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Abstract

Consider the following problem: given sets of unlabeled observations, each set with
known label proportions, predict the labels of another set of observations, also with
known label proportions. This problem appears in areas like e-commerce, spam fil-
tering and improper content detection. We present consistent estimators which can
reconstruct the correct labels with high probability in a uniform convergence sense.
Experiments show that our method works well in practice.

Problem Statement

Assume you want to entice customers to purchase a product. You have the choice of
handing out a coupon to entice users to buy. It is your goal to determine who should
be sent a coupon to encourage a purchase and who would buy the product regardless.
However, the only information available is the set of customers which purchased the
product when no discount was offered, and another (independent) set of customers
which purchased the product with the discount, without explicit information as to
whether they would have made the purchase if the discount had not been offered.

(Formal) problem formulation:
Given
• n sets of datasets Xi =

{
xi

1, . . . , x
i
mi

}
of respective sample sizes mi as calibration sets

• a set X = {x1, . . . , xm} as a test set
• fractions πiy of patterns of labels y ∈ Y (|Y| ≤ n) contained in each set Xi

•marginal probability p(y) of the test set X

Find
• conditional class probability estimates p(y|x)

Gaussian Process Solution
•Conditional exponential likelihood model

p(y|x, θ) = exp (〈φ(x, y), θ〉 − g(θ|x)) with
g(θ|x) = log

∑
y∈Y

exp 〈φ(x, y), θ〉

•Gaussian prior
− log p(θ) ∝ λ ‖θ‖2

•Posterior
− log p(Y |X, θ)p(θ) =

m∑
i=1

[g(θ|xi)− 〈φ(xi, yi), θ〉] + λ ‖θ‖2

•Convex optimization problem

θ∗ = argmin
θ

 m∑
i=1

g(θ|xi)−m 〈µXY , θ〉 + λ ‖θ‖2
 with

µXY :=
1

m

m∑
i=1

φ(xi, yi)

However, we do not have yi, label for each observation.

Re-calibration of Sufficient Statistics - Intuition
Convergence of empirical means:

µXY
sample

←− µxy :=
∑
y∈Y

p(y)Ex∼p(x|y)[φ(x, y)]

population

←− µset
x

population
←− µset

X
sample

[
µ1

µ2

]
=

[
1 0

ρ 1− ρ

] [
µ+

µ−

]
=⇒

[
µ+

µ−

]
=

[
1 0
−ρ
1−ρ

1
1−ρ

] [
µ1

µ2

]

µ̂XY = ρµ1 − (1− ρ)
[
−ρ
1−ρµ1 + 1

1−ρµ2

]
Same procedure applies for multiclass setting .

Performance Guaranteed!
•Bound on the mean operator

With probability 1− δ the following bound holds:

‖µXY − µ̂XY ‖ ≤
[
2 +

√
log((n + 1)/δ)

]
×[

m−
1
2 +

[∑
i,j

m
−1

2
i m

−1
2
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]>
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ij
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]

For binary classification, the bound simplifies to

‖µ̂XY − µXY ‖ ≤ 2ρ
[
2 +

√
log 2/δ

] [
m
−1

2
1 + m

−1
2

+

]
•Bound on the minimizer of the log-posterior (Altun & Smola 2006)∥∥θ∗ − θ̂∗

∥∥ ≤ λ−1 ‖µ− µ̂‖

•Bound on the log-posterior (Altun & Smola 2006)

L(θ̂∗, µ̂)− L(θ∗, µ) ≤
∥∥θ̂∗ − θ∗

∥∥ ‖µ̂− µ‖ = λ−1 ‖µ− µ̂‖2

Alternative Solutions
•Reduction to binary (DS)

– a binary classifier between set X1 and X2

– label thresholding according to the known proportions
•Density estimation (KDE)

– density estimation for each dataset Xi

– re-calibration to get p(x|y) via
∑

i

[
π−1

]
yi p(x, y|i)

– finally invoke Bayes’ theorem to compute posterior probabilities.
•MCMC (Kück & de Freitas 2005)

– explicitly generate mixing proportions per group by hierarchical probabilistic
graphical model

– use sampling to generate samples of model posterior distribution

Experiments
•Binary
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• 3-class
Data Mean Map KDE DS MCMC BA
protein A 44.6±0.3 60.2±0.1 N/A 65.3±1.9 61.2
protein B 45.7±0.6 61.2±0.0 N/A 67.7±1.8 61.2
dna A 16.6±1.0 30.7±0.8 N/A 37.7±0.8 40.5
dna B 29.1±1.0 33.0±0.7 N/A 40.5±0.0 40.5
senseit A 19.8±0.1 43.1±0.0 N/A ‡ 43.2
senseit B 21.0±0.1 43.1±0.0 N/A ‡ 43.2

‡: Program as implemented fails (large datasets)

Extensions
•Entropy and regularization :

choosing various Csiszar and Bregman distances will produce a range of diverse
estimators
•Function space :

measuring the deviation in moment matching in term of `∞ norm recovers sparse
coding `1 (dual connection)

Summary
•A new problem formulation and quite relevant in many aspects
•Our estimator can be easily implemented
•Our estimator enjoys the same rates of convergence as what can be expected from

building an estimator with a fully labeled sample
•Our solution can be easily extended to other learning frameworks
•Our estimator works well in practice!


