NICTA

Learning Multi-View Neighborhood Preserving Projections

1: SML-NICTA \& Australian National University | 2: IST Austria (Institute of Science and Technology Austria)

The concave convex procedure (CCCP) finds the successive linear lower bounds on $L_{2}^{i, j}($.$) and solves the$ The concave convex procedure (CCC) Algorithm A-Multi-View Neighborhood Preserving Projection

Input: Data sources $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$, an inter-view neighborhood relationship $\left\{\mathcal{S}_{X_{i}}\right\}_{i=1}^{m}$, number of alternations N
Output: w_{1}^{*} and w_{2}^{*}
Initialize w_{1} and w_{2}
for $t=1$ to N do
Solve the conv
Solver write .r.t. w_{1} and obtain w^{t}
Solve the convex optimization problem w.r.t. w_{2} and obtain w_{2}^{t}
Algorithm B-Hybrid-\{PCA and Multi-NPP\}
Input: Data sources $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots\right.$
$\left\{\delta_{x_{i}}\right\}_{i=1}^{m}$
Output: $w_{1}^{\text {PAA }}$ Ind w_{2}^{*}
Initialize w_{2}
Solve the optimization problem w.r.t. w_{2} while fixing $w_{1}=w_{1}^{\mathrm{PCA}}$ and obtain w_{2}^{*}

Experiments

Dataset Statistics:

- 1000 images with 11 categories from the Israeli-Images dataset (http://www.cs.umass.edu/~ronb/ image_clustering.html);
- We use global color descriptors as one view and local SIFT descriptors as another
- Performance metric: k-Nearest Neighbor classification metric.

Algorithm A v. Baselines (PCA and CCA) for a Cross-Retrieval Task (accuracy \pm std):

hod	\#dim	5-NN	10-NN	30-NN	Method	din	5-NN	10-NN	
PC		93+16	9.3 ± 2.03		PCA		8.2 ± 2.54		
							8.6土2.65		

 $\begin{array}{llllll}\text { Ours } & 10 & 16.2 \pm 4.4 & 16.8 \pm 5.27 & 1.9 .2 \pm 6.30 \\ & & 18.6 \pm .07 & 18.9 \pm 2.28 & 18.7 \pm 2.21\end{array}$ 50 20.4 $\pm \mathbf{3 . 4 3} 20.4 \pm 2.88$ 21.8 ± 3.21 Color Query - SIFT Database
\qquad $\begin{array}{lllll}\text { Ours } & 10 & 19.0 \pm 3.63 & 20.8 \pm 3.52 & 22.0 \pm 3.98 \\ & 50 & 22.6 \pm 2.07 & 22.9 \pm 1.93 & 22.4 \pm 4.30\end{array}$ SIFT Query - Color Database
Cross-Retrieval Results with Algorithm B (accuracy \pm std):

 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SIF Database | 50 | 30.0 ± 3.20 | 29.2 ± 3.12 | 30.2 ± 3.42 | 29.6 ± 3.74 | 29.6 ± 4.04 | 29.0 ± 3.51 |
| SIFT Query | 10 | 18.8 ± 3.59 | 19.1 ± 3.14 | 19.4 ± 3.71 | 19.8 ± 3.91 | 19.7 ± 4.19 | $19.9+3.92$ |

For more experimental results, please refer to the paper
Extensions

Kernelization

- By the Representer Theorem, the projection matrices admits $w_{1}=\Sigma^{m} \alpha_{i} k\left(x_{i}\right)$ and w_{2} $\sum_{j-1}^{m} \beta_{i}\left(y_{j}, \cdot\right)$, for a positive-definite kernel k on X and a kernel l on y

Beyond 2-View

- For the case with more than two data sources we build an analogous objective function by summing up the terms of all pairwise objectives.

