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Abstract

•We address the problem of projecting data in different representations into a shared space, such that the
Euclidean distance in this space provides a meaningful within-view as well as between-view similarity;

•We formulate an objective function that expresses the intuitive concept that matching samples are mapped
closely together in the output space, whereas non-matching samples are pushed apart;

•We show that the resulting objective function can be efficiently optimized using the convex-concave pro-
cedure (CCCP);

•Our proposed approach has a direct application for cross-media and content-based retrieval tasks.

Motivating Example

A Cross-Media and Content-Based Retrieval

Goal:

• Building an object cross-retrieval system that allows query objects and objects in the database to have
different representations;

• Building a content-based object retrieval system where several representations can be used to describe a
content, such as, for image objects: SIFT, Color, GIST, SURF, HOG, pHOG, Text, . . .
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(Potential) Problems:

•During retrieval time, some of the representations might be missing. This renders approaches such as
simple feature concatenation and Multiple Kernel Learning (MKL) in-applicable.

Our Solution:

• Learning a multi-view neighborhood preserving projection matrices to a common space.

A Multi-View Neighborhood Preserving Projection

Problem Setting

What we have:

• Two sets of m observed data points, {x1, . . . , xm} ⊂ X and {y1, . . . , ym} ⊂ Y describing the same objects;

•A cross-neighborhood set Sxi for each xi ∈ X that corresponds to a set of data points from Y that are deemed
similar to xi.

What we want:

• Projection functions, g1 : X→ RD and g2 : Y→ RD, that respect the neighborhood relationship {Sxi}
m
i=1.

Assumption:

•A linear parameterization of the functions gw
1 (xi) := 〈w1, φ(xi)〉 for H1 basis functions {φh(xi)}

H1
h=1 and

w1 ∈ R
D×H1 and likewise for g2 with the weight parameter w2 ∈ R

D×H2.

Regularized Risk Functionals

• Folk Wisdom:
Keep your friends (read: matching samples) close and your enemies (read: non-matching samples) �������XXXXXXXcloser
far far away;

• Turning Wisdom into a Regularized Risk Functional:

m∑
i, j=1

Li, j(w1,w2, xi, y j, Sxi)︸                            ︷︷                            ︸
The Wisdom Loss

+ ηΩ(w1) + γΩ(w2)︸                ︷︷                ︸
The Regularizer

• The wisdom loss function Li, j(·) consists of the friends term Li, j
1 and the enemies term Li, j
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Optimization

What so special about the wisdom loss:

• The wisdom loss function is non-convex; the friends term is convex, however the enemies term is non-
convex;

• Though the enemies term is non-convex, it has a decomposition form as a difference of two convex func-
tions: Li, j

2 (βd) = L1
cv(βd) − L2

cv(βd).
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CCCP Procedure
The concave convex procedure (CCCP) finds the successive linear lower bounds on Li, j

2 (.) and solves the
resulting convex problems in w1 and w2 separately.
Algorithm A–Multi-View Neighborhood Preserving Projection

Input: Data sources X = {x1, . . . , xm} and Y = {y1, . . . , ym}, an inter-view neighborhood relationship
{Sxi}

m
i=1, number of alternations N

Output: w∗1 and w∗2
Initialize w1 and w2
for t = 1 to N do

Solve the convex optimization problem w.r.t. w1 and obtain wt
1

Solve the convex optimization problem w.r.t. w2 and obtain wt
2

end for
Algorithm B–Hybrid-{PCA and Multi-NPP}

Input: Data sources X = {x1, . . . , xm} and Y = {y1, . . . , ym} and an inter-view neighborhood relationship
{Sxi}

m
i=1

Output: wPCA
1 and w∗2

Initialize w2
Solve the optimization problem w.r.t. w2 while fixing w1 = wPCA

1 and obtain w∗2

Experiments

Dataset Statistics:

• 1000 images with 11 categories from the Israeli-Images dataset (http://www.cs.umass.edu/˜ronb/
image_clustering.html);

•We use global color descriptors as one view and local SIFT descriptors as another;

• Performance metric: k-Nearest Neighbor classification metric.

Algorithm A v. Baselines (PCA and CCA) for a Cross-Retrieval Task (accuracy ± std):
Method #dim 5-NN 10-NN 30-NN

PCA 10 9.3±1.66 9.3±2.03 10.0±2.31
50 9.4±1.17 10.7±1.38 10.5±2.04

CCA 10 15.4±4.27 15.8±4.53 15.9±4.59
50 16.2±4.83 16.8±5.27 18.2±6.30

Ours 10 18.6±2.07 18.9±2.28 18.7±2.21
50 20.4±3.43 20.4±2.88 21.8±3.21

Method #dim 5-NN 10-NN 30-NN
PCA 10 8.2±2.54 9.2±3.35 9.4±3.36

50 8.6±2.65 9.8±2.47 9.8±3.33
CCA 10 12.5±2.98 13.8±2.36 13.8±2.82

50 13.2±1.77 13.2±2.32 13.4±2.62
Ours 10 19.0±3.63 20.8±3.52 22.0±3.98

50 22.6±2.07 22.9±1.93 22.4±4.30
Color Query - SIFT Database SIFT Query - Color Database

Cross-Retrieval Results with Algorithm B (accuracy ± std):
Crossing Type #dim 5-NN 10-NN 30-NN 50-NN 70-NN 100-NN
Color Query 10 24.2±2.59 24.9±2.72 26.3±2.82 26.4±2.56 25.8±1.90 25.8±1.73

- SIFT Database 50 30.0±3.20 29.2±3.12 30.2±3.42 29.6±3.74 29.6±4.04 29.0±3.51
SIFT Query 10 18.8±3.59 19.1±3.14 19.4±3.71 19.8±3.91 19.7±4.19 19.9±3.92

- Color Database 50 27.8±4.27 26.8±4.28 27.0±3.09 27.4±3.78 27.8±3.90 27.9±3.82

For more experimental results, please refer to the paper.

Extensions

Kernelization:

• By the Representer Theorem, the projection matrices admits w1 =
∑m

i=1 αik(xi, ·), and w2 =∑m
j=1 βil(y j, ·), for a positive-definite kernel k on X and a kernel l on Y.

Beyond 2-View:

• For the case with more than two data sources we build an analogous objective function by summing up the
terms of all pairwise objectives.


