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Abstract

•We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression model.

•We reformulate the relaxation problem to eliminate the need for general semidefinite programming.

•We provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation
exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating
steps of closed-form updates.

•We provide experiments in a real problem of motion segmentation from video data.

Mixture of Regression Problem

Linear regression (left) and mixture of regression (right); Gaffney & Smyth 1999

Given

• a labeled training set D comprising t input-output pair {(x1, y1), . . . , (xt, yt)};
• assumption that the output variable y is generated by a mixture of k components;
• no information about which component of the mixture generates each output variable yi.

Find

• a regression model f : X→ Y for each of the mixture component.

The Model

Denote

• X ∈ Rt×n as a matrix of input and y ∈ Rt×1 as a vector of output variables;

•Π ∈ {0, 1}t×k,Π1 = 1 and max(diag(ΠTΠ)) ≤ γt (bounding the size of the largest component) as the hidden
assignment matrix.

Assume

• a linear regression model yi|xi, πi = ψiw + εi, εi ∼ N(0, σ2) w.r.t a feature representation ψi = πi ⊗ xi.

Gaussian Likelihood
With the Gaussian noise model , our likelihood is then

p(yi|xi, πi; w) =
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Log-Posterior Optimization
With an additional assumption of Gaussian prior on the parameter w, the minimization of (negative) log-
posterior is now in the form of
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s.t. constraints on the assignment matrix Π.

Semidefinite Relaxation

Problem (1) can be relaxed to
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M:tr M=t,γtI<M<0
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(Sketchy) Steps

• Compute convex conjugate of the log-partition function (i.e. 1
2σ2wTΨTΨw).

• Relax the constraints on the assignment matrix

{ΠΠT : Π ∈ {0, 1}t×k,Π1 = 1,max(diag(ΠTΠ)) ≤ γt}
⊆ {M : M ∈ Rt×t, tr M = t, γtI < M < 0}.

Note : The relaxation of Problem (1) to (2) only refers to loosening the set of feasible solutions and no
relaxation has been introduced in the objective function. However, solving (2) directly is prohibitive for
medium to large scale problems as it requires a general semidefinite solver.

Algorithm 1: Max-Min Reformulation

The ”hammer” (Overton & Womersley 1993)
Let V ∈ Rt×t,V = VT and its EVD, PT VP = Λ((λ1, . . . , λt)), then

max
M:tr(M)=q,I<M<0

tr MVT =

q∑
i=1

λi and argmax
M:tr(M)=q,I<M<0

tr MVT 3 PqPT
q .

To use the ”hammer”, Problem (2) is reformulated to

max
c
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 .
(Sketchy) Steps

• Simply by interchanging minM and maxc, invoking distributivity property, rearranging the terms and defin-
ing ȳ := y

σ2, problem (2) can be rewritten as
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c
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• Let q = {u : u = max{1, . . . , t}, u ≤ γ−1} and define M̄ := (q/t)M to transform the constraint set from
{M : tr M = t, γtI < M < 0} to {M : tr M = q, I < M < 0}.

Algorithm 2: Min-Min Reformulation

Problem (2) is also equivalent to

min
{M:I�M�0,tr M=1/γ}

min
A
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.

Steps; (2) = min
{M:I�M�0,tr M=1/γ}

max
{c,C:C=Λ(c−ȳ)X}
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Lastly, c and C can be solved as c = − 1
σ2diag(XAT ) and C = α

γtM
−1A.

Applications

Toy Data

•Dataset: 30 synthetic data points is generated according to yi = (πi ⊗ xi)w + εi, with xi ∈ R, εi ∼ N(0, 1)
and w ∈ U(0, 1). The response variable yi is assumed to be generated from a mixture of 5 components .

• Performance comparison with EM (100 random restarts was used to avoid poor local optima).

• Error rates are 0.347 ± 0.086 (EM) and 0.280 ± 0.063 (Max-Min) across 10 different runs.

Ground Truth EM Max-Min

Motion Segmentation from Video Data

•Dataset: Hopkins 155 (http://www.vision.jhu.edu/data/hopkins155/).

•Given a pair of corresponding points pi and qi from two frames and k motion groups, we have the following
epipolar equation ( Li 2007), qT

i (
∑k

j=1 πi jF j)pi = 0.

• Redefine [qx
i px

i qx
i py

i qx
i pπi .... qπi pπi ]T := xi and vec(FT

j ) := w, our problem is now
∑k

j=1 πi jxT
i w j = 0.

Ground Truth EM Max-Min Min-Min
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