map several images into a single grid element, and hence some grid elements may

have no data associated with them. Such grouping creates blank spaces in the

layout and still under-utilises the screen space.

Instead, we may use Kernelised Sorting to layout objects. Here the kernel

matrix K is given by the similarity measure between the objects xi that are to

be laid out. The kernel L, on the other hand, denotes the similarity between the

locations of grid elements where objects are to be aligned to.

Image Layout on a Uniform Grid

For the first visualisation experiment, we want to layout images on a 2D rect-

angular grid. We have obtained 320 images from Flickr1 which are resized and

downsampled to 40×40 pixels. We convert the images from RGB into Lab space,

yielding 40×40×3 dimensional objects. The grid, corresponding to Y is a 16×20

mesh on which the images are to be laid out. We use a Gaussian RBF kernel

between the objects to be laid out and also between the positions of the grid,

i.e. k(x, x′) = exp(−γ ‖x− x′‖2). The kernel width γ is adjusted to the inverse

median of ‖x− x′‖2 such that the argument of the exponential is O(1) (refer

to Yamada & Sugiyama (2011) for a recent work on how to adjust the kernel

width based on a cross validation principle). After sorting we display the images

according to their matching coordinates. The result is shown in Figure 4.1(a).

Clearly, images with similar colour composition are found at proximal locations.

For comparison, we apply an SOM2 and a GTM3 to the same data set. The

results are shown in Figure 4.2(a) and 4.2(b). If a grid element (corresponding

to a neuron and a latent variable) has been assigned multiple images, only one of

the assigned images is displayed. The detail of all other overlapping images can

be found in Figure 4.7.1 and Figure 4.4.

Image Layout on an Irregular Grid

To reinforce the point that matching can occur between arbitrary pairs of objects

we demonstrate that images can be aligned with the letters ‘PAMI 2009’ displayed

as a pixelated grid on which the images are to be laid out. The same colour

1http://www.flickr.com
2http://www.cis.hut.fi/projects/somtoolbox/. A Gaussian neighbourhood and in-

verse learning rate functions are used.
3http://www.ncrg.aston.ac.uk/GTM/, again forcing the images into a 2D grid. The prin-

cipal components are used for the initialisation and the mode projection is used to map data
into the (2D grid) latent space.

http://www.flickr.com
http://www.cis.hut.fi/projects/somtoolbox/
http://www.ncrg.aston.ac.uk/GTM/
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features and the same Gaussian RBF kernels as in the previous experiment are

used. The result is presented in Figure 4.1(b). As expected, the layout achieves

a dual goal: it fully utilises the elements on the irregular grid while at the same

time preserving the colour grading.

Image Layout on Hierarchical Structures

It is quite straightforward to extend image layouting on a 2D grid to a hierarchy

of 2D grids. Here one additional axis can be used to specify the hierarchy level.

Instead of (x, y) position, now a point is identified by its (x, y, z) coordinates in a

three dimensional coordinate system. The similarity measure on the structure will

then be either the similarity measure between points within the same hierarchy

level or between points across different hierarchy levels. The z axis plays an

important role on how spatial coherence in one hierarchy level is propagated

to subsequent hierarchy levels. The higher its value, the more independently the

organization of images on one level is done with respect to other levels. Equivalent

to a 2D grid, the inverse of the exponentiated straight line distance is used to

measure the similarity between two points on the hierarchy where the distance

is now defined on the three coordinate axis. This concept is also easily extended

to a hierarchy of 2D spheres where the straight line distance is now replaced

with the great circle distance (a special case of the geodesic distance on a sphere

manifold). The results are shown in Figure 4.6 and Figure 4.7 for a hierarchy of

2D grids and 2D spheres, respectively.

Visualisation of Semantic Structure

While colour based image layout gives visually pleasing results, one might desire

to layout images based on their semantic content and explore the high dimen-

sional semantic space inherent in images by providing a two dimensional layout.

To this end, we represent images as bag-of-visual-words (Csurka et al., 2004), i.e.

histograms of vector quantized local image descriptors. This representation has

been shown successful in the context of visual object recognition. Here we use

a combination of densely sampled, overlapping patches with the SIFT descrip-

tor (Lowe, 2004). Then the inverse of the exponentiated χ2 distance, denoted as

exp(−γ ‖x− x′‖2
χ), is used to measure the similarity between the images. Gaus-

sian RBF kernel is still used to measure similarity between the positions of the

grid. We apply this scheme to 570 images from the MSRC2 database.1 The result

1http://research.microsoft.com/vision/cambridge/recognition/

http://research.microsoft.com/vision/cambridge/recognition/
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(a) Layout of 320 images into a 2D grid

of size 16 by 20 using Kernelised Sorting

(b) Layout of 280 images into a ‘PAMI

2009’ letter grid using Kernelised Sorting

Figure 4.1: Image layouting on a 2D grid and letter grid with Kernelised Sorting.

One can see that images are laid out in the grids according to their colour grading.

(a) Layout of 320 images into a 2D grid

of size 16 by 20 using SOM

(b) Layout of 320 images into a 2D grid

of size 16 by 20 using GTM

Figure 4.2: Comparison with SOM and GTM for image layout on a 2D grid

and a compressed representation of images. Note that both algorithms do not

guarantee unique assignments of images to nodes.

Figure 4.3: Image matching as obtained by Kernelised Sorting. The images are

cut vertically into two equal halves and Kernelised Sorting is used to pair up

image halves that originate from the same images.
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Figure 4.4: 81 out of the 320 neurons in SOM are assigned more than one image,

effectively clustering the images into 81 groups. We show the cluster membership

of each group.

Figure 4.5: 78 out of the 320 latent variables in GTM are assigned more than one

image. This effectively cluster the images into 78 groups. This figure shows the

cluster membership of each group.
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is presented in Figure 4.8.

First, one can observe that objects are grouped according to their categories.

For example, books, cars, planes, and people have all or most of their instances

visualised in proximal locations. Second, beyond categories, another ordering

based on the overall composition of the images is also visible. Images near the

lower left corner consist mostly of rectangular shaped objects; along the antidi-

agonal direction of the layout, the shapes of the objects become more and more

irregular. This reveals structure of the metric space which has not been explicitly

designed.

Another example of visualisation of semantic similarities by Kernelised Sorting

is a recent work of (Torralba et al., 2010, Figure 6) which uses Kernelised Sorting

on a set of 12201 images.

Photo Album Summarisation

An immediately useful application of Kernelised Sorting is a tool for present-

ing a summary of personal photo collections. This is particularly challenging

when photos are taken by different persons, with different scenery, with different

cameras or over a large time period.

Depending on the way a viewer wants to explore the photo album, the photos

can be summarised either based on colour information or on a bag-of-visual-words

based image representation. Figure 4.9 shows the corresponding summaries for a

collection of holiday photos of my supervisor, Alex Smola1. Comparing the two

summaries, we can see that the latter presents a much clearer separation between

natural scenery and human subjects.

Hybrid Keyword-Based and Content-Based Search Engine

Another application of Kernelised Sorting is to build an image search engine that

combines the advantages of keyword-based and content-based search engines. All

commercially available image search engines (such as Google, Yahoo!, and Bing,

among others) are keyword-based. Although this has proven its value in common

web search engines, it is often perceived as being a limitation for presenting

image search results. It is a typical situation that these keyword-based search

engines possibly return search results that are not even related to the query.

This situation is caused by the usage of keywords – the filename of the image

1Alex has kindly agreed to share his holiday photos with me and the rest of the world for
the purpose of this chapter.
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Figure 4.8: Layout of 570 images into a 2D grid of size 15 by 38 using bag-of-

visual-words based Kernelised Sorting. Several object categories, like books, cars,

planes, and people are grouped into proximal locations.

(a) Photos summarisation by colour based Kernelised Sorting.

(b) Photos summarisation by bag-of-visual-words based Kernelised Sorting.

Figure 4.9: Application of Kernelised Sorting as a photo collection summarisation

tool.



4.7. APPLICATIONS 87

and descriptions associated with the image – to represent visual characteristics

of an image, rather than the actual image content. It can happen that visually

different images have the same keywords while visually similar images have totally

different keywords. In contrast, a content-based search engine (such as Cortina1)

analyses the actual contents of the image such as colours, shapes, textures, or

any other information that can be derived from the image itself to determine the

returned results. However, the performance of content-based search engines is

still far from being ready to be deployed as real-world commercial image retrieval

engines. One of the identified problems with the current content-based approaches

is the reliance on visual similarity for judging semantic similarity, which may be

problematic due to the semantic gap between low-level content and higher-level

concepts.

We propose an image search interface, called Globby (avail-

able at http://globby.iais.fraunhofer.de), which bridges

the gap between keyword-based and content-based search by re-

turning keyword -based query relevant objects in a set of pages,

where each page contains several objects with similar content objects are placed

at proximal locations. This content similarity visualisation is achieved via Ker-

nelised Sorting. Further, in Globby, the highly keyword-based query relevant

image is placed at a specific location, for example at the top-left corner. This can

be achieved via a semi-supervised extension of Kernelised Sorting (Section 4.5.2)

where the preference constraint is now a ranking constraint. Figure 4.10 shows the

comparison between a keyword-based search engine (Yahoo!) and Globby when

colour and SIFT descriptors are used to represent the content of the images.

4.7.2 Matching

Apart from visualisation, Kernelised Sorting can also be used to align or match

two related data sets even without cross data set comparison. In the following

set of experiments, we will use data sets with known ground truth of matching.

This allows us to quantitatively evaluate Kernelised Sorting. To create such data

sets, we either split an image or a vector of data attributes into two halves, or

use multilingual documents that are translations of each other. A recent work

of Tripathi et al. (2011) uses the concept of matching without cross-similarities

in Bioinformatics application such as to perform a joint analysis of mRNA and

protein concentrations without the mapping between genes and proteins.

1http://vision.ece.ucsb.edu/multimedia/cortina.shtml

http://globby.iais.fraunhofer.de
http://vision.ece.ucsb.edu/multimedia/cortina.shtml
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Search terms: pluto
Color Search Semantic Search

Page 1 of 6894 pages. NEXT

(a) Keyword-based layout (query:

pluto)

Search terms: pluto
Color Search Semantic Search

Page 1 of 7008 pages. NEXT

(b) Globby colour layout with the highest

rank at top left using the same set of

images as in Figure 4.10(a)

Search terms: jaguar
Color Search Semantic Search

Page 1 of 34876 pages. NEXT

(c) Keyword-based layout (query:

jaguar)

Search terms: jaguar
Color Search Semantic Search

Page 1 of 35213 pages. NEXT

(d) Globby semantic layout with the

highest rank at top left using the same

set of images as in Figure 4.10(c)

Figure 4.10: Comparisons between Yahoo! search engine (without Kernelised

Sorting) and Globby search engine (with Kernelised Sorting).
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Image Matching

Our first experiment is to match image halves. For this purpose we use the same

set of Flickr images as in section 4.7.1 but split each image (40× 40 pixels) into

two equal halves (20 × 40 pixels). The aim is to match the image halves using

Kernelised Sorting. More specifically, given xi being the left half of an image and

yi being the right half of the same image, we want to find a permutation π which

lines up xi and yπ(i) by maximizing the dependence.

Of course, this would be relatively easy if we were allowed to compare the

two image halves xi and yπ(i) directly. While such comparison is clearly feasible

for images where we know the compatibility function, it may not be possible for

generic objects. Figure 4.3 shows the image matching result. For a total of 320

images we correctly match 140 pairs. This is quite respectable given that the

chance level would be only 1 correct pair (a random permutation matrix has on

expectation one nonzero diagonal entry).

Multilingual Document Matching

To illustrate that Kernelised Sorting is able to recover nontrivial similarity rela-

tions we apply our algorithm to the matching of multilingual documents in this

second experiment. For this purpose we use the Europarl Parallel Corpus.1 It is

a collection of the proceedings of the European Parliament, dating back to 1996

(Koehn, 2005). We select the 300 longest documents of Danish (Da), Dutch (Nl),

English (En), French (Fr), German (De), Italian (It), Portuguese (Pt), Spanish

(Es), and Swedish (Sv). The purpose is to match the non-English documents

(source languages) to its English translations (target language). Note that our

algorithm does not require a cross-language dictionary. In fact, one could use

Kernelised Sorting to generate a dictionary after an initial matching has been

created.

We use standard TF-IDF (term frequency - inverse document frequency)

features of a-bag-of-words kernel. As preprocessing we remove stopwords (via

NLTK2) and perform stemming using Snowball.3 Finally, the feature vectors are

normalised to unit length in term of `2 norm. Since these kernel matrices on

documents are notoriously diagonally dominant we use the bias-corrected version

of our optimisation problem.

1http://www.statmt.org/europarl/
2http://nltk.sf.net/
3http://snowball.tartarus.org

http://www.statmt.org/europarl/
http://nltk.sf.net/
http://snowball.tartarus.org
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As a reference we use a fairly straightforward means of document matching

via its length. That is, longer documents in one language will be most probably

translated into longer documents in the other language. This observation has also

been used in the widely adopted sentence alignment method (Gale & Church,

1991). Alternatively, we can use a dictionary-based method as an upperbound

for what can be achieved by matching. We translate the documents in the source

languages into the target language word by word using Google Translate1. This

effectively allows us to directly compare documents written in different languages.

Now for each source language and the target language we can compute a kernel

matrix based on a-bag-of-words kernel; and the ij-th entry of this kernel matrix

is the similarity between document i in the source language and document j in

the target language. Then we can use this kernel matrix and a linear assignment

to find the matches between documents across languages.

The experimental results are summarised in Table 4.1. Here we use two ver-

sions of our algorithm: one with a fixed set of λs and the other with automatic

tuning of λ (as in section 4.4). In practice we find that trying out different λ

from a fixed set (λ ∈ {0.1, 0.2, . . . , 1.0}) and then choosing the best λ in terms

of the objective function works better than automatic tuning. Low matching

performance for the document length-based method might be due to small vari-

ance in the document length after we choose the 300 longest documents. The

dictionary-based method gives near perfect matching. Our method produces re-

sults consistent with the dictionary-based method, for instance the notably low

performance for matching German documents to its English translations. We

suspect that the difficulty of German-English document matching is inherent to

this data set as it was also observed in Koehn (2005). Arguably the matching

produced by Kernelised Sorting is quite encouraging as our method uses only a

within language similarity measure while still matching more than 2/3 of what a

dictionary-based method is capable of in most cases.

Data Attribute Matching

In our last experiment, we aim to match attributes of vectorial data. In our setup

we use benchmark data sets for supervised learning from the UCI repository2 and

LibSVM site.3 We split the attributes (or dimensions) of each data point into

1http://translate.google.com Note that we did not perform stemming on the words
and thus the dictionary is highly customized to the problem at hand.

2http://archive.ics.uci.edu/ml
3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools

http://translate.google.com
http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
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two halves, and we want to match them back. Here we use the estimation error

to quantify the quality of the match. That is, assumed that yi is associated with

the observation xi. In this case, we compare yi and yπ(i) using homogeneous

misclassification loss for binary and multiclass problems and squared loss for

regression problem. Note that this measure of goodness is different from the

ones we used in image matching and document matching. This is because for

data attribute matching we may not be able to match back the two halves of an

individual data point exactly, but we can restore the overall characteristic of the

data such as class separability.

To ensure good dependence between the splitted attributes, we choose a split

which ensures correlation. This is achieved as follows: first we compute the

correlation matrix of the data; then among the pairs of attributes which achieves

the largest correlation we pick the dimension with the smallest index as the

reference; next we choose the dimensions that have at least 0.5 correlation with

the reference and split them equally into two sets, set A and set B (we also

put the reference dimension into set A); last we divide the remaining dimensions

(with less than 0.5 correlation with the reference) into two equal halves, and

allocate them into set A and B respectively. This scheme ensures that at least

one dimension in set B is strongly correlated with at least one dimension in set

A.

As before, we use a Gaussian RBF kernel with median adjustment for the

kernel width for both x and y. To obtain statistically meaningful results, we

subsample 80% of the data 10 times and compute the error of the match on

the subset (this is done in lieu of cross-validation since the latter is meaningless

for matching). As a reference we compute the expected performance of random

permutations which can be done exactly.1 As a lower bound for the estimation

error, we use the original data set and perform classification/regression using

10-fold cross-validation. The results are summarised in Table 4.2. Basically, the

closer the results obtained by Kernelised Sorting to the lower bound the better. In

many cases, Kernelised Sorting is able to restore significant information related to

the class separability in the classification problems and the functional relationship

in the regression problems.

1For classification: 1−∑|Y|
i=1 p

2
i and for regression: 2

(
Ey[y2]−E2

y[y]
)
. Here y denotes the

class label and pi denotes the proportion of class i in the data set.
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Table 4.1: The number of correct matches from documents written in various

source languages to those in English.

We compare Kernelised Sorting (KS) to a reference procedure which simply

matches the lengths of documents (RE : Reference) and a dictionary-based ap-

proach (UB : Upper Bound). We also include results of line search or automatic

tuning of λ (KS - LS). Reported are the numbers of correct matches (out of 300)

for various source languages.

Language PT ES FR SV DA IT NL DE

KS 252 218 246 150 230 237 223 95

KS - LS 241 216 193 99 83 236 211 70

RE 9 12 8 6 6 11 7 4

UB 298 298 298 296 297 300 298 284

4.7.3 Multivariate Extension

In this experiment, we align 5 USPS digits of 0’s using multiway HSIC. In this

case, each non-zero pixel in an image is a data point and each image has 100 non-

zero pixels. On each set of digits, we use a Gaussian RBF kernel with median

adjustment of the kernel width. Furthermore we use the first digit as the target

set (i.e. π1 = I) and the other digits as the sources. The sorting performance

is visualised by computing linear interpolations between the matching pixels. If

meaningful matching is obtained, such interpolation will result in meaningful

intermediate images (Jebara, 2004).

For comparison we also perform the same task using the method proposed by

Jebara (2004). Briefly, Jebara (2004) proposes a method to sort many sets (or

bags) of objects by maximizing likelihood under a Gaussian model to minimise

the volume data occupies in Hibert space. An iterative likelihood maximisation

procedure is devised by interleaving update of Gaussian’s moments and adjust-

ment of permutation configuration of each set of objects. We implemented our

own version as we were unable to obtain their code for reasons beyond the con-

trol of the authors of Jebara (2004). We only experimented with the simpler

version using the mean estimator (locking covariance matrix as a constant mul-

tiplication of an identity matrix) and LAP as it was observed that this simpler

version performs as well as his more sophisticated counterpart based on a covari-

ance estimator (allowing covariance matrix as an arbitrary positive semi-definite

matrix) (Jebara, 2004). Here we also use a Gaussian RBF kernel with median

trick as the base kernel. Although we are only interested in sorting 5 digits of 0’s,
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Table 4.2: Estimation error for data attribute matching

We compare estimation errors between the original data set (LB : Lower Bound),

data set after Kernelised Sorting (KS), and data set after random permutation

(RE : Reference).

Type Data set m KS RE LB

Binary australian 690 0.29±0.02 0.49 0.21±0.04

breastcancer 683 0.06±0.01 0.46 0.06±0.03

derm 358 0.08±0.01 0.43 0.00±0.00

optdigits 765 0.01±0.00 0.49 0.01±0.00

wdbc 569 0.11±0.04 0.47 0.05±0.02

Multiclass satimage 620 0.20±0.01 0.80 0.13±0.04

segment 693 0.58±0.02 0.86 0.05±0.02

vehicle 423 0.58±0.08 0.75 0.24±0.07

Regression abalone 417 13.9±1.70 18.7 6.44±3.14

bodyfat 252 4.5±0.37 7.20 3.80±0.76

the method of Jebara (2004) requires more digits (200 in our experiments) to get

a decent ML estimate of the feature space mean. As such, the usage of Jebara

(2004)’s method in finding a correspondence with just two sets of observations

(as in Section 4.7.1, 4.7.2, 4.7.2, and 4.7.2), i.e. this translates to get an ML mean

estimate of the Gaussian likelihood with just two samples, is not obvious.

The interpolation results are shown in Figure 4.11(a) and 4.11(b). Due to the

symmetric structure of the 0’s digit, some of the correspondences are reversed

(the top is matched to the bottom and the bottom is matched to the top) which

is apparent from Figure 4.11(a). Nevertheless, the interpolations obtained with

HSIC seem to produce a better local consistency than those obtained with en-

tropy. This is clear from the flows of arrows in the velocity plots (arrows are

pointing away from a matching pixel in the source digits) shown in Figure 4.11(c)

and 4.11(d) for each digit pair in Figure 4.11(a) and 4.11(b). For example, in

the upper right plot of Figure 4.11(c), all the arrows ‘inside’ the 0 are pointing

downwards. However, in Figure 4.11(d) some arrows are pointing downwards but

some upwards. This local flow consistency implies that in the matching neigh-

bouring pixels in one digit will be mapped to the neighbouring locations in the

other digit as well.
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(a) Linear interpolation using multiway

HSIC

(b) Linear interpolation using Entropy

(c) Arrows showing the matching of

strokes of digit pairs sorted using mul-

tiway HSIC.

(d) Arrows showing the matching of

strokes of digit pairs sorted using Entropy

Figure 4.11: Linear interpolation of 4 pairs of the digit 0 after sorting using

multiway HSIC and Entropy Jebara (2004).

4.8 Conclusion

In this chapter, we generalised sorting by maximizing the dependency between

matched pairs of observations by means of the Hilbert Schmidt Independence

Criterion. This way we are able to perform matching without the need of a

cross-domain similarity measure and we managed to put sorting and assignment

operations onto an information theoretic footing. The proposed sorting algorithm

is efficient and it can be applied to a variety of different problems ranging from

data visualisation to image and multilingual document matching. Moreover, we

showed that our approach is closely related to matching and object layout al-

gorithms and that by changing the dependence measure we are able to recover

previous work on sorting in Hilbert Spaces.



Chapter 5

Multitask Learning without

Label Correspondences

In this chapter, we introduce a learning setting of jointly learning several related

tasks where each task has potentially distinct label sets, and label correspondences

are not readily available. It is widely known in machine learning that if several

tasks are related, then learning them simultaneously can improve performance

(Caruana, 1997; Argyriou et al., 2008; Yu et al., 2005; Ando & Zhang, 2005). For

instance, a personalized spam classifier trained with data from several different

users is likely to be more accurate than one that is trained with data from a single

user. Traditionally, multitask learning assumes that the set of labels for all the

tasks are the same, or that we have access to an oracle that gives correspondences

between the label sets. However, as we argue below, in many natural settings

these assumptions are not satisfied.

5.1 Motivating Examples

Our motivating example is the problem of learning to automatically categorise

objects on the Internet into an ontology or directory. It is well established that

many web-related objects such as web directories and RSS directories admit a (hi-

erarchical) categorisation, and web directories aim to do this in a semi-automated

fashion. For instance, it is desirable, when building a categoriser for the Yahoo!

directory1, to take into account other web directories such as DMOZ2. Although

the tasks are clearly related, their label sets are not identical. For instance, some

1http://dir.yahoo.com/
2http://www.dmoz.org/
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section heading and sub-headings may be named differently in the two directories.

Furthermore, different editors may have made different decisions about the on-

tology depth and structure, leading to incompatibilities. To make matters worse,

these ontologies evolve with time and certain topic labels may die naturally due

to lack of interest or expertise while other new topic labels may be added to the

directory. Given the large label space, it is unrealistic to expect that a label

mapping function is readily available. However, the two tasks are clearly related

and learning them simultaneously is likely to improve performance.

5.2 Problem Definition

We present a method to learn classifiers from a collection of related tasks or

data sets, in which each task has its own label dictionary, without constructing

an explicit label mapping among them. Formally, if one views learning as the

task of inferring a function f from the input space X to the output space Y ,

then multitask learning is the problem of inferring several functions fi : Xi 7→ Yi
simultaneously. In the standard multitask learning, one either assumes that the

set of labels Yi for all the tasks are the same (that is, Yi = Y for all i), or that

we have access to an oracle mapping function gi,j : Yi 7→ Yj. It is our goal

to design algorithms which can learn jointly several functions merely based on

the information that the tasks are related while sidestepping the label mapping

construction.

5.3 The Model

Our solution relies on the duality principle of approximate maximum entropy

and maximum a posteriori estimation (Altun & Smola, 2006; Dud́ık & Schapire,

2006), and an assumption that, for correlated label sets, the joint label distribu-

tion should exhibit high mutual information. We are then able to formulate the

problem as that of maximising mutual information among the labels sets.

5.3.1 Maximum Entropy Duality for Conditional Distri-

butions

Here we briefly summarise the well known duality relation between approximate

conditional maximum entropy estimation and maximum a posteriori estima-
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tion (MAP) (Altun & Smola, 2006; Dud́ık & Schapire, 2006). We will exploit

this in Section 5.4. Recall the definition of the Shannon entropy, H(y|x) :=

−∑y p(y|x) log p(y|x), where p(y|x) is a conditional distribution on the space of

labels Y . Let x ∈ X and assume the existence of φ(x, y) : X ×Y 7→ H, a feature

map into a Hilbert space H. Given a data set (X, Y ) := {(x1, y1) , . . . , (xm, ym)},
where X := {x1, . . . , xm}, define

Ey∼p(y|X) [φ(X, y)] :=
1

m

m∑
i=1

Ey∼p(y|xi) [φ(xi, y)] , and µ =
1

m

m∑
i=1

φ(xi, yi). (5.1)

Lemma 42 (Altun & Smola (2006), Lemma 6) With the above notation we

have

min
p(y|x)

m∑
i=1

−H(y|xi) s.t.
∥∥Ey∼p(y|X) [φ(X, y)]− µ∥∥H ≤ ε and

∑
y∈Y

p(y|xi) = 1

(5.2a)

= max
θ
〈θ, µ〉H −

m∑
i=1

log
∑
y

exp(〈θ, φ(xi, y)〉)− ε ‖θ‖H . (5.2b)

Although we presented a version of the above theorem using Hilbert spaces, it

can also be extended to Banach spaces. Choosing different Banach space norms

recovers well known algorithms such as `1 or `2 regularized logistic regression.

Also note that by enforcing the moment matching constraint exactly, that is,

setting ε = 0, we recover the well-known duality between maximum (Shannon)

entropy and maximum likelihood (ML) estimation.

5.3.2 Multitask Learning via Mutual Information

For the purpose of explaining our basic idea, we focus on the case when we want

to integrate two data sources such as Yahoo! directory and DMOZ. Associated

with each data source are labels Y = {y1, . . . , yc} ⊆ Y and observations X =

{x1, . . . , xm} ⊆ X (resp. Y ′ = {y′1, . . . , y′c′} ⊆ Y ′ and X ′ = {x′1, . . . , x′m′} ⊆ X ′).
The observations are disjoint but we assume that they are drawn from the same

domain, i.e., X = X ′ (in our running example they are webpages).

If we are interested to solve each of the categorisation tasks independently,

a maximum entropy estimator described in Section 5.3.1 can be readily em-

ployed (Ghamrawi & McCallum, 2005). Here we would like to learn the two

tasks simultaneously in order to improve classification accuracy. Assuming that
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the labels are different yet correlated we should assume that the joint distribu-

tion p(y, y′) displays high mutual information between y and y′. Recall that the

mutual information between random variables y and y′ is defined as I(y, y′) =

H(y) + H(y′) − H(y, y′), and that this quantity is high when the two variables

are mutually dependent. To illustrate this, consider in our running example of

integrating Yahoo! and DMOZ web directories, we would expect there is a high

mutual dependency between section heading ‘Computer & Internet’ at Yahoo!

directory and ‘Computers’ at DMOZ directory although they are named some-

what slightly different. Since the marginal distributions over the labels, p(y) and

p(y′) are fixed, maximising mutual information can then be viewed as minimising

the joint entropy

H(y, y′) = −
∑
y,y′

p(y, y′) log p(y, y′). (5.3)

This reasoning leads us to adding the joint entropy as an additional term for the

objective function of the multitask problem. If we define

µ =
1

m

m∑
i=1

φ(xi, yi) and µ′ =
1

m′

m′∑
i=1

φ(x′i, y
′
i), (5.4)

then we have the following objective function

maximise
p(y|x)

m∑
i=1

H(y|xi) +
m′∑
i=1

H(y′|x′i)− λH(y, y′) for some λ > 0 (5.5a)

s.t.
∥∥Ey∼p(y|X) [φ(X, y)]− µ∥∥ ≤ ε and

∑
y∈Y

p(y|xi) = 1 (5.5b)

∥∥Ey′∼p(y′|X′) [φ′(X ′, y′)]− µ′∥∥ ≤ ε′ and
∑
y′∈Y ′

p(y′|x′i) = 1. (5.5c)

Intuitively, the above objective function tries to find a ‘simple’ distribution p

which is consistent with the observed samples via moment matching constraints

while also taking into account task relatedness. We can recover the single task

maximum entropy estimator by removing the joint entropy term (by setting

λ = 0), since the optimisation problem (the objective functions as well as the

constraints) in (5.5) will be decoupled in terms of p(y|x) and p(y′|x′). There are

two main challenges in solving (5.5):

• The joint entropy term H(y, y′) is concave, hence the above objective of the

optimisation problem is not concave in general (it is the difference of two

concave functions). We therefore propose to solve this non-concave problem

using the Convex-ConCave Procedure (CCCP) (Section 2.6.1).
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• The joint distribution between labels p(y, y′) is unknown. We will estimate

this quantity (therefore the joint entropy quantity) from the observations

x and x′. Further, we assume that y and y′ are conditionally independent

given an arbitrary input x ∈ X , that is p(y, y′|x) = p(y|x)p(y′|x). For in-

stance, in our example, annotations made by an editor at Yahoo! and an

editor at DMOZ on the set of webpages are assumed conditionally indepen-

dent given the set of webpages. This assumption essentially means that the

labelling process depends entirely on the set of webpages, i.e., any other

latent factors that might connect the two editors are ignored.

In the following section we discuss in further detail how to address these two

challenges, as well as the resulting optimisation problem obtained, which can be

solved efficiently by existing convex solvers.

5.4 Optimisation

To find a local maximum of the matching problem we may take recourse to a

well-known algorithm, namely the Convex-ConCave Procedure (CCCP). There-

fore, one potential approach to solve the optimisation problem in (5.5) is to use

successive linear lower bounds on H(y, y′) and to solve the resulting decoupled

problems in p(y|x) and p(y′|x′) separately. We estimate the joint entropy term

H(y, y′) by its empirical quantity on x and x′ with the conditional independence

assumption (in the sequel, we make the dependency of p(y|x) on a parameter θ

explicit and similarly for the dependency of p(y′|x′) on θ′), that is

H(y, y′|X) = −
∑
y,y′

[
1

m

m∑
i=1

p(y|xi, θ)p(y′|xi, θ′)
]

log

[
1

m

m∑
j=1

p(y|xj, θ)p(y′|xj, θ′)
]
,

(5.6)

and similarly for H(y, y′|X ′). Each iteration of CCCP approximates the con-

vex part (negative joint entropy) by its tangent, that is 〈∇h(w)|w′ , w〉 in (2.45).

Therefore, taking derivatives of the joint entropy with respect to p(y|xi) and

evaluating at parameters at iteration t− 1, denoted as θt−1 and θ′t−1, yields

gy(xi) := −∂p(y|xi)H(y, y′|X) (5.7)

=
1

m

∑
y′

[
1 + log

1

m

m∑
j=1

p(y|xj, θt−1)p(y′|xj, θ′t−1)

]
p(y′|xi, θ′t−1). (5.8)
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Define similarly gy(x
′
i), gy′(xi), and gy′(x

′
i) for the derivative with respect to

p(y|x′i), p(y′|xi) and p(y′|x′i), respectively. This leads, by optimizing the lower

bound in (2.45), to the following decoupled optimisation problems in p(y|xi) and

an analogous problem in p(y′|x′i):

min
p(y|x)

m∑
i=1

[
−H(y|xi) + λ

∑
y

gy(xi)p(y|xi)
]

+
m′∑
i=1

[
−H(y|x′i) + λ′

∑
y

gy(x
′
i)p(y|x′i)

]
(5.9a)

subject to
∥∥Ey∼p(y|X)[φ(X, y)]− µ∥∥ ≤ ε. (5.9b)

The above objective function is still in the form of maximum entropy estima-

tion, with the linearisation of the joint entropy quantities acting like additional

evidence terms. Furthermore, we also impose an additional maximum entropy

requirement on the ‘off-set’ observations p(y|x′i), as after all we also want the

‘simplicity’ requirement of the distribution p on the input x′i. We can of course

weigh the requirement on ‘off-set’ observations differently.

While we succeed in reducing the non-concave objective function in (5.5) to a

decoupled concave objective function in (5.9), it might be desirable to solve the

problem in the dual space due to difficulty in handling the constraint in (5.9b).

The following lemma shows the duality of the objective function in (5.9).

Lemma 43 The corresponding Fenchel’s dual of (5.9) is

min
θ

m∑
i=1

log
∑
y

exp(〈θ, φ(xi, y)〉 − λgy(xi)) +
m′∑
i=1

log
∑
y

exp(〈θ, φ(x′i, y)〉 − λ′gy(x′i))

− 1

m

m∑
i=1

〈θ, φ(xi, yi)〉+ ε ‖θ‖`2 (5.10)

Proof Denote by B a Banach space and let B∗ be its dual. Denote space of

conditional distributions P = {py|x | p(y|x) ≥ 0,
∑

y∈Y p(y|x) = 1,∀x ∈ X , y ∈
Y}. Let A be the conditional expectation operator of the feature map φ(x, y)

with respect to conditional distribution p(y|x), that is Apy|x = Ey∼p(y|x)[φ(x, y)].

Fenchel’s Duality (Borwein & Zhu, 2005, Theorem 4.4.3) states

inf
py|x∈P

{f(py|x) + g(Apy|x)} = sup
θ∈B∗
{−f ∗(A∗θ)− g∗(−θ)}. (5.11)

First, note that the adjoint of the linear operator A is
〈
Apy|x, θ

〉
=
〈
A∗θ, py|x

〉
,

then we have
〈∑

y∈Y py|xφ(x, y), θ
〉

=
∑

y∈Y py|x 〈φ(x, y), θ〉, thusA∗θ = 〈φ(x, y), θ〉.
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Algorithm 5 Multitask Mutual Information

Input: Datasets (X, Y ) and (X ′, Y ′) with Y 6= Y ′, number of iterations N

Output: θ, θ′

Initialize p(y) = 1/|Y| and p(y′) = 1/|Y ′|
for t = 1 to N do

Solve the dual problem in (5.10) w.r.t. p(y|x, θ) and obtain θt

Solve the dual problem in (5.10) w.r.t. p(y′|x′, θ′) and obtain θ′t
end for

return θ ← θN , θ′ ← θ′N

Define f(py|x) = py|x log py|x + c · py|x + Λpy|x(
∑

y∈Y py|x − 1) where c is the con-

stant part w.r.t. py|x (i.e. the gradient of the joint entropy), we the have

f ∗(p∗y|x) = Λp∗
y|x

+ exp(p∗y|x − 1 − c − Λp∗
y|x

) as its dual. Hence the dual of∑
x∈X

[
−H(py|x) + λ

∑
y∈Y gy(x)py|x

]
is

m∑
i=1

[∑
y

exp(〈θ, φ(xi, y)〉 − 1− λgy(xi)− Λp∗
y|x

) + Λp∗
y|x

]
(5.12)

Solving for optimality in Λp∗
y|x

gives
∑m

i=1 log
∑

y exp(〈θ, φ(xi, y)〉−λgy(xi)). Sim-

ilarly for x′ ∈ X ′. The dual of the approximate moment matching constraint

follows directly from (Altun & Smola, 2006, Lemma 6).

The above dual problem still has the form of logistic regression with the

additional evidence terms from task relatedness appearing in the log-partition

function. Several existing convex solvers can be used to solve the optimisation

problem in (5.10) efficiently. Refer to Algorithm 5 for a pseudocode of our pro-

posed method.

Initialisation For each iteration of CCCP, the linearisation part of the joint

entropy function requires the value of θ and θ′ at the previous iteration (refer

to (5.8)). At the beginning of the iteration, we can start the algorithm with a

uniform prior, i.e. set p(y) = 1/|Y| and p(y′) = 1/|Y ′|.

5.5 Related Work

As described earlier, our work is closely related to the research efforts on mul-

titask learning, where the problem of simultaneously learning multiple related
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tasks is addressed. Several papers have empirically and theoretically highlighted

the benefits of multitask learning over single-task learning when the tasks are

related. There are several approaches to define task relatedness. The works of

Argyriou et al. (2008); Obozinski et al. (2007); Flamary et al. (2009) consider the

setting when the tasks to be learned jointly share a common subset of features.

This can be achieved by adding a mixed-norm regularisation term that favours a

common sparsity profile in features shared by all tasks. Task relatedness can also

be modelled as learning functions that are close to each other in some sense (Yu

et al., 2005; Evgeniou et al., 2005). Crammer et al. (2007) consider the setting

where, in addition to multiple sources of data, estimates of the dissimilarities

between these sources are also available. There is also work on data integration

via multitask learning where each data source has the same binary label space,

whereas the attributes of the inputs can admit different orderings as well as be

linearly transformed (Ben-David et al., 2002). Developed independently of our

work, Parameswaran & Weinberger (2010) addressed the same problem of mul-

titask learning without label correspondences by learning a Mahalanobis metric

that is shared amongst all the tasks and another Mahalanobis metric specific to

each task in a framework of large margin nearest neighbour (Weinberger & Saul,

2009).

5.6 Experiments

To assess the performance of our proposed multitask algorithm, we perform binary

n-task (n ∈ {3, 5, 7, 10}) experiments on MNIST digit dataset and a multiclass

2-task experiment on the Reuters1-v2 dataset plus an application on integrating

Yahoo! and DMOZ web directory. We detail those experiments in turn in the

following sections.

5.6.1 MNIST

Datasets MNIST data set1 consists of 28 × 28-size images of hand-written

digits from 0 through 9. We use a small sample of the available training set to

simulate the situation when we only have limited number of labeled examples

and test the performance on the entire available test set. In this experiment, we

look at a binary n-task (n ∈ {3, 5, 7, 10}) problem. We consider digits {8, 9, 0},
{6, 7, 8, 9, 0}, {4, 5, 6, 7, 8, 9, 0} and {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} for the 3-task, 5-task,

1http://yann.lecun.com/exdb/mnist

http://yann.lecun.com/exdb/mnist
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7-task and 10-task, respectively. To simulate the problem that we have distinct

label dictionaries for each task, we consider the following setting: in the 3-task

problem, the first task has binary labels {+1,−1}, where label +1 means digit 8

and label −1 means digit 9 and 0; in the second task, label +1 means digit 9 and

label −1 means digit 8 and 0; lastly in the third task, label +1 means digit 0 and

label −1 means digit 8 and 9. Similar one-against-rest grouping is also used for

5-task, 7-task and 10-task problems. Each of the tasks has its own input x.

Algorithms We couldn’t find in the literature of multitask learning methods

addressing the same problem as the one we study: learn multiple tasks when

there is no correspondence between the output spaces. Therefore we compared the

performance of our multitask method against the baseline given by the maximum

entropy estimator applied to each of the tasks independently. Note that we focus

on the setting in which data sources have disjoint sets of covariate observations

(vide Section 5.3.2) and thus a simple strategy of multilabel prediction with

union of label sets corresponds to our baseline. For both ours and the baseline

method, we use a Gaussian kernel to define the implicit feature map on the inputs.

The width of the kernel was set to the median between pairs of observations, as

suggested in Schölkopf (1997). The regularisation parameter was tuned for the

single task estimator and the same value was used for the multitask. The weight

on the joint entropy term was set to be equal to 1.

Pairwise Label Correlation Section 5.3.2 describes the multitask objective

function for the case of the 2-task problem. For the case when the number of tasks

to be learned jointly is greater than 2, we experiment in two different ways: in one

approach we can define the joint entropy term on the full joint distribution, that

is when we want to learn jointly 3 different tasks having label y, y′ and y′′, we can

then define the joint entropy as H(y, y′, y′′) = −∑y,y′,y′′ p(y, y
′, y′′) log p(y, y′, y′′).

As more computationally efficient way, we can consider the joint entropy on the

pairwise distribution instead. We found that the performance of our method is

quite similar for the two cases and we report results only on the pairwise case.

Results The experiments are repeated for 10 times and the results are sum-

marised in Table 5.1. We find that, on average, jointly learning the multiple

related tasks always improves the classification accuracy. When assessing the

performance on each of the tasks, we notice that the advantage of learning jointly

is particularly significant for those tasks with smaller number of observations.
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Table 5.1: Performance assessment, Accuracy ± STD. m(m′) denotes the number

of training data points (number of test points). STL: single task learning; MTL:

multi task learning and Upper Bound: multi class learning. Boldface indicates

a significance difference between STL and MTL (one-sided paired Welch t-test

with 99.95% confidence level).

Tasks m (m’) STL MTL Upper Bound

8 \-8 15 (2963) 77.39±5.23 80.03±4.83 93.42±0.87

9 \-9 15 (2963) 91.12±5.94 91.96±5.42 95.99±0.75

0 \-0 120 (2963) 98.66±0.67 98.21±0.92 98.79±0.25

Average 89.06 90.07 96.07

6 \-6 25 (4949) 81.79±10.18 83.86±9.51 96.37±1.06

7 \-7 25 (4949) 70.73±16.58 72.84±15.77 91.99±2.23

8 \-8 25 (4949) 62.52±10.15 66.77±9.43 92.05±1.76

9 \-9 25 (4949) 63.80±13.70 67.26±12.65 92.53±1.65

0 \-0 150 (4949) 97.35±1.33 96.60±1.64 97.59±0.62

Average 75.84 77.47 94.10

4 \-4 70 (6823) 71.69±6.83 73.49±6.77 91.20±1.55

5 \-5 70 (6823) 67.55±4.70 70.10±4.61 89.30±0.34

6 \-6 70 (6823) 86.31±2.93 87.21±2.77 94.03±0.95

7 \-7 70 (6823) 83.34±3.54 84.02±3.69 91.94±0.90

8 \-8 70 (6823) 75.61±6.00 76.97±5.12 87.46±1.69

9 \-9 70 (6823) 63.69±11.42 65.74±10.15 86.89±1.79

0 \-0 210 (6823) 97.20±1.49 96.56±1.67 97.24±0.73

Average 77.91 79.16 91.15

1 \-1 100 (10000) 96.59±2.11 96.80±1.91 96.89±0.59

2 \-2 100 (10000) 67.77±3.49 69.95±2.68 88.74±1.94

3 \-3 100 (10000) 72.59±5.90 74.18±5.54 87.59±2.95

4 \-4 100 (10000) 69.91±5.82 71.76±5.47 92.87±0.94

5 \-5 100 (10000) 53.78±2.78 57.26±2.72 85.71±1.38

6 \-6 100 (10000) 79.22±5.21 80.54±4.53 92.93±0.98

7 \-7 100 (10000) 76.57±10.2 77.18±9.43 89.83±1.24

8 \-8 100 (10000) 63.57±2.65 65.85±2.50 83.51±0.63

9 \-9 100 (10000) 63.28±6.69 65.38±6.09 84.94±1.45

0 \-0 300 (10000) 98.43±0.84 97.81±1.01 98.49±0.40

Average 74.17 75.67 90.82
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5.6.2 Ontology

News Ontologies In this experiment, we consider multiclass learning in a 2-

task problem. We use the Reuters1-v2 news article dataset (Lewis et al., 2004)

which has been pre-processed1. In the pre-processing stage, the label hierarchy is

reorganised by mapping the data set to the second level of topic hierarchy. The

documents that only have labels of the third or fourth levels are mapped to their

parent category of the second level. The documents that only have labels of the

first level are not mapped onto any category. Lastly any multi-labelled instances

are removed. The second level hierarchy consists of 53 categories and we perform

experiments on the top 10 categories. TF-IDF features are used, and the dictio-

nary size (feature dimension) is 47236. For this experiment, we use 12500 news

articles to form one set of data and another 12500 news article to form the second

set of data. In the first set, we group the news articles having the label {1, 2},
{3, 4}, {5, 6}, {7, 8} and {9, 10} and re-label it as {1, 2, 3, 4, 5}. For the second

set of data, it also has 5 labels but this time the labels are generated by {1, 6},
{2, 7}, {3, 8}, {4, 9} and {5, 10} grouping. We split equally the news articles on

each set to form training and test sets. We run a maximum entropy estimator

independently, p(y|x, θ) and p(y′|x′, θ′) , on the two sets achieving accuracy of

92.59% for the first set and 91.53% for the second set. We then learn the two sets

of the news articles jointly and in the first test set, we achieve accuracy of 93.81%.

For the second test set, we achieve an accuracy of 93.31%. This experiment fur-

ther emphasises that it is possible to learn several related tasks simultaneously

even though they have different label sets and it is beneficial to do so.

Web Ontologies We also perform an experiment on the data integration of

Yahoo! and DMOZ web directories. We consider the top level of the Yahoo!’s

topic tree and sample web links listed in the directory. Similarly we also consider

the top level of the DMOZ topic tree and retrieve sampled web links. We consider

the content of the first page of each web link as our input data. It is possible that

the first page that is being linked from the web directory contain mostly images

(for the purpose of attracting visitors), thus we only consider those webpages that

have enough texts to be a valid input. This gives us 19186 webpages for Yahoo!

and 35270 for DMOZ. For the sake of getting enough texts associated with each

link, we can actually crawl many more pages associated with the link. However,

we find that it is quite damaging to do so because as we crawl deeper the topic of

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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Table 5.2: Yahoo! Top Level Categorisation Results. STL: single task learn-

ing accuracy; MTL: multi task learning accuracy; % Imp.: relative performance

improvement. The highest relative improvement at Yahoo! is for the topic of

‘Computer & Internet’, i.e. there is an increase in accuracy from 48.12% to

52.57%. Interestingly, DMOZ has a similar topic but was called ‘Computers’ and

it achieves accuracy of 75.72%.

Topic MTL/STL (% Imp.) Topic MTL/STL (% Imp.)

Arts 56.27/55.11 (2.10) News & Media 15.23/14.83 (1.03)

Business & Economy 66.52/66.88 (-0.53) Recreation 68.81/67.00 (2.70)

Computer & Internet 52.57/48.12 (9.25) Reference 26.65/24.81 (7.42)

Education 62.48/63.02 (-0.85) Regional 62.85/61.86 (1.60)

Entertainment 63.30/61.37 (3.14) Science 78.58/79.75 (-1.46)

Government 24.44/22.88 (6.82) Social Science 31.55/30.68 (2.84)

Health 85.42/85.27 (1.76) Society & Culture 49.51/49.05 (0.94)

the texts are rapidly changing. We use the standard bag-of-words representation

with TF-IDF weighting as our features. The dictionary size (feature dimension)

is 27075. We then use 2000 web pages from Yahoo! and 2000 pages from DMOZ

as training sets and the remainder as test sets. Table 5.2 and 5.3 summarise the

experimental results.

From the experimental results on web directories integration, we observe the

following:

• Similarly to the experiments on MNIST digits and Reuters1-v2 news arti-

cles, multitask learning always helps on average, i.e. the average relative

improvements are positive for both Yahoo! and DMOZ web directories;

• The improvement of multitask to single task on each topic is more prominent

for Yahoo! web directories and is negligible for DMOZ web directories

(2.62% and 0.07%, respectively). Arguably, this can be partly explained

as Yahoo! has lower average topic categorisation accuracy than DMOZ

(c.f. 60.22% and 64.68 %, respectively). It seems that there is much more

knowledge to be shared from DMOZ to Yahoo! in the hope to increase the

latter’s classification accuracies;
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Table 5.3: DMOZ Top Level Categorisation Results. STL: single task learn-

ing accuracy; MTL: multi task learning accuracy; % Imp.: relative performance

improvement. The improvement of multitask to single task on each topic is negli-

gible for DMOZ web directories. Arguably, this can be partly explained as DMOZ

has higher average topic categorisation accuracy than Yahoo! and there might

be more knowledge to be shared from DMOZ to Yahoo! than vice versa.

Topic MTL/STL (% Imp.) Topic MTL/STL (% Imp.)

Arts 57.52/57.84 (-0.5) Reference 67.42/67.42 (0)

Business 54.02/53.05 (1.83) Regional 28.59/28.56 (0.10)

Computers 75.08/75.72 (-0.8) Science 42.67/42.09 (1.38)

Games 78.58/78.58 (0) Shopping 75.20/74.62 (0.54)

Health 82.34/82.55 (-0.14) Society 57.68/58.20 (-0.89)

Home 67.47/67.47 (0) Sports 83.49/83.53 (-0.05)

News 61.70/62.01 (-0.49) World 87.80/87.57 (0.26)

Recreation 58.04/58.25 (-0.36)

• Looking closely at accuracy at each topic, the highest relative improvement

at Yahoo! is for the topic of ‘Computer & Internet’, i.e. there is an increase

in accuracy from 48.12% to 52.57%. Interestingly, DMOZ has a similar

topic but was called ‘Computers’ and it achieves accuracy of 75.72%. The

improvement might be partly because our proposed method is able to dis-

cover the implicit label correlations despite the two topics being named

differently;

• Regarding the worst classified categories, we have ‘News & Media’ for Ya-

hoo! and ‘Regional’ for DMOZ. This is intuitive since those two topics can

indeed cover a wide range of subjects. The easiest category to be classified

is ‘Health’ for Yahoo! and ‘World’ for DMOZ. As well, this is quite intu-

itive as the world of health contains mostly specific jargon and the world of

world has much language-specific webpage content.

5.7 Conclusion

We presented a method to learn classifiers from a collection of related tasks or

data sets, in which each task has its own label set. Our method works without

the need of an explicit mapping between the label spaces of the different tasks.
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We formulate the problem as one of maximising the mutual information among

the label sets. Our experiments on binary n-task (n ∈ {3, 5, 7, 10}) and multiclass

2-task problems revealed that, on average, jointly learning the multiple related

tasks, albeit with different label sets, always improves the classification accuracy.

We also provided experiments on a prototypical application of our method: clas-

sifying in Yahoo! and DMOZ web directories. Here we deliberately used small

amounts of data–a common situation in commercial tagging and classification.

This shows that classification accuracy of Yahoo! significantly increased. Given

that DMOZ classification was already 4.5% better prior to the application of

our method, this shows the method was able to transfer classification accuracy

from the DMOZ task to the Yahoo! task. Furthermore, the experiments seem to

suggest that our proposed method is able to discover implicit label correlations

despite the lack of label correspondences.

Although the experiments on web directories integration is encouraging, we

have clearly only touched the surface of possibilities to be explored. While we

focused on the categorisation at the top level of the topic tree, it might be ben-

eficial (and further highlight the usefulness of multitask learning, as observed in

Argyriou et al. (2008); Yu et al. (2005); Ando & Zhang (2005); Evgeniou et al.

(2005)) to consider categorisation at deeper levels (take for example the second

level of the tree), where we have much fewer observations for each category. In

the extreme case, we might consider the labels as corresponding to a directed

acyclic graph (DAG) and encode the feature map associated with the label hier-

archy accordingly. One instance as considered in Cai & Hofmann (2004) is to use

a feature map φ(y) ∈ Rk for k nodes in the DAG (excluding the root node) and

associate with every label y the vector describing the path from the root node to

y, ignoring the root node itself.

Furthermore, the application of data integration which admit a hierarchical

categorisation goes beyond web related objects. With our method, it is also

now possible to learn classifiers from a collection of related gene-ontology graphs

(Ashburner et al., 2000) or patent hierarchies (Cai & Hofmann, 2004).
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Chapter 6

Distribution Matching for

Transduction

In this chapter, we present an algorithm for learning with labelled and unlabelled

data simultaneously, called transduction, by matching the distributions over the

outputs on labelled and unlabelled data. The algorithm is linear in the number of

data points, thus scales to very large problems. A scalable transductive learning

method has diverse applications in Internet as we illustrate below.

6.1 Motivating Examples

Consider the setting of an image search service. Typically, not all the returned

images from the search engine are even related to the query. In an ideal situation,

we would have those not-so-related images to be filtered out. This could possibly

be achieved by supervised feature extraction of the content of the images. For

a given keyword and returned images, human subjects can determine whether

the given images were indeed relevant images to the keyword. However, this is

a costly process and at best we would only have a small number of annotated

images. This leaves billions of images on the Internet un-annotated. Transduction

methods are designed to harness vast amounts of unlabelled data to improve the

performance of a learner trained on limited amounts of labelled data.

Similarly, the problem of learning to automatically categorise objects on the

web into an ontology or directory in Chapter 5 could alternatively be casted as a

transduction problem. The editors of a web directory can only annotate a very

small subset of web pages in the Internet. Evidently, we can utilize another billion

of un-annotated web pages via a transductive learning approach when building

110
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the automated categoriser.

6.2 Problem Definition

Given a labelled dataset of input-output data pairs {(xi, yi)}mi=1 ⊆ X ×Y , and an

unlabelled dataset {xi}m′i=1 ⊆ X . We would like to infer the outputs {yi}m′i=1 ⊆ Y of

the unlabelled dataset by making use of both the labelled and unlabelled datasets.

Note that, when we try to infer a function f : X → Y that will be able to predict

the outputs of not previously seen data points instead of only the outputs of the

given unlabelled dataset, the problem is called a semi-supervise learning. We

focus on a transductive setting while having the function f as the byproduct of

our model.

6.3 The Model

Transduction relies on the fundamental assumption that training and test data

should exhibit similar behaviour. For instance, in large margin classification a

popular concept is to assume that both training and test data should be separable

with a large margin (Gammerman et al., 1998). A similar matching assumption

is made by Joachims (1999); Zien et al. (2007) in requiring that class means are

balanced between training and test set. Corresponding distributional assump-

tions are made for classification by Gärtner et al. (2006), for regression by Le

et al. (2006), and in the context of sufficient statistics on the marginal polytope

by Druck et al. (2008); Graça et al. (2007).

Such matching assumptions are well founded: after all, we assume that both

training data X = {x1, . . . , xm} and test data X ′ := {x′1, . . . , x′m′} are drawn

independently and identically distributed from the same distribution p(x) on

a domain X . It therefore follows that for any function (or set of functions)

f : X → R the distribution of f(x) where x ∼ p(x) should also behave in the

same way on both training and test set. Note that this is not automatically true

if we get to choose f after seeing X and X ′.

Rather than indirectly incorporating distributional similarity, e.g. by a large

margin heuristic, we cast this goal as a two-sample problem which will allow us to

draw on a rich body of literature for comparing distributions. One advantage of

our setting is its full generality. That is, it is applicable to a variety of estimation

problems: not only classification problems but also regression and even structured
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estimation without much need for customisation.

At its heart it uses the following: rather than minimising only the empirical

risk, regularised risk, log-posterior, or related quantities obtained only on the

training set, we will add a divergence term characterising the mismatch in distri-

butions between training and test set. We show that the kernel-based distance

between distribution (Section 2.3.1) is a suitable quantity for this purpose. More-

over, we show that for certain choices of kernels we are able to recover a number

of existing transduction constraints as a special case.

Note that our setting is entirely complementary to the notion of modifying

the function space due to the availability of additional data. The latter stream

of research led to the use of graph kernels and similar density-related algorithms

(Chapelle et al., 2006). It is often referred to as the cluster assumption in semi-

supervised learning. In other words, both methods can be combined as needed.

That said, while distribution matching always holds thus making our method

always applicable, it is not entirely clear whether the cluster assumption is always

satisfied (e.g. assume a noisy classification problem).

Distribution matching, however, comes with a nontrivial price: the objective

of the optimisation problem ceases to be convex except for rather special cases

(which correspond to algorithms that have been proposed as previous work).

While this is a downside, it is a property inherent in most transduction algo-

rithms — after all, we are dealing with algorithms to obtain self-consistent la-

bellings, predictions, or regressions on the data and there may exist more than

one potential solution.

6.3.1 Supervised Learning

Denote by X and Y the domains of data and labels and let Pr(x, y) be a distri-

bution on X × Y from which we are drawing observations. Moreover, denote by

X, Y sets of data and labels of the training set and by X ′, Y ′ test data and labels

respectively. Recall in Section 2.1.5, when designing an estimator one attempts

to minimise some regularised risk functional

Rreg[f,X, Y ] :=
1

m

m∑
i=1

l(xi, yi, f) + λΩ[f ] (6.1)

or alternatively (in a Bayesian setting) one deals with a log-posterior probability

log p(f |X, Y ) =
m∑
i=1

log p(yi|xi, f) + log p(f) + const. (6.2)
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Here p(f) is the prior of the parameter choice f and p(yi|xi, f) denotes the like-

lihood. f typically is a mapping X → R (for scalar problems such as regression

or classification) or X → Rd (for multivariate problems such as named entity

tagging, image annotation, matching, ranking, or more generally the clique po-

tentials of graphical models). Note that we are free to choose f from one of many

function classes such as decision trees, neural networks, or (nonparametric) linear

models. The specific choice boils down to the ability to control the complexity

of f efficiently, to one’s prior knowledge of what constitutes a simple function, to

runtime constraints, and to the availability of scalable algorithms. In general, we

will denote the training-data dependent term by

Rtrain[f,X, Y ] (6.3)

and we assume that finding some f for which Rtrain[f,X, Y ] is small is desirable.

6.3.2 Distribution Matching

Denote by f(X) := {f(x1), . . . , f(xm)} and by f(X ′) := {f(x′1), . . . , f(x′m′)} the

applications of our estimator (and any related quantities) to training and test

set respectively. For f chosen a-priori, the distributions from which f(X) and

f(X ′) are drawn coincide. Clearly, this should also hold whenever f is chosen by

an estimation process. After all, we want that the empirical risk on the training

and test sets match. While this cannot be checked directly, we can at least

check closeness between the distributions of f(x). This reasoning leads us to the

following additional term for the objective function of a transduction problem:

D(f(X), f(X ′)) (6.4)

Here D(f(X), f(X ′)) denotes the distance between the two distributions f(X)

and f(X ′), and f(X) denotes the application of f to the random training variable

x ∼ p(x). This leads to an overall objective for learning

Rtrain[f,X, Y ] + γD(f(X), f(X ′)) for some γ > 0 (6.5)

when performing transductive inference. For instance, we could use the Kolmogorov-

Smirnov statistic between both sets as our criterion, that is, we could use

D(f(X), f(X ′)) = ‖F (f(X))− F (f(X ′))‖∞ (6.6)

the L∞ norm between the cumulative distribution functions F associated with

the empirical distributions f(X) and f(X ′) to quantify the differences between
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both distributions. The problem with the above choice of distance is that it is not

easily computable: we first need to evaluate f on both X and X ′, then sort the

arguments, and finally compute the largest deviation between both sets before we

can even attempt computing gradients or using a similar optimisation procedure.

Such a choice is clearly computationally undesirable.

Instead, we propose to use kernel-based distance between distribution (Section

2.3.1). It is possible to design online estimates of the distance quantity which can

be used for fast two-sample tests between µ[X] and µ[X ′]. Details on how this

can be achieved are deferred to Section 6.5.

6.4 Special Cases

Before discussing a specific algorithm let us consider a number of special cases to

show that this basic idea is rather common in the literature (albeit not as explicit

as in the present chapter).

6.4.1 Mean Matching for Classification

Joachims (1999) uses the following balancing constraint in the objective function

of a binary classifier where ŷ(x) = sgn(f(x)) for f(x) = 〈w, x〉. In order to

balance the outputs between training and test set, Joachims (1999) imposes the

linear constraint

1

m

m∑
i=1

f(xi) =
1

m′

m′∑
i=1

f(x′i). (6.7)

Assuming a linear kernel k on R this constraint is equivalent to requiring that

µ[f(X)] =
1

m

m∑
i=1

〈f(xi), ·〉 =
1

m′

m′∑
i=1

〈f(x′i), ·〉 = µ[f(X ′)]. (6.8)

Note that Joachims (1999) uses the margin distribution as an additional criterion

which will be discussed later.

This setting can be extended to multiclass categorisation and estimation with

structured random variables in a straightforward fashion (Zien et al., 2007) simply

by requiring a constraint corresponding to (6.8) to be satisfied for all possible

values of y via

1

m

m∑
i=1

〈f(xi, y), ·〉 =
1

m′

m′∑
i=1

〈f(x′i, y), ·〉 for all y ∈ Y . (6.9)
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This is equivalent to a linear kernel on RY and the requirement that the distri-

butions of the values f(x, y) match for all y.

6.4.2 Distribution Matching for Classification

Gärtner et al. (2006) propose to perform transduction by requiring that the con-

ditional class probabilities on training and test set match. That is, for classi-

fiers generating a distribution of the form y′i ∼ p(y′i|x′i, w) they require that the

marginal class probability on the test set matches the empirical class probability

on the training set. Again, this can be cast in terms of distribution matching via

µ[g ◦ f(X)] =
1

m

m∑
i=1

〈g ◦ f(xi), ·〉 =
1

m′

m′∑
i=1

〈g ◦ f(x′i), ·〉 = µ[g ◦ f(X ′)]

Here g(χ) = 1
1+e−χ

denotes the likelihood of y = 1 in logistic regression for the

model p(y|χ) = 1
1+e−yχ

. Note that instead of choosing the logistic transform g

we could have picked a large number of other transformations. Indeed, we may

strengthen the requirement above to hold for all g in some given function class G
as follows:

D(f(X), f(X ′)) := sup
g∈G

[
1

m

m∑
i=1

g ◦ f(xi)− 1

m′

m′∑
i=1

g ◦ f(x′i)

]
(6.10)

If we restrict ourselves to g having bounded norm in a Reproducing Kernel Hilbert

Space we obtain exactly the criterion (2.26). Gretton et al. (2008) show by

duality that this is equivalent to the distance proposed in (6.10). In other words,

generalising distribution matching to apply to transforms other than the logistic

leads us directly to our new transduction criterion.

6.4.3 Distribution Matching for Regression

A similar idea for transduction was proposed by Le et al. (2006) in the context

of regression: requiring that both means and predictive variances of the estimate

agree between training and test set. For a heteroscedastic regression estimate

this constraint between training and test set is met simply by ensuring that

the distributions over first and second order moments of a Gaussian exponential

family distribution match. The same goal can be achieved by using a polynomial

kernel of second degree on the estimates, which shows that regression transduction

can be viewed as a special case.
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Figure 6.1: Score distribution of f(x) = 〈w, x〉+ b on the ’iris’ toy dataset. From

left to right: induction scores on the training set; test set; transduction scores on

the training set; test set; Note that while the margin distributions on training and

test set are very different for induction, the ones for transduction match rather

well. It results in a 10% reduction of the misclassification error.

6.4.4 Large Margin Hypothesis

A key assumption in transduction is that a good hypothesis is characterised by

a large margin of separation on both training and test set. Typically, the latter

is enforced by some nonconvex function, e.g. of the form max(0, 1− |f(x)|), thus

leading to a nonconvex optimisation problem. Generalisations of this approach to

multiclass and structured estimation settings is not entirely trivial and requires a

number of heuristic choices (e.g. how to define the equivalent of the hat function

max(0, 1− |χ|) that is commonly used in binary transduction).

Instead, if we require that the distribution of values f(x, ·) on X ′ match those

on X, we automatically obtain a loss function which enforces the large margin

hypothesis whenever it is actually achievable on the training set. After all, assume

that f(X) exhibits a large margin of separation whereas f(X ′) does not. In this

case, D(f(X), f(X ′)) is large and we obtain better risk minimisers by minimising

the discrepancy of the distributions. The key point is that by using a two-sample

criterion it is possible to obtain such criteria automatically without the need for

heuristic choices. See Figure 6.1 for illustrations of this idea.

6.5 Algorithm

Streaming Approximation In general, minimising D(f(X), f(X ′)) is com-

putationally infeasible since the estimation of the distributional distance requires

access to f(X) and f(X ′) rather than evaluations on a small sample. However,

for Hilbert-Space based distance measures it is possible to find an online estimate
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of D as follows:

D(p, p′) := ‖µ[p]− µ[p′]‖2
=
∥∥Ex∼p(x)[k(x, ·)]− Ex′∼p′(x′)[k(x′, ·)]∥∥ (6.11)

= Ex,x̃∼pEx′,x̃′∼p′ [k(x, x̃)− k(x, x̃′)− k(x̃, x′) + k(x′, x̃′)]

(6.12)

The symbol (̃.) denotes a second set of observations drawn from the same distri-

bution. Note that (6.12) decomposes into a sum over 4 kernel functions, each of

which takes as arguments a pair of instances drawn from p and p′ respectively.

Hence we can find an unbiased estimate via

D̂ :=
1

m

m∑
i=1

Di where

Di := [k(f(xi), f(xi+1))− k(f(xi), f(x′i+1))− k(f(xi+1), f(x′i)) + k(f(x′i), f(x′i+1))]

(6.13)

under the assumption that X and X ′ contain i.i.d. data. Note that the assump-

tion automatically fails if there is sequential dependence within the sets X or X ′

(e.g. we see all positive labels before we see the negative ones). In this case it is

necessary to randomise X and X ′.

Stochastic Gradient Descent The fact that the estimator of the distance D̂

decomposes into an average over a function of pairs from the training and test set

respectively means that we can use Di as a stochastic approximation. Applying

the same reasoning to the loss function in the regularised risk (6.1) we obtain the

following loss

l̄(xi, xi+1, yi, yi+1, x
′
i, x
′
i+1, f) (6.14)

:= l(xi, yi, f) + l(xi+1, yi+1, f) + 2λΩ[f ]+

γ[k(f(xi), f(xi+1))− k(f(xi), f(x′i+1))− k(f(xi+1), f(x′i)) + k(f(x′i), f(x′i+1))]

as a stochastic estimate of the objective function defined in (6.5). This suggests

Algorithm 6. Note that at no time we need to store past data even for computing

the distance between both distributions.

Remark: The streaming formulation does not impose any in-principle limitation

regarding matching sample sizes. The only difference is that in the unmatched

case we want to give samples from both distributions different weights (1/m

and 1/m’ respectively), e.g. by modifying the sampling procedure (see Table 3,

Section 6.7).
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Algorithm 6 Transduction via Distribution Matching

Input: Convex set A, objective function l̄

Initialize w = 0

for t = 1 to N do

Sample (xi, yi), (xi+1, yi+1) ∼ p(x, y) and x′i, x
′
i+1 ∼ p(x)

Update w ← w − ηt∂w l̄(xi, xi+1, yi, yi+1, x
′
i, x
′
i+1, f) where f(x) = 〈φ(x), w〉

Project w onto A via w ← argminw̄∈A ‖w − w̄‖.
end for

Concave Convex Procedure Alternatively, the Concave Convex Procedure

(CCCP) (Section 2.6.1) can be used to find an approximate solution of the prob-

lem in (6.5) by solving a succession of convex programs. CCCP has been used ex-

tensively in almost any other transductive algorithms to deal with non-convexity

of the objective function.

In order to minimise an additively decomposable objective function as in our

transductive estimation, we could use stochastic gradient descent on the convex

upper bound. Note that here the convex upper bound is given by a sum over

the convex upper bounds for all terms. This strategy, however, is deficient in a

significant aspect: the convex upper bounds on each of the loss terms become

increasingly loose as we move f away from the current point of approximation. It

would be considerably better if we updated the upper bound after every stochastic

gradient descent step. This variant, however, is identical to stochastic gradient

descent on the original objective function due to the following:

∂xF (x)|x=x0 = ∂xF̄ (x, x0)|x=x0 = ∂xG(x)|x=x0 − ∂xH(x)|x=x0 for all x0. (6.15)

In other words, in order to compute the gradient of the upper bound we need not

compute the upper bound itself. Instead we may use the nonconvex objective

directly, hence we did not pursue CCCP approach and Algorithm 6 applies.

6.6 Related Work

The concept of distribution matching has also been exploited in covariate shift or

domain adaptation setting (Huang et al., 2007; Bickel et al., 2007; Sugiyama et al.,

2008; Nguyen et al., 2008; Kanamori et al., 2009). Domain adaptation deals with

the problem when data distribution in the test (target) domain is different from

the one in the training (source) domain. If we consider labelled instances of the
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source domain as the labelled training data and unlabelled instances of the target

domain as the unlabelled test data, we end up at the transductive setting. We

could emphasize subtle differences between transductive and domain adaptation

settings, for example, the amount of labelled data in transductive learning is small

but large in domain adaptation and the amount of unlabelled data in transductive

learning could be arbitrarily large. Noting the closeness between transductive and

domain adaptation learning settings, it is not surprising that there has been some

work extending transductive learning methods for domain adaptation and vice

versa.

6.7 Experiments

To demonstrate the applicability of our approach, we apply transduction to binary

and multiclass classification both on toy datasets from the UCI repository 1 and

the LibSVM site 2, plus a larger scale multi-category classification dataset with

3.2 · 106 observations. We also perform experiments on a structured estimation

problem, i.e. Japanese named entity recognition task and CoNLL-2000 base NP

chunking task.

Algorithms Since we are not aware of other transductive algorithms which

can be applied easily to all the problems we consider, we choose problem-specific

transduction algorithms as competitors. Multi Switch Transductive SVM (Mul-

tiSwitch) is used for binary classification (Sindhwani & Keerthi, 2006). This

method is a variant of transductive SVM algorithm (Joachims, 1999) tailored

for linear semi-supervised binary classification on large and sparse datasets and

involves switching of more than a single pair of labels at a time. For multiclass

categorisation we pick a Gaussian processes based transductive algorithm with

distribution matching term (GPDistMatch) (Gärtner et al., 2006).

We use stochastic gradient descent for optimisation in both inductive and

transductive settings for binary and multiclass losses. More specifically, for trans-

duction we use the Gaussian RBF kernel to compare distributions in (6.13). Note

that, in the multiclass case, the additional distribution matching term measures

the distance between multivariate functions.

1http://archive.ics.uci.edu/ml/
2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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Small Scale Experiments We used the following datasets: binary (breast-

cancer, derm, optdigits, wdbc, ionosphere, iris, specft, pageblock, tae, heart,

splice, adult, australian, bupa, cmc, german, pima, tic, yeast, sonar, cleveland,

svmguide3 and musk) from the UCI repository and multiclass (usps, satimage,

segment, svmguide2, vehicle). The data was preprocessed to have zero mean and

unit variance.

Since we anticipate the relevant length scale in the margin distribution to be

in the order of 1 (after all, we use a loss function, i.e. a hinge loss, which uses a

margin of 1) we pick a Gaussian RBF kernel width of 0.2 for binary classification.

Moreover, to take scaling in the number of classes into account we choose a

kernel width of 0.1
√
c for multicategory classification. Here c denotes the number

of classes. We could indeed vary this width but we note in our experiments that

the proposed method is not sensitive to this kernel width.

We split data equally into training and test sets, performing model selection

on the training set and assessing performance on the test set. In these small scale

experiments, we tune hyperparameters via 5-fold cross validation on the entire

training set. The whole procedure was then repeated 5 times to obtain confidence

bounds. More specifically, in the model selection stage, for transduction we adjust

the regularisation λ and the transductive weight term γ (obviously, for inductive

inference we only need to adjust λ). For MultiSwitch Transduction the positive

class fraction of unlabelled data was estimated using the training set (Sindhwani

& Keerthi, 2006). Likewise, the two associated regularisation parameters were

tuned on the training set. For GP transduction both the regularisation and

divergence parameters were adjusted.

Results The experimental results are summarised in Figure 6.2 for a binary

setting and in Table 6.1 for a multiclass problem. In 23 binary datasets, trans-

duction outperforms the inductive setup in 20 of them. Arguably, our proposed

transductive method performs on a par with state-of-the-art transductive ap-

proach for each learning problem. In the binary estimation, out of 23 datasets,

our method performs significantly worse than MultiSwitch transduction algo-

rithm in 4 datasets (adult, bupa, pima, and svmguide3) and significantly better

on 2 datasets (ionosphere and pageblock), using a one-sided paired t-test with

95% confidence. Overall, both algorithms are very comparable. The advantage

of our approach is that it is ‘plug and play ’, i.e. for different problems we only

need to use the appropriate supervised loss function. The distribution matching

penalty itself remains unchanged. Further, by casting the transductive solution
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as an online optimisation method, our approach scales well.

Figure 6.2: Error rate on 23 binary estimation problems. Left panel, DistMatch

against Induction; Right panel, DistMatch against MultiSwitch. DistMatch:

distribution matching (ours) and MultiSwitch: Multi switch transductive SVM,

(Sindhwani & Keerthi, 2006). Height of the box encodes standard error of Dist-

Match and width of the box encodes standard error of Induction / MultiSwitch.

Larger Scale Experiments Since one of the key points of our approach is that

it can be applied to large problems, we performed transduction on the DMOZ on-

tology 1 of topics. We selected the top 2 levels of the topic tree (575) and removed

all but the 100 most frequent ones, since a large number of topics occurs only

very rarely. This left us with 89.2% of the initial webpages. As feature vectors we

used the standard bag of words representation of the web page descriptions with

TF-IDF weighting. The dictionary size (and therefore the dimensionality of our

features) is 1,319,489. For these larger scale experiments, we use a dataset of up

to 3.2 · 106 observations. To our knowledge, our proposed transduction method

is the only one that scales very well due to the stochastic approximation.

For each experiment, we split data into training and test sets. Model selection

is perform on the training set by putting aside part of the training data as a

validation set which is then used exclusively for tuning the hyperparameters. In

large scale transduction two issues matter: firstly, the algorithm needs to be

scalable with respect to the training set size. Secondly, we need to be able to

scale the algorithm with respect to the test set. Both results can be seen in

Tables 6.2 and 6.3. Note that Table 6.2 uses an equal split between training and

test sets, while Table 6.3 uses an unequal split where the test set has many more

observations. We see that the algorithm improves with increasing data size, both

1http://www.dmoz.org/

http://www.dmoz.org/
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Table 6.1: Error rate ± standard deviation on a multi-category estimation prob-

lem. DistMatch: distribution matching (ours) and GPDistMatch: Gaussian

Process transduction, (Gärtner et al., 2006).

dataset m classes Induction DistMatch GPDistMatch

usps 730 10 0.143±0.021 0.125±0.019 0.140±0.034

satimage 620 6 0.190±0.052 0.186±0.037 0.212±0.034

segment 693 7 0.279±0.090 0.206±0.047 0.181±0.020

svmguide2 391 3 0.280±0.028 0.256±0.020 0.231±0.018

vehicle 423 4 0.385±0.070 0.333±0.048 0.336±0.060

Table 6.2: Error rate on the DMOZ ontology for increasing training / test set

sizes.

training / test set size 50,000 100,000 200,000 400,000 800,000 1,600,000

induction 0.365 0.362 0.337 0.299 0.300 0.268

transduction 0.344 0.326 0.330 0.288 0.263 0.250

Table 6.3: Error rate on the DMOZ ontology for fixed training set size of 100,000

samples.

test set size 100,000 200,000 400,000 800,000 1,600,000

induction 0.358 0.358 0.357 0.357 0.357

transduction 0.326 0.316 0.306 0.322 0.329

Table 6.4: Accuracy, precision, recall and Fβ=1 score on the Japanese named

entity task.

Accuracy Precision Recall F1 Score

induction 96.82 84.15 72.49 77.89

transduction 97.13 84.46 75.30 79.62

Table 6.5: Accuracy, precision, recall and Fβ=1 score on the CoNLL-2000 base

NP chunking task.

Accuracy Precision Recall F1 Score

induction 95.72 90.99 90.72 90.85

transduction 96.05 91.73 91.97 91.85
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for training and test sets. In the latter case, only up to some point: for the larger

test sets (800,000 and 1,600,000) it decreases (although still stays better than

inductive’s). We suspect that a location-dependent transduction score would be

useful in this context – i.e. instead of only minimising the discrepancy between

decision function values on training and test set D(f(X), f(X ′)) we could also

introduce local features D((X, f(X)), (X ′, f(X ′))).

Japanese Named Entity Recognition Experiments A key advantage of

our transduction algorithm is it can be applied to structured estimation without

modification. We used the Japanese named-entity recognition dataset provided

with the CRF++ toolkit 1. The data contains 716 Japanese sentences with 17

annotated named entities. The task is to detect and classify proper nouns and

numerical information in a document into categories such as names of persons,

organizations, locations, times and quantities. Conditional random fields (CRFs)

(Lafferty et al., 2001) are considered to be the state-of-the-art framework for this

sequential labelling problem (McCallum & Li, 2003).

As the basis of our implementation we used Leon Bottou’s CRF code 2. We

use simple 1D chain CRFs with first order Markov dependency between name

tags. That is, we have clique potentials joining adjacent labels (yi, yi+1), but

which are independent of the text itself, and clique potentials joining words and

labels (xi, yi). Since the former do not depend on the test data there is no need

to enforce distribution matching. For the latter, though, we want to enforce that

clique potentials are distributed in the same way between training and test set.

The stationarity assumption in the potentials implies that this needs to hold

uniformly over all such cliques.

Since the number of tokens per sentence is variable, i.e. the chain length itself

is a random variable, we perform distribution matching on a per-token basis —

we oversample each token 10 times in our experiments. This strikes a balance

between statistical accuracy and computational efficiency. The additional distri-

bution matching term is then measuring the distance between these over-sampled

clique potentials. As before, we split data equally into training and test sets and

put aside part of the training data as a validation set which is used exclusively

for tuning the hyperparameters. We relied on the feature template provided in

CRF++ for this task. We report results in Table 6.4, that is precision (fraction

of name tags which match the reference tags), recall (fraction of reference tags re-

1http://crfpp.sourceforge.net/
2http://leon.bottou.org/projects/sgd

http://crfpp.sourceforge.net/
http://leon.bottou.org/projects/sgd
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turned), and their harmonic mean, Fβ=1 are reported. Transduction outperforms

induction in all metrics.

CoNLL-2000 Base NP Chunking Experiments Our second structured es-

timation experiment is the CoNLL-2000 base NP chunking dataset (Sang & Buch-

holz, 2000) as provided in the CRF++ toolkit. The task is to divide text into

syntactically correlated parts. The dataset has 900 sentences and the goal is to

label each word with a label indicating whether the word is outside a chunk,

starts a chunk, or continues a chunk.

Similarly to Japanese named entity recognition task, 1D chain CRFs with only

first order Markov dependency between chunk tags are modelled. We considered

binary-valued features which depend on the words, part-of-speech tags, and labels

in the neighbourhood of a given word as encoded in the CRF++ feature template.

The same experimental setup as in named entity experiments is used. The results

in terms of accuracy, precision, recall and F1 score are summarised in Table 6.5.

Again, transduction outperforms the inductive setup.

6.8 Conclusion

We proposed a transductive estimation algorithm which is a) simple, b) general

c) scalable and d) works well when compared to the state of the art algorithms

applied to each specific problem. Not only is it useful for classical binary and

multiclass categorisation problems but it also applies to ontologies and structured

estimation problems. It is not surprising that it performs well comparably to

existing algorithms, since they can, in many cases, be seen as special instances of

the general purpose distribution matching setting.

Extensions of distribution matching beyond simply modelling f(X) and in-

stead, modelling (X, f(X)), that is, the introduction of local features, obtaining

good theoretical bounds on the shrinkage of the function class via the distribution

matching constraint, and applications to other function classes (e.g. balancing de-

cision trees) are subject of future research.



Chapter 7

Optimal Tiering as a Flow

Problem

In this chapter, we present a scalable algorithm for performing storage and index-

ing management in the context of webpage tiering. The goal is to allocate pages

to caches such that the most frequently accessed pages reside in the caches with

the smallest latency whereas the least frequently retrieved pages are stored in

the backtiers of the caching system. This indexing and storage problem is closely

linked with a larger class of parametric flow problems, as we illustrate below.

7.1 Motivating Examples

Parametric flow problems have been well-studied in operations research (Gusfield

& Tardos, 1994). It has received a significant amount of contributions and has

been applied in many problem areas such as database record segmentation (Eisner

& Severance, 1976), energy minimisation for computer vision (Kolmogorov et al.,

2007), critical load factor determination in two-processor systems (Stone, 1978),

end-of-session baseball elimination (Gusfield & Martel, 1992), and most recently

by Zhang et al. (2004, 2005a,b) in product portfolio selection. In other words, it

is a key technique for many estimation and assignment problems. Unfortunately

many algorithms proposed in the literature are geared towards thousands to mil-

lions of objects rather than billions, as is common in Internet-scale problems.

Our motivation for solving parametric flow is the problem of webpage tiering

for search engine indices. While our methods are general and could be applied to a

range of other machine learning and optimisation problems, we focus on webpage

tiering as the illustrative example in this chapter. The rationale for choosing this

125
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application is threefold: firstly, it is a real problem in search engines. Secondly, it

provides very large datasets. Thirdly, in doing so we introduce a new problem to

the machine learning community. That said, our approach would also be readily

applicable to very large scale versions of the problems described in Eisner &

Severance (1976); Stone (1978); Gusfield & Martel (1992); Zhang et al. (2004).

The specific problem that will provide our running example is that of assigning

webpages to several tiers of a search engine cache such that the time to serve a

query is minimised. For a given query, a search engine returns a number of

documents (typically 10). The time it takes to serve a query depends on where

the documents are located. The first tier (or cache) is the fastest (using premium

hardware, etc. thus also often the smallest) and retrieves its documents with

little latency. If even just a single document is located in a back tier, the delay

is considerably increased since now we need to search the larger (and slower)

tiers until the desired document is found. Hence it is our goal to assign the

most popular documents to the fastest tiers while taking the interactions between

documents into account.

7.2 Problem Definition

We would like to allocate documents d ∈ D into k tiers of storage at our disposal.

Moreover, let q ∈ Q be the queries arriving at a search engine, with finite values

vq > 0 (e.g. the probability of the query, possibly weighted by the relevance of

the retrieved results), and a set of documents Dq retrieved for the query. This

input structure is stored in a bipartite graph G with vertices V = D ∪ Q and

edges (d, q) ∈ E whenever document d should be retrieved for query q. In the

following we assume that there is a unique list of r pages that are retrieved for a

query. This is decidedly not true in practice. Instead, we can expect to see some

change in the results for a given query, due to localization, user customisation,

browser capabilities, a change in page relevance, different versions of the search

engine, among others. Such a case is not a problem. All that is required is to

treat each instance of the query that returns a different result set as if it were

a different query. Since our algorithm does not require the actual query ID this

can be accomplished easily.

The k tiers, with tier 1 as the most desirable and k the least (most costly

for retrieval), form an increasing sequence of cummulative capacities Ct, with

Ct indicating how many pages can be stored by tiers t′ ≤ t together. Without
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loss of generality, assume Ck−1 < |D| (that is, the last tier is required to hold

all documents, or the problem can be reduced). Finally, for each t ≥ 2 we

assume that there is a penalty pt−1 > 0 incurred by a tier-miss at level t (known

as “fallthrough” from tier t − 1 to tier t). And since we have to access tier 1

regardless, we set p0 = 0 for convenience. For instance, retrieving a page in tier

3 incurs a total penalty of p1 + p2.

7.2.1 Related Work

Optimisation of index structures and data storage is a key problem in building

an efficient search engine. Much work has been invested into building efficient

inverted indices which are optimised for query processing (Yan et al., 2009; Fagin,

1996). These papers all deal with the issue of optimizing the data representation

for a given query and how an inverted index should be stored and managed for

general queries. In particular, Fagin (1996); Persin et al. (1996) address the

problem of computing the top-k results without scanning over the entire inverted

lists. Recently, machine learning algorithms have been proposed (Goel et al.,

2008) to improve the ordering within a given collection beyond the basic inverted

indexing setup (Fagin, 1996).

A somewhat orthogonal strategy to this is to decompose the collection of

webpages into a number of disjoint tiers (Risvik et al., 2003) ordered in decreasing

level of relevance. That is, documents are partitioned according to their relevance

for answering queries into different tiers of (typically) increasing size. This leads

to putting the most frequently retrieved or the most relevant (according to the

value of query, the market or other operational parameters) pages into the top

tier with the smallest latency and relegating the less frequently retrieved or the

less relevant pages into bottom tiers. Since queries are often carried out by

sequentially searching this hierarchy of tiers, an improved ordering minimises

latency, improves user satisfaction, and it reduces computation.

A naive implementation of this approach would simply assign a value to each

page in the index and arrange them such that the most frequently accessed pages

reside in the highest levels of the cache. Unfortunately this approach is subopti-

mal: in order to answer a given query well a search engine typically does not only

return a single page as a result but rather returns a list of r (typically r = 10)

pages. This means that if even just one of these pages is found at a much lower

tier, we either need to search the backtiers to retrieve this page or alternatively

we need to sacrifice result relevance.
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At first glance, the problem is daunting: we need to take all correlations

among pages induced by user queries into account. Moreover, for reasons of

practicality we need to design an algorithm which is linear in the amount of data

presented (i.e. the number of queries) and whose storage requirements are only

linear in the number of pages. Finally, we would like to obtain guarantees in

terms of performance for the assignment that we obtain from the algorithm. Our

problem, even for r = 2, is closely related to the weighted k-densest subgraph

problem, which is NP hard (Papadimitriou & Steiglitz, 1982).

7.2.2 Optimisation Problem

Since the problem we study is somewhat more general than the parametric flow

problem we give a self-contained derivation of the problem and derive the more

general version beyond Gusfield & Tardos (1994).

We denote the result set for query q by Dq := {d : (d, q) ∈ G}, and similarly,

the set of queries seeking for a document d by Qd := {q : (d, q) ∈ G}. For a

document d we denote by zd ∈ {1, . . . , k} the tier storing d. Define

uq := max
d∈Dq

zd (7.1)

as the number of cache levels we need to traverse to answer query q. In other

words, it is the document found in the worst tier which determines the cost of

access. Integrating the optimisation over uq we may formulate the tiering problem

as an integer program:

minimise
z,u

∑
q∈Q

vq

uq−1∑
t=1

pt (7.2a)

subject to zd ≤ uq ≤ k for all (q, d) ∈ G (7.2b)∑
d∈D

{zd ≤ t} ≤ Ct ∀ t. (7.2c)

Note that we replaced the maximisation condition (7.1) by a linear inequality

in preparation for a reformulation as an integer linear program. Obviously, the

optimal uq for a given z will satisfy (7.1).

Lemma 44 Assume that Ck ≥ |D| > Ck−1. Then there exists an optimal solu-

tion of (7.2) such that
∑

d {zd ≤ t} = Ct for all 1 ≤ t < k.

Proof Assume that z∗, v∗ is the optimal solution. Note that the objective func-

tion only depends on v∗ directly. If the capacity constraint is not met with
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equality we may decrease the tiers of an arbitrary set of pages until the con-

straints are met. Since this only relaxes the constraints on v∗ further while not

increasing the objective function, the solution is still optimal.

In the following we address several issues associated with the optimisation

problem:

A) Eq. (7.2) is an integer program and consequently it is discrete and noncon-

vex. We show that there exists a convex reformulation of the problem.

B) It is at a formidable scale (often |D| > 109). Section 7.3.4 presents a

stochastic gradient descent procedure to solve the problem in few passes

through the database.

C) We have insufficient data for an accurate tier assignment for pages associ-

ated with tail queries. Section 7.5.2 addresses the problem by a smoothing

estimator for the tier index of a page.

7.2.3 Integer Linear Program

We now replace the selector variables zd and uq by binary variables via a “ther-

mometer” code. Let

x ∈ {0; 1}D×(k−1) subject to xdt ≥ xd,t+1 for all d, t (7.3a)

y ∈ {0; 1}Q×(k−1) subject to yqt ≥ yq,t+1 for all q, t (7.3b)

be index variables. Thus we have the one-to-one mapping zd = 1 +
∑

t xdt and

xdt = {zd > t} between z and x. For instance, for k = 5, a middle tier z = 3

maps into x = (1, 1, 0, 0) (requiring two fallthroughs), and the best tier z = 1

corresponds to x = (0, 0, 0, 0). The mapping between u and y is analogous. The

constraint uq ≥ zd can simply be rewritten coordinate-wise yqt ≥ xdt.

Finally, the capacity constraints assume the form
∑

d xdt ≥ |D| − Ct. That

is, the number of pages allocated to higher tiers are at least |D| − Ct. Define

remaining capacities C̄t := |D| −Ct and use the variable transformation (7.1) we
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have the following integer linear program:

minimise
x,y

v>yp (7.4a)

subject to xdt ≥ xd,t+1 and yqt ≥ yq,t+1 and yqt ≥ xdt for all (q, d) ∈ G (7.4b)∑
d xdt ≥ C̄t for all 1 ≤ t ≤ k − 1 (7.4c)

x ∈ {0; 1}D×(k−1) ; y ∈ {0; 1}Q×(k−1) (7.4d)

where p = (p1, . . . , pk−1)> and v = (v1, . . . , v|Q|)
> are column vectors, and y a

matrix (yqt). The advantage of (7.4) is that while still discrete, we now have

linear constraints and a linear objective function. The only problem is that the

variables x and y need to be binary.

Lemma 45 The solutions of (7.2) and (7.4) are equivalent.

Proof Firstly, the variable sets (z, u) and (x, y) are equivalent (we have an ex-

plicit bijection). The same applies to the constraints between them — eq. (7.4b)

implies that the retrieval tier for query q needs to be at least as high as that of

the highest page. Finally, the objective function sums over all tier levels from 2

to k such that a document found at tier t will contribute via p2 + . . .+ pt. Hence

equality holds.

7.2.4 Hardness

Before discussing convex relaxations and approximation algorithms it is worth-

while to review the hardness of the problem: consider only two tiers, and a case

where we retrieve only two pages per query. The corresponding graph has ver-

tices D and edges (d, d′) ∈ E, whenever d and d′ are displayed together to answer

a query. In this case the tiering problem reduces to one of finding a subset of

vertices D′ ⊂ D such that the induced subgraph has the largest number (possibly

weighted) of edges subject to the capacity constraint |D′| ≤ C.

For the case of k pages per query, simply assume that k − 2 of the pages are

always the same. Hence the problem of finding the best subset reduces to the

case of 2 pages per query. This problem is identical to the k-densest subgraph

problem which is known to be NP hard (Papadimitriou & Steiglitz, 1982).
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Figure 7.1: k-densest subgraph reduction. Vertices correspond to URLs and

queries correspond to edges. Queries can be served whenever the corresponding

URLs are in the cache. This is the case whenever the induced subgraph contains

the edge.

7.3 The Model

The key idea in solving (7.4) is to relax the capacity constraints for the tiers. This

renders the problem totally unimodular and therefore amenable to a solution by

a linear program. We replace the capacity constraint by a partial Lagrangian.

This does not ensure that we will be able to meet the capacity constraints exactly

anymore. Instead, we will only be able to state ex-post that the relaxed solution

is optimal for the observed capacity distribution. Moreover, we are still able to

control capacity by a suitable choice of the associated Lagrange multipliers.

7.3.1 Linear Program

Instead of solving (7.4) we study the linear program:

minimise
x,y

v>yp− 1>xλ subject to xdt ≥ xd,t+1 and yqt ≥ yq,t+1 (7.5)

yqt ≥ xdt for (q, d) ∈ G and xdt, yqt ∈ [0, 1]

Here λ = (λ1, . . . , λk−1)> act as Lagrange multipliers λt ≥ 0 for enforcing capacity

constraints and 1 denotes a column of |D| ones. We now relate the solution of

(7.5) to that of (7.4).

Lemma 46 For any choice of λ with λt ≥ 0 the linear program (7.5) has an

integral solution, i.e. there exists some x∗, y∗ satisfying x∗dt, y
∗
qt ∈ {0; 1} which

minimise (7.5). Moreover, for C̄t =
∑

d x
∗
dt the solution (x∗, y∗) also solves (7.4).
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Proof We first show that (7.5) has an integral solution for all choices of λ. This

holds since constraints are totally unimodular: the constraint matrix has only

one 1 and one −1 entry per row. Integrality follows Heller & Tompkins (1956).

By construction, for the choice of C̄t =
∑

d x
∗
dt the condition (7.4c) is met

with equality, hence the integral solution of (7.5) is also the solution of a linear

program arising from a relaxation of the integer linear program (7.4) to a linear

program. However, since the relaxation has an integral solution it follows that

(x∗, y∗) are also optimal for (7.4).

We have succeeded in reducing the complexity of the problem to that of a linear

program, yet it is still formidable and it needs to be solved to optimality for an

accurate caching prescription. Moreover, we need to adjust λ such that we satisfy

the desired capacity constraints (approximately).

Lemma 47 Denote by L∗(λ) the value of (7.5) at the solution of (7.5) and let

L(λ) := L∗(λ) +
∑

t C̄tλt. Hence L(λ) is concave in λ and moreover, L(λ) is

maximised for a choice of λ where the solution of (7.5) satisfies the constraints

of (7.4).

Proof Subtracting
∑

t C̄tλt from the objective of (7.5) yields a reduced Lagrange

function which enforces the constraint
∑

d xdt ≥ C̄t. As such, it is concave in λ

and at its maximum the capacity constraint is satisfied.

Note that while the above two lemmas provide us with a guarantee that for every

λ and for every associated integral solution of (7.5) there exists a set of capacity

constraints for which this is optimal and that such a capacity satisfying constraint

can be found efficiently by concave maximisation, they do not guarantee the

converse: not every capacity constraint can be satisfied by the convex relaxation.

7.3.2 Graph Cut Equivalence

It is well known that the case of two tiers (k = 2) can be relaxed to a min-cut,

max-flow problem (Gusfield & Tardos, 1994; Ford & Fulkerson, 1956). The trans-

formation works by designing a bipartite graph between queries q and documents

d. All documents are connected to the source s by edges with capacity λ and

queries are connected to the sink t with capacity (1− vq). Documents d retrieved

for a query q are connected to q with capacity ∞.

Figure 7.2 provides an example of such a maximum-flow, minimum-cut graph

from source s to sink t. The conversion to several tiers is slightly more involved.
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Figure 7.2: Left: maximum flow problem for a problem of 4 pages and 3 queries.

The minimum cut of the directed graph needs to sever all pages leading to a query

or alternatively it needs to sever the corresponding query incurring a penalty of

(1− vq). This is precisely the tiering objective function for the case of two tiers.

Right: the same query graph for three tiers. Here the black nodes and dashed

edges represent a copy of the original graph — additionally each page in the

original graph also has an infinite-capacity link to the corresponding query in the

additional graph.

Denote by vdi vertices associated with document d and tier i and moreover, denote

by wqi vertices associated with a query q and tier i. Then the graph is given by

edges (s, vdi) with capacities λi; edges (vdi, wqi′) for all (document, query) pairs

and for all i ≤ i′, endowed with infinite capacity; and edges (wqi, t) with capacity

(1− vq).
As with the simple caching problem, we need to impose a cut on any query

edge for which not all incoming page edges have been cut. The key difference is

that in order to benefit from storing pages in a better tier we need to guarantee

that the page is contained in the lower tier, too.

7.3.3 Variable Reduction

We now simplify the relaxed problem (7.5) further by reducing the number of

variables, without sacrificing integrality of the solution. A first step is to substi-

tute yqt = maxd∈Dq xdt, to obtain an optimisation problem over the documents
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alone:

minimise
x

v>
(

max
d∈Dq

xdt

)
p− 1>xλ subject to xdt ≥ xdt′ for t′ > t and xdt ∈ [0, 1]

(7.6)

Note that the monotonicity condition yqt ≥ yqt′ for t′ > t is automatically inher-

ited from that of x. The solution of (7.6) is still integral since the problem is

equivalent to one with integral solution.

Lemma 48 We may scale pt and λt together by constants βt > 0, such that

p′t/pt = βt = λ′t/λt. The resulting solution of this new problem (7.6) with (p′, λ′)

is unchanged.

Proof We introduce Lagrange multipliers γdt due to constraints of the form∑k−2
t=1 γdt(xdt − xd,t+1), which can be rewritten as

∑k−1
t=1 αdtxdt. At optimality we

know for a given (p, λ) that the gradient of (7.6) needs to match the Lagrange

multipliers (αdt). Denote by x∗ and α∗ the solution of the optimisation problem

and the corresponding Lagrange multipliers. Rescaling λ and p as per assumption

we see that by rescaling α the optimality conditions still hold. Hence x∗ must

also solve (7.5) for (p′, λ′).

Essentially, problem (7.5) as parameterised by (p, λ) yields solutions which form

equivalence classes. Consequently for the convenience of solving (7.5), we may

assume p′t = 1 for t ≥ 1. We only need to consider the original p for evaluating

the objective using solution z (thus, same observed capacities Ct).

Since (7.5) is a relaxation of (7.4) this reformulation can be extended to the in-

teger linear program, too. Moreover, under reasonable conditions on the capacity

constraints, there is more structure in λ.

Lemma 49 Assume that C̄t is monotonically decreasing and that pt = 1 for

t ≥ 1. Then any choice of λ satisfying the capacity constraints is monotonically

non-increasing.

Proof If λt = λt+1 we arrive at a solution where xdt = xd,t+1 since in this case the

functions concerning both variables are identical. Moreover, choosing λt+1 > λt

can only lead to an increase in xd,t+1. However, since xdt ≥ xd,t+1 by constraint,

this means that for any λt+1 ≥ λt we have xd,t+1 = xdt.

Then we may choose λ′t = λ′t+1 = λt+λt+1

2
and obtain the same solution with

a nonincreasing sequence of λt: it has the same value of the objective function

and moreover the joint subgradients are identical since terms in λt and λt+1 are
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added. A recursive averaging procedure generates a nonincreasing sequence of

equivalent values for λ which completes the proof.

One interpretation of this is that, unless the tiers are increasingly inexpensive,

the optimal solution would assign pages in a fashion yielding empty middle tiers

(the remaining capacities C̄t not strictly decreasing). This monotonicity simpli-

fies the problem. Consequently, we exploit this fact to complete the variable

reduction.

Define δλi := λi − λi+1 for i ≥ 1 (all non-negative by virtue of Lemma 49)

and

fλ(χ) := −λ1χ+
k−2∑
i=1

δλi max(0, i− χ) for χ ∈ [0, k-1]. (7.7)

Note that by construction ∂χfλ(χ) = −λi whenever χ ∈ (i − 1, i). The function

fλ is clearly convex, which helps describe our tiering problem via the following

convex program

minimise
z

v>
(

max
d∈Dq

zd

)
+
∑
d

fλ(zd − 1) for zd ∈ [1, k] (7.8)

We now use only one variable per document. Moreover, the convex constraints are

simple box constraints. This simplifies convex projections, as needed for online

programming.

Lemma 50 The solution of (7.8) is equivalent to that of (7.5).

Proof We use the following three properties:

(A) (7.8) is convex, has a unique minimum value.

(B) There is an injective mapping from any set of variables in (7.8) to the ther-

mometer code of (7.5) with the property that the values of the objective

function coincide in this case. From this it follows that the minimum of

(7.8) cannot exceed the minimum of (7.5).

(C) For an integral set of variables in (7.5) there is an injective map to (7.8)

such that, again, the objective functions coincide. From this it follows that

the minimum of (7.5) cannot exceed the minimum of (7.8).

Combination of (B) and (C) proves the claim.
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Algorithm 7 Tiering Optimisation

Initialize all zd = 0

Initialize n = 100

for i = 1 to MAXITER do

for all q ∈ Q do

η = 1√
n

(learning rate)

n← n+ 1 (increment counter)

Update z ← z − η∂x`q(z)

Project z to [1, k]D via

zd ← max(1,min(k, zd))

end for

end for

7.3.4 Online Algorithm

We now turn our attention to a fast algorithm for minimising (7.8). While greatly

simplified relative to (7.2) it still remains a problem of billions of variables. The

key observation is that the objective function of (7.8) can be written as sum over

the following loss functions

lq(z) := vq max
d∈Dq

zd +
1

|Q|
∑
d

fλ(zd − 1) (7.9)

where |Q| denotes the cardinality of the query set. The transformation suggests

a simple stochastic gradient descent optimisation algorithm: traverse the input

stream by queries, and update the values of xd of all those documents d that

would need to move into the next tier in order to reduce service time for a query.

Subsequently, perform a projection of the page vectors to the set [1, k] to ensure

that we do not assign pages to non-existent tiers.

Algorithm 7 proceeds by processing the input query-result records (q, vq, Dq)

as a stream comprising the set of pages that need to be displayed to answer a

given query. More specifically, it updates the tier preferences of the pages that

have the lowest tier scores for each level and it decrements the preferences for all

other pages. We may apply results for online optimisation algorithms (Zinkevich,

2003) to show that a small number of passes through the dataset suffice.

Lemma 51 The solution obtained by Algorithm 7 converges at rate O(
√
T ) to

its minimum value. Here T is the number of queries processed.
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Algorithm 8 Deferred updates

Observe current time n′

Read timestamp n for document d

Compute update steps δ = δ(n′, n)

repeat

j = bzd + 1c (next largest tier)

t = (j − zd)/λj (change needed to reach next tier)

if t > δ then

δ = 0 and zd ← zd + λjδ (partial step; we are done)

else

δ ← δ − t and zd ← zd + 1 (full step; next tier)

end if

until δ = 0 (no more updates) or zd = k − 1 (bottom tier)

7.4 Practical Issues

7.4.1 Deferred and Approximate Updates

The naive implementation of algorithm 7 is infeasible as it would require us to

update all |D| coordinates of xd for each query q. However, it is possible to defer

the updates until we need to inspect zd directly. The key idea is to exploit that

for all zd with d 6∈ Dq the updates only depend on the value of zd at update time

and that fλ is piecewise linear and monotonically decreasing. Assume that we

updated zd at iteration n and we revisit it at iteration n′. This means that zd at

iteration n′ is given by applying gradients of fλ(zd) repeatedly and by moving η

in the negative gradient direction. We may compute the aggregate result of all

steps by simply adding up the steplengths for each segment, rescaled by the slope

λj. Denote by

s(n) :=
n∑
j=1

ηj and let δ(n′, n) := s(n′)− s(n) (7.10)

the aggregate steps lengths from time n to time n′. Note that λ−1
t is the aggregate

steplength required to cross the interval [t − 1, t]. Algorithm 8 carries out the

deferred updates by moving step by step down the slope of fλ. This is required

for invoking the gradient computation and update step of Algorithm 7.

While precomputing the steplength is a significant computational improve-

ment, storing (7.10) is substantial: a billion steps translate into 4GB of data.
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This can be remedied by an integral approximation

δ(n′, n) =
n′∑

j=n+1

ηj =
n′∑

j=n+1

1√
j+n0

≈ 2
[√
n′ + n0 −

√
n+ n0

]
which becomes increasingly accurate for large |n′ − n|. It allows us to obtain

values for δ(n′, n′) in constant time without any storage.

7.4.2 Data Reduction and Max/Sum Heuristics

The amount of data used in the optimisation problem can be reduced significantly

by eliminating documents and queries which are definitely assigned to particular

tiers.

Consider the case of only two tiers (we only have λ1): any query occurring

more frequently vq than λ1 will automatically ensure that the associated pages

are cached. Consequently we may remove this query from the dataset, assign

all related pages to the first tier xd = 0 and remove them from all remaining

queries. Secondly, any document d for which
∑

q∈Qd vq is displayed less than

λ1 will definitely not be in the cache. Consequently all queries using d will by

default fail and can be removed from the dataset. Note that this thresholding

procedure can be repeated with the remaining (so far undetermined) documents

and queries.

An analogous reasoning applies to multiple tiers: for any query q with weight

vq ≥ λt we know that all d ∈ Dq will definitely be stored in tier t or lower — the

subgradients with respect to zd are at least vq at this tier. Any document which,

accumulated over all queries q ∈ Qd is not requested more than λt times cannot

be displayed at t or higher. An appealing side-effect of this data reduction is that

the gradients of the remaining functions lq cover a much smaller dynamic range.

This accelerates convergence (Nesterov & Vial, 2000) since optimisation progress

inversely depends on the gradient range.

Furthermore, both sd :=
∑

q∈Qd vq and md := maxq∈Qd vq are good tiering

heuristics in their own right. If we had only one page per query the optimal solu-

tion would be to sort according to sd. On the other hand, for large |Dq| ordering

documents according to md proves near optimal as we see on both synthetic and

real data. This suggests a very simple heuristic for obtaining near-optimal tier-

ing, namely to sort based on md. Empirically we found that a good initialization

for the page variables zd to be −(0.9 logmd + 0.1 log sd) scaled and shifted to fit

the [1, k] range, which helps convergence.
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7.5 Extensions

We describe three types of extensions on our proposed tiering approach: beyond

hit and miss, smoothing and robustness. We will discuss those in turn.

7.5.1 Beyond Hit and Miss

So far we only discussed a rather primitive model of penalties per query, namely

that we would incur a penalty vqpt for not serving a query at level t. The mo-

tivation for this simplification was twofold — we were interested in finding the

optimal tier arrangement for a given set of pages to be retrieved per query and

moreover, we did not distinguish between the value of different pages or the pos-

sibility of retrieving only a partial set of results per query. In the following we

show that considerably more sophisticated score functions still lead to integral

solutions.

Lemma 52 Denote by S a collection of sets, and by λSt, γSt ≥ 0 and ηS ∈
R weighting coefficients. Then, the optimisation problem obtained by replacing∑

q vq maxd:(d,q)∈G zd with

∑
S∈S

max
d∈S

[
ηSzd +

∑
t

λSt max(0, t− zd) + γSt max(0, zd − t)
]

has an integral solution.

Proof [sketch only] We treat each S ∈ S as if it were a query of its own with

documents d ∈ S associated with it. Within each set S note that the score func-

tion is piecewise linear with discontinuities occurring only at integers. Hence we

may use the same thermometer code decomposition as discussed in Section 7.2.3

to rewrite the problem in terms of [0, 1] valued variables with totally unimodular

constraints. The overall problem has an integral solution.

7.5.2 Smoothing

The approach we discussed so far works well whenever the number of queries

significantly exceeds the number of pages in the cache. While the query stream

of search engines is obviously tremendous, the above assumption is no longer

satisfied when optimizing over hundreds of billions of pages (this would require

nearly a Trillion queries to obtain good statistics in the tails).
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Assume that each document d comes with a set of features φd, e.g. its relevance

in the Hubs and Spokes model, or alternatively PageRank (Kleinberg, 1999; Page

et al., 1998), the indegrees/outdegrees of a page, the likelihood that it is spam,

or other content-related information. In this case, one would expect that such

information ought to be valuable in deciding at which tier to store a page. We

can take advantage of this by modelling zd = 〈φd, w〉 for a suitable parameter

vector w and a page-feature vector φd. The resulting optimisation problem is

convex in w and we can use the same algorithm we used for zd to optimise over

w. Focusing only φd exclusively, though, is ineffective since it ignores the fact

that certain pages simply happen to be popular whereas others simply happen not

to be popular at all despite meaningful features φd. Replacing φd by (φd, νded),

where ed is the unit vector for document d and νd is an indicator variable which

characterizes an a-priori estimate of the importance of a page, allows us to have

a page-specific weight for common pages whereas for infrequent pages we simply

smooth over the prior coefficients.

7.5.3 Robustness

So far we assumed that vq is exactly observed. This can be extended to allow for

deviations in v by means of robust optimisation. The following minimax problem

remains convex, hence it is accessible to efficient solution:

minimise
z

maximise
ε∈E

∑
q

[
(vq + εq) max

d∈Dq
zd

]
+
∑
d

fλ(zd) (7.11)

Here ε ∈ E denotes an admissible perturbation of query values, and may be any

`p balls (0 < p < ∞) around v, thus including the case of sparse perturbation

when p < 1.

7.6 Experiments

We perform experiments on both synthetically generated data and real query-

pages data, and compare our results of our proposed tiering methods to the max

and sum heuristics mentioned in Section 7.4.2.

7.6.1 Experiments on Synthetic Data

The purpose of experiments on synthetic data is to obtain a small enough dataset

which allows us to compare both heuristics, the online solver, and the (much
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slower) LP solution exactly. We generated a random bipartite query-page graph

using 150 queries and 150 pages. Each query vertex has a degree of 3, and value

vq := 10(2 + q)−0.8 mimicking a power law distribution of real data.

We experimented with a 2-tier system by varying the relative size of the prime

(cache) tier. We evaluate system performance in session miss : for each session q,

a miss occurs if any one of the associated pages is not found in cache, incurring vq

misses for that session. The experimental results are summarized in Figure 7.3.

Our proposed method (OPT-tier) outperforms baselines by a significant margin.

To assess the convergence properties of our online algorithm, we compare

the quality of the solutions given by linear program (Section 7.3.1) and online

algorithm (Section 7.3.4). From Figure 7.3, shows that the online solver (ONL

OPT-tier) converges to the solution of linear programming (LP OPT-tier) within

few passes over the data. Note that the LP solver is computationally costly, thus

unsuitable for problems even at the scale of 1000.

We examine the same synthetic data set for a 3-tier assignment problem. Here

we can vary i.e. the relative sizes of the prime tier and the second tier. We report

the relative improvement of our tiering algorithm as ratios of (generalized) session

misses in Figure 7.4. As before, our method consistently outperforms the max

heuristic and, especially the sum heuristic. We observe that the size of the prime

tier affects relative improvement more than the size of the second tier.

Figure 7.3: Session miss rate performance on the 150 queries-150 documents with

3 docs/query dataset. The caching performance was rescaled to yield a miss rate

of 1 for a cache size of 2.5% for sessions. Our proposed method (OPT-tier)

outperforms baselines by a significant margin in the total cache miss rate. The

online solver (ONL OPT-tier) converges to the LP solution (LP OPT-tier).
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Figure 7.4: Cache performance for a set of 3 tiers. Our method consistently

outperforms the baselines for all choices of both tiers. The difference is most

pronounced for large tier sizes where interactions between pages matter most.

7.6.2 Real Query-Pages Data

To examine the efficacy of our algorithm at web-scale we tested it with real data

from a major search engine. The results of our proposed methods are compared

to those of the max and sum heuristics in Section 7.4.2. Since LP solvers are

very slow, it is not feasible for web-scale problems.

We processed the logs for one week of September 2009 containing results from

the top geographic regions which include a majority of the search engine’s user

base. To simplify the heavy processing involved for collecting such a massive data

set, we only record whether a particular result, defined as a (query, document)

pair, appears in top 10 (first result page) for a given session and we aggregate

the view counts of such results, which will be used for the session value vq once.

In its entirety this subset contains about 108 viewed documents and 1.6 · 107

distinct queries. We excluded results viewed only once, yielding a final data set

of 8.4 · 107 documents. The search results for any fixed query vary for a variety

of reasons, e.g. database updates. We approximate the session graph by treating

queries with different result sets as if they were different. This does not change

the optimisation problem and keeps the model accurate. Moreover, we remove

rare results by maintaining that the lowest count of a document is at least as

large as the square root of the highest within the same session. For simplicity,

our experiments are carried out for a two-tier (single cache) system such that

the only design parameter is the relative size of the prime tier (the cache). Our

algorithm consistently outperforms the max and sum heuristics over a large span

of cache sizes (Figure 7.5).
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Figure 7.5: Left: Experimental results for real web-search data with 8.4·107 pages

and 1.6 ·107 queries. Session miss rate for the online procedure, the max and sum

heuristics (7.4.2). (The y-axis is normalized such that SUM-tier’s first point is at

1). As seen, the max heuristic cannot be optimal for any but small cache sizes,

but it performs comparably well to Online. Right: “Online” is outperforming

MAX for cache size larger than 60%, sometimes more than twofold.

Direct comparison can now be made between our online procedure and the

max and sum heuristics since each one induces a ranking on the set of documents.

We then calculate the session miss rate of each procedure at any cache size, and

report the relative improvement of our online algorithm as ratios of miss rates in

Figure 7.5–Right.

We measure a throughput of approximately 0.5 million query-sessions per

second (qps) for this version, and about 2 million qps for smaller problems (as they

incur fewer memory page faults). Billion-scale problems can readily fit in 24GB

of RAM by serializing computation one λ value at a time. We also implemented

a multi-thread version utilizing 4 CPU cores, although its performance did not

improve since memory and disk bandwidth limits have already been reached.

7.7 Conclusion

We showed that very large tiering and densest subset optimisation problems can

be solved efficiently by a relatively simple online optimisation procedure. It came

somewhat as a surprise that the max heuristic often works nearly as well as the

optimal tiering solution. Since we experienced this correlation on both synthetic

and real data we believe that it might be possible to prove approximation guar-

antees for this strategy whenever the bipartite graphs satisfy certain power-law

properties.
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The need for a static tiering solution might be questionable, given that data

could, in theory, be reassigned between different caching tiers on the fly. The

problem is that in production systems of a search engine, such reassignment of

large amounts of data may not always be efficient for operational reasons (e.g.

different versions of the ranking algorithm, different versions of the index, different

service levels, constraints on transfer bandwidth). In addition to that, tiering is

a problem not restricted to the provision of webpages. It occurs in product

portfolio optimisation and other resource constrained settings. We showed that

it is possible to solve such problems at several orders of magnitude larger scale

than what was previously considered feasible.



Chapter 8

Conclusion and Future Directions

In an information society, information is money.
The trick is to generate value by extracting the right
information from the Internet.

IDC’s Digital Universe Study, 2011

In this thesis, we develop principled machine learning methods suited for

challenging real-world Internet problems. The Internet has supplied an unprece-

dented amount of data. Synergistically with rapid progress in machine learning

models and algorithms, as well as rapid rises in computing power and storage,

the challenge of the 21st century consists of finding ways to transform this com-

plex massive yet noisy and sparse Internet data coming from a variety of sources

into insights in support of knowledge creation. This thesis makes contributions

in addressing problems that the Internet offers some new challenges that do not

naturally fit into existing machine learning methods and the Internet requires

large-scale solution to problems.

The present work focuses on addressing Internet complexity on output label

dimensions. The first part of this thesis deals with formulation and solution

of new machine learning problems. The contributions of this thesis are in the

following three non-standard settings forming Chapter 3, 4 and 5 of the thesis:

1. Estimating Labels from Label Proportions.

This chapter introduces a learning setting where we are given sets of un-

labelled observations, each set with known label proportions; the goal is

to predict the labels of another set of observations, possibly with known

label proportions. Our solution works by modelling a conditional exponen-

tial likelihood and approximating the unknown mean of sufficient statistics.

The approximation is achieved: a) by exploiting the convergence properties

145
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of a sample mean operator to its population counterpart, and b) by solving

a linear system of equations formed by the known proportions.

2. Kernelised Sorting.

This chapter introduces a learning framework where a set of data inputs

and a set of data outputs are given however they are not paired; the goal of

learning is to infer the latent input-output correspondences. Our solution

is based on dependence maximisation between input-output pairs of obser-

vations by means of kernel embeddings based dependency measure called

the Hilbert Schmidt Independence Criterion.

3. Multitask Learning without Label Correspondences.

This chapter introduces a setting of jointly learning several related tasks

where each task has potentially distinct label sets, and label correspon-

dences are not readily available. Our solution directly maximizes the mu-

tual information among the labels.

Traditionally, supervised machine learning settings draw inference and make pre-

diction from a set of input objects; each of which is supervised by a desired output

value. Internet poses challenges of weak label supervision (contribution #1 and

#2) and label inconsistency (contribution #3).

The second part addresses refinements of existing machine learning models

and algorithms to scale to large data. The contributions of this thesis include a

streaming algorithm for the following two problems forming Chapter 6 and 7 of

the thesis:

4. Distribution Matching for Transduction.

This chapter presents a scalable algorithm for learning with labelled and

unlabelled data simultaneously, based on distribution matching. We cast

the goal of matched distributions over the outputs on labelled data and

unlabelled data as a two-sample problem which can be solved efficiently

by using a distance measure in Hilbert Space. Another advantage of our

method apart from scalability is that it is ‘plug and play’, i.e. it is applica-

ble to all estimation problems ranging from classification and regression to

structured estimation without much need for customisation.

5. Optimal Tiering as a Flow Problem.

This paper presents a scalable algorithm for webpage tiering. The goal is

to allocate pages to caches such that the most frequently accessed pages
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reside in the caches with the smallest latency. Our algorithm solves an

integer linear program in an online fashion. It exploits total unimodularity

of the constraint matrix and a Lagrangian relaxation to solve the problem

as a convex online game. This tiering problem is related to a larger class of

parametric flow problem.

The future work focuses on tackling Internet complexity on input feature di-

mensions. On the input dimensions, we deal not only with potentially millions

of features but also the features might come from multiple modalities or data

sources. Research questions arise as to how to combine those widely varied mul-

tiple modalities while taking into account the intricate social network representa-

tion, the Internet sparsity, and scalability, for better and more robust statistical

modelling. As well, the contents of the Internet are being updated every fraction

of a second. Any features defined on Internet data should be able to handle this

challenge.

As mentioned, sparsity is an inherent nature of Internet data. Ideally for such

a setting, Bayesian statistics provide a robust approach to drawing inferences and

making predictions from very sparse information. In the framework of Bayesian

probabilistic methods, all unobserved quantities would be averaged out when

making predictions. Classically, Bayesian parametric approaches would require

an assumption on some aspects of the model such as the mathematical form

of the model. On the contrary, nonparametric models automatically adapt to

the complexity of the data, making the need to specify aspects of the model

no longer required. Thus nonparametric Bayesian methods are well-suited for

tackling some of challenging Internet applications. It would be interesting to

explore both the modelling aspect of nonparametric Bayesian methods in solving

Internet challenges and in scaling up learning and inference of nonparametric

Bayesian methods to handle Internet-scale data.

While a supervised machine learning is an important tool for extracting in-

sights from the Internet, other aspects such as user interactions play an equally

important role. The basic setup in supervised learning is that experts provide

labelled examples, and the goal of learning is to build a predictor based on the

predictions of those experts. The current thesis attempts to extend the basic

setup to be able to handle weak label supervision and label inconsistency cases.

However, all the supervised learning approaches do not interact with the world

(users) and thus are not able to learn from the interactions. Internet problems,

full of inherent users-systems interactions, are driving the need for interactive
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machine learning approaches.

Lastly, it is likely that the statistical techniques developed in this thesis to

address some of the Internet challenges could also be used in a variety of appli-

cations. For instance, contribution # 3 can be used in Genetics for integrating

a collection of related gene-ontology graphs and in Bioinformatics for combin-

ing microarray measurements on different platforms (contribution # 2), among

others.
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Buntine, Wray L. Kernel conditional quantile estimation via reduction revis-

ited. In International Conf. on Data Mining (ICDM), pp. 938–943. IEEE,

2009d. 5

Quadrianto, Novi, Petterson, James, and Smola, Alex. Distribution matching for

transduction. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I.,

and Culotta, A. (eds.), Advances in Neural Information Processing Systems 22

(NIPS), pp. 1500–1508, 2009e. 4

Quadrianto, Novi, Kersting, Kristian, Tuytelaars, Tinne, and Buntine, Wray L.

Beyond 2d-grids: a dependence maximization view on image browsing. In ACM

SIGMM International Conf. on Multimedia Information Retrieval (MIR), pp.

339–348. ACM, 2010a. 4

Quadrianto, Novi, Kersting, Kristian, and Xu, Zhao. Gaussian process. In En-

cyclopedia of Machine Learning, pp. 428–439. Springer, 2010b. 5

Quadrianto, Novi, Smola, Alex J., Song, Le, and Tuytelaars, Tinne. Kernelized

sorting. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(10):1809–

1821, 2010c. 4

Quadrianto, Novi, Smola, Alexander, Caetano, Tiberio, Vishwanathan, S.V.N.,

and Petterson, James. Multitask learning without label correspondences. In

Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta,

A. (eds.), Advances in Neural Information Processing Systems 23 (NIPS), pp.

1957–1965, 2010d. 4

Risvik, K. M., Aasheim, Y., and Lidal, M. Multi-tier architecture for web search

engines. In Conf. on Latin American Web Congress, pp. 132–143. IEEE, 2003.

127

Roweis, S. and Saul, L. K. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290:2323–2326, 2000. 78



BIBLIOGRAPHY 159
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