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Abstract Performance Guaranteed!

e Bound on the mean operator
Consider the following problem: given sets of unlabeled observations, each set with With probability 1 — ¢ the following bound holds:
known label proportions, predict the labels of another set of observations, also with
known label proportions. This problem appears in areas like e-commerce, spam fil- Iy — fixyll < [2 + +/log((n +1) /5)} X
tering and improper content detection. We present consistent estimators which can N S N LI
reconstruct the correct labels with high probability in a uniform convergence sense. [m o [Z M T [” } K% } }

Experiments show that our method works well 1n practice.
For binary classification, the bound simplifies to

Problem Statement

_1 _1
laxy —pxyl <2p [2 + 4/ log 2/5} my * + m+2]

Assume you want to entice customers to purchase a product. You have the choice of

handing out a coupon to entice users to buy. It 1s your goal to determine who should e Bound on the minimizer of the log-posterior (Altun & Smola 2006)
be sent a coupon to encourage a purchase and who would buy the product regardless. )

However, the only information available is the set of customers which purchased the 6% — 0| < A7 |l — gl

product when no discount was offered, and another (independent) set of customers .

which purchased the product with the discount, without explicit information as to » Bound on the log-posterior (Altun & Smola 2006)

whether they would have made the purchase 1f the discount had not been offered. A% A . _ .

y | | L(O*, i) = L(6%, 1) < [|0" — % || s — pall =AYl —
B College students, | n -
o = Alternative Solutions
i WE e Reduction to binary (DS)
—a binary classifier between set X; and X5

(Formal) problem formulation: —label thresholding according to the known proportions

Given o Density estimation (KDE)

o n sets of datasets X; = {«¢,..., 2, } of respective sample sizes m; as calibration sets — density estimation for each dataset X,

easet X ={xy,...,zy} as a test set —re-calibration to get p(«|y) via 3 [v71] . pla, yld)

o fractions m;, of patterns of labels y € ¥ (|Y| < n) contained in each set X; — finally invoke Bayes’ theorem to compute posterior probabilities.
e marginal probability p(y) of the test set X e MCMC (Kiick & de Freitas 2003)

Find —explicitly generate mixing proportions per group by hierarchical probabilistic

graphical model

e conditional class probability estimates p(y|z)
—use sampling to generate samples of model posterior distribution

Gaussian Process Solution

e Conditional exponential likelihood model E;perl ments
. e DINnary
p(ylz, 0) = exp ((¢(x,y),0) — g(0]2)) with o o o
g(0]z) =log ) exp (p(z,y),0)
= 60.8 A §0.8 A ’%\0.8
g 0.6 . § 0.6 Dé 0.6
e Gaussian prior logp(6) o< All6]2 §0_4 /. %0_4 " §o_4 L
| 0.2+, ' ' o6 |02 . o | 202 7 24% |
e Posterior m N s N A S S S
o 1Og p(Y|X, 9)]7((9) — Z [9(9’:62) o <¢<xu yi)a 9>] + A ”9“2 ° 0'I%/Iean %\)/'Iip (Er?b? Rate(;'8 . ° O'I%/Iean R/Igp (Er?(')? Rate(;'8 . ° O'I%/Iean (Ii/llgp (Er(r)E)? Rate%l8 '
i=1
e Convex optimization problem e 3-class
m | Data Mean Map| KDE | DS | MCMC | BA
6* = argmin Zg(@\azz) —m{pxy,0) + X||0|*| with protein A 44.6+0.3 60.24+0.1 N/A 165.3+1.9 61.2
2 protein B 45.7+0.6 [61.24+0.0 N/A 67.7+1.8 61.2
) | ) dna A 16.61.0 30.7£0.8 N/A 37.7+£0.8 40.5
Ly = — Z oz, y;) dna B 29.1£1.0 133.040.7 N/A 40.5+0.0/40.5
i senseit A | 19.840.1 43.1+0.0 N/A I 43.2
senseit B |21.0+0.1 [43.1+0.0 N/A 1 43.2

However, we do not have y;, label for each observation. , ,
t: Program as implemented fails (large datasets)

Re-calibration of Sufficient Statistics - Intuition

Convergence of empirical means: Extensions
UXY oy = Y P By [0, )] —  pyt — p ’ Entropy and fegulari.zation : . , ,
sample e population sample choosing various Csiszar and Bregman distances will produce a range of diverse
poputation estimators

P o e Function space :

1—p Y T measuring the deviation in moment matching in term of /., norm recovers sparse
W coding ¢; (dual connection)
() Summary
e A new problem formulation and quite relevant in many aspects
pr|_ (10 Pl o | P ] = _1p ? H1 e Our estimator can be easily implemented
N L LT Tpd L2 e Our estimator enjoys the same rates of convergence as what can be expected from
building an estimator with a fully labeled sample
fixy = pp1 — (1= p) [%Ml + rlpuz} o Our solution can be easily extended to other learning frameworks

e Our estimator works well 1n practice!

Same procedure applies for multiclass setting .
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