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Novi Quadrianto1, Alex Smola2, Tibério Caetano1, S.V.N. Vishwanathan3, James Petterson1

1 SML-NICTA & RSISE-ANU, Canberra, ACT, Australia
2 Yahoo! Research, Santa Clara, CA, USA

3 Purdue University, West Lafayette, IN, USA

Abstract

We propose an algorithm to perform multitask learning where each task has poten-
tially distinct label sets and label correspondences are not readily available. This is
in contrast with existing methods which either assume that the label sets shared by
different tasks are the same or that there exists a label mapping oracle. Our method
directly maximizes the mutual information among the labels, and we show that the
resulting objective function can be efficiently optimized using existing algorithms.
Our proposed approach has a direct application for data integration with different
label spaces, such as integrating Yahoo! and DMOZ web directories.

1 Introduction

In machine learning it is widely known that if several tasks are related, then learning them simulta-
neously can improve performance [1–4]. For instance, a personalized spam classifier trained with
data from several different users is likely to be more accurate than one that is trained with data from
a single user. If one views learning as the task of inferring a function f from the input space X to the
output space Y, then multitask learning is the problem of inferring several functions fi : Xi 7→ Yi
simultaneously. Traditionally, one either assumes that the set of labels Yi for all the tasks are the
same (that is, Yi = Y for all i), or that we have access to an oracle mapping function gi,j : Yi 7→ Yj .
However, as we argue below, in many natural settings these assumptions are not satisfied.

Our motivating example is the problem of learning to automatically categorize objects on the web
into an ontology or directory. It is well established that many web-related objects such as web direc-
tories and RSS directories admit a (hierarchical) categorization, and web directories aim to do this
in a semi-automated fashion. For instance, it is desirable, when building a categorizer for the Yahoo!
directory1, to take into account other web directories such as DMOZ2. Although the tasks are clearly
related, their label sets are not identical. For instance, some section heading and sub-headings may
be named differently in the two directories. Furthermore, different editors may have made differ-
ent decisions about the ontology depth and structure, leading to incompatibilities. To make matters
worse, these ontologies evolve with time and certain topic labels may die naturally due to lack of
interest or expertise while other new topic labels may be added to the directory. Given the large label
space, it is unrealistic to expect that a label mapping function is readily available. However, the two
tasks are clearly related and learning them simultaneously is likely to improve performance.

This paper presents a method to learn classifiers from a collection of related tasks or data sets, in
which each task has its own label dictionary, without constructing an explicit label mapping among
them. We formulate the problem as that of maximizing mutual information among the labels sets.
We then show that this maximization problem yields an objective function which can be written
as a difference of concave functions. By exploiting convex duality [5], we can solve the resulting
optimization problem efficiently in the dual space using existing DC programming algorithms [6].

1http://dir.yahoo.com/
2http://www.dmoz.org/
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Related Work As described earlier, our work is closely related to the research efforts on multitask
learning, where the problem of simultaneously learning multiple related tasks is addressed. Several
papers have empirically and theoretically highlighted the benefits of multitask learning over single-
task learning when the tasks are related. There are several approaches to define task relatedness.
The works of [2, 7, 8] consider the setting when the tasks to be learned jointly share a common
subset of features. This can be achieved by adding a mixed-norm regularization term that favors a
common sparsity profile in features shared by all tasks. Task relatedness can also be modeled as
learning functions that are close to each other in some sense [3, 9]. Crammer et al. [10] consider the
setting where, in addition to multiple sources of data, estimates of the dissimilarities between these
sources are also available. There is also work on data integration via multitask learning where each
data source has the same binary label space, whereas the attributes of the inputs can admit different
orderings as well as be linearly transformed [11].

The remainder of the paper is organized as follows. We briefly develop background on the maximum
entropy estimation problem and its dual in Section 2. We introduce in Section 3 the novel multi-
task formulation in terms of a mutual information maximization criterion. Section 4 presents the
algorithm to solve the optimization problem posed by the multitask problem. We then present the
experimental results, including applications on news articles and web directories data integration, in
Section 5. Finally, in Section 6 we conclude the paper.

2 Maximum Entropy Duality for Conditional Distributions

Here we briefly summarize the well known duality relation between approximate conditional maxi-
mum entropy estimation and maximum a posteriori estimation (MAP) [5, 12]. We will exploit this
in Section 4. Recall the definition of the Shannon entropy, H(y|x) := −

∑
y p(y|x) log p(y|x),

where p(y|x) is a conditional distribution on the space of labels Y. Let x ∈ X and assume the
existence of φ(x, y) : X × Y 7→ H, a feature map into a Hilbert space H. Given a data set
(X,Y ) := {(x1, y1) , . . . , (xm, ym)}, where X := {x1, . . . , xm}, define

Ey∼p(y|X) [φ(X, y)] :=
1
m

m∑
i=1

Ey∼p(y|xi) [φ(xi, y)] , and µ =
1
m

m∑
i=1

φ(xi, yi). (1)

Lemma 1 ([5], Lemma 6) With the above notation we have

min
p(y|x)

m∑
i=1

−H(y|xi) s.t.
∥∥Ey∼p(y|X) [φ(X, y)]− µ

∥∥
H
≤ ε and

∑
y∈Y

p(y|xi) = 1 (2a)

= max
θ
〈θ, µ〉H −

m∑
i=1

log
∑
y

exp(〈θ, φ(xi, y)〉)− ε ‖θ‖H . (2b)

Although we presented a version of the above theorem using Hilbert spaces, it can also be extended
to Banach spaces. Choosing different Banach space norms recovers well known algorithms such as
`1 or `2 regularized logistic regression. Also note that by enforcing the moment matching constraint
exactly, that is, setting ε = 0, we recover the well-known duality between maximum (Shannon)
entropy and maximum likelihood (ML) estimation.

3 Multitask Learning via Mutual Information

For the purpose of explaining our basic idea, we focus on the case when we want to integrate two
data sources such as Yahoo! directory and DMOZ. Associated with each data source are labels
Y = {y1, . . . , yc} ⊆ Y and observations X = {x1, . . . , xm} ⊆ X (resp. Y ′ = {y′1, . . . , y′c′} ⊆ Y′

and X ′ = {x′1, . . . , x′m′} ⊆ X′). The observations are disjoint but we assume that they are drawn
from the same domain, i.e., X = X′ (in our running example they are webpages).

If we are interested to solve each of the categorization tasks independently, a maximum entropy
estimator described in Section 2 can be readily employed [13]. Here we would like to learn the
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two tasks simultaneously in order to improve classification accuracy. Assuming that the labels are
different yet correlated we should assume that the joint distribution p(y, y′) displays high mutual
information between y and y′. Recall that the mutual information between random variables y and
y′ is defined as I(y, y′) = H(y) + H(y′) − H(y, y′), and that this quantity is high when the two
variables are mutually dependent. To illustrate this, consider in our running example of integrating
Yahoo! and DMOZ web directories, we would expect there is a high mutual dependency between
section heading ‘Computer & Internet’ at Yahoo! directory and ‘Computers’ at DMOZ directory
although they are named somewhat slightly different. Since the marginal distributions over the
labels, p(y) and p(y′) are fixed, maximizing mutual information can then be viewed as minimizing
the joint entropy

H(y, y′) = −
∑
y,y′

p(y, y′) log p(y, y′). (3)

This reasoning leads us to adding the joint entropy as an additional term for the objective function
of the multitask problem. If we define

µ =
1
m

m∑
i=1

φ(xi, yi) and µ′ =
1
m′

m′∑
i=1

φ(x′i, y
′
i), (4)

then we have the following objective function

maximize
p(y|x)

m∑
i=1

H(y|xi) +
m′∑
i=1

H(y′|x′i)− λH(y, y′) for some λ > 0 (5a)

s.t.
∥∥Ey∼p(y|X) [φ(X, y)]− µ

∥∥ ≤ ε and
∑
y∈Y

p(y|xi) = 1 (5b)

∥∥Ey′∼p(y′|X′) [φ′(X ′, y′)]− µ′
∥∥ ≤ ε′ and

∑
y′∈Y′

p(y′|x′i) = 1. (5c)

Intuitively, the above objective function tries to find a ‘simple’ distribution p which is consistent
with the observed samples via moment matching constraints while also taking into account task
relatedness. We can recover the single task maximum entropy estimator by removing the joint
entropy term (by setting λ = 0), since the optimization problem (the objective functions as well
as the constraints) in (5) will be decoupled in terms of p(y|x) and p(y′|x′). There are two main
challenges in solving (5):

• The joint entropy term H(y, y′) is concave, hence the above objective of the optimization
problem is not concave in general (it is the difference of two concave functions). We there-
fore propose to solve this non-concave problem using DC programming [6], in particular
the concave convex procedure (CCCP) [14, 15].

• The joint distribution between labels p(y, y′) is unknown. We will estimate this quan-
tity (therefore the joint entropy quantity) from the observations x and x′. Further, we
assume that y and y′ are conditionally independent given an arbitrary input x ∈ X, that is
p(y, y′|x) = p(y|x)p(y′|x). For instance, in our example, annotations made by an editor
at Yahoo! and an editor at DMOZ on the set of webpages are assumed conditionally in-
dependent given the set of webpages. This assumption essentially means that the labeling
process depends entirely on the set of webpages, i.e., any other latent factors that might
connect the two editors are ignored.

In the following section we discuss in further detail how to address these two challenges, as well
as the resulting optimization problem obtained, which can be solved efficiently by existing convex
solvers.

4 Optimization

The concave convex procedure (CCCP) works as follow: for a given function f(x) = g(x)− h(x),
where g is concave and −h is convex, a lower bound can be found by

f(x) ≥ g(x)− h(x0)− 〈∂h(x0), x− x0〉 . (6)
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This lower bound is concave and can be maximized effectively over a convex domain. Subsequently
one finds a new location x0 and the entire procedure is repeated. This procedure is guaranteed to
converge to a local optimum or saddle point [16].

Therefore, one potential approach to solve the optimization problem in (5) is to use successive linear
lower bounds on H(y, y′) and to solve the resulting decoupled problems in p(y|x) and p(y′|x′)
separately. We estimate the joint entropy term H(y, y′) by its empirical quantity on x and x′ with
the conditional independence assumption (in the sequel, we make the dependency of p(y|x) on a
parameter θ explicit and similarly for the dependency of p(y′|x′) on θ′), that is

H(y, y′|X) = −
∑
y,y′

[
1
m

m∑
i=1

p(y|xi, θ)p(y′|xi, θ′)

]
log

 1
m

m∑
j=1

p(y|xj , θ)p(y′|xj , θ′)

 , (7)

and similarly for H(y, y′|X ′). Each iteration of CCCP approximates the convex part (negative joint
entropy) by its tangent, that is 〈∂h(x0), x〉 in (6). Therefore, taking derivatives of the joint entropy
with respect to p(y|xi) and evaluating at parameters at iteration t − 1, denoted as θt−1 and θ′t−1,
yields

gy(xi) := −∂p(y|xi)H(y, y′|X) (8)

=
1
m

∑
y′

1 + log
1
m

m∑
j=1

p(y|xj , θt−1)p(y′|xj , θ′t−1)

 p(y′|xi, θ′t−1). (9)

Define similarly gy(x′i), gy′(xi), and gy′(x′i) for the derivative with respect to p(y|x′i), p(y′|xi) and
p(y′|x′i), respectively. This leads, by optimizing the lower bound in (6), to the following decoupled
optimization problems in p(y|xi) and an analogous problem in p(y′|x′i):

min
p(y|x)

m∑
i=1

[
−H(y|xi) + λ

∑
y

gy(xi)p(y|xi)

]
+

m′∑
i=1

[
−H(y|x′i) + λ′

∑
y

gy(x′i)p(y|x′i)

]
(10a)

subject to
∥∥Ey∼p(y|X)[φ(X, y)]− µ

∥∥ ≤ ε. (10b)

The above objective function is still in the form of maximum entropy estimation, with the lineariza-
tion of the joint entropy quantities acting like additional evidence terms. Furthermore, we also
impose an additional maximum entropy requirement on the ‘off-set’ observations p(y|x′i), as after
all we also want the ‘simplicity’ requirement of the distribution p on the input x′i. We can of course
weigh the requirement on ‘off-set’ observations differently.

While we succeed in reducing the non-concave objective function in (5) to a decoupled concave ob-
jective function in (10), it might be desirable to solve the problem in the dual space due to difficulty
in handling the constraint in (10b). The following lemma shows the duality of the objective function
in (10). The proof is given in the supplementary material.

Lemma 2 The corresponding Fenchel’s dual of (10) is

min
θ

m∑
i=1

log
∑
y

exp(〈θ, φ(xi, y)〉 − λgy(xi)) +
m′∑
i=1

log
∑
y

exp(〈θ, φ(x′i, y)〉 − λ′gy(x′i))

− 1
m

m∑
i=1

〈θ, φ(xi, yi)〉+ ε ‖θ‖`2 (11)

The above dual problem still has the form of logistic regression with the additional evidence terms
from task relatedness appearing in the log-partition function. Several existing convex solvers can be
used to solve the optimization problem in (11) efficiently. Refer to Algorithm 1 for a pseudocode of
our proposed method.

Initialization For each iteration of CCCP, the linearization part of the joint entropy function re-
quires the value of θ and θ′ at the previous iteration (refer to (9)). At the beginning of the iteration,
we can start the algorithm with a uniform prior, i.e. set p(y) = 1/|Y| and p(y′) = 1/|Y′|.
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Algorithm 1 Multitask Mutual Information
Input: Datasets (X,Y ) and (X ′, Y ′) with Y 6= Y′, number of iterations N
Output: θ, θ′
Initialize p(y) = 1/|Y| and p(y′) = 1/|Y′|
for t = 1 to N do

Solve the dual problem in (11) w.r.t. p(y|x, θ) and obtain θt
Solve the dual problem in (11) w.r.t. p(y′|x′, θ′) and obtain θ′t

end for
return θ ← θN , θ′ ← θ′N

5 Experiments

To assess the performance of our proposed multitask algorithm, we perform binary n-task (n ∈
{3, 5, 7, 10}) experiments on MNIST digit dataset and a multiclass 2-task experiment on the
Reuters1-v2 dataset plus an application on integrating Yahoo! and DMOZ web directory. We detail
those experiments in turn in the following sections.

5.1 MNIST

Datasets MNIST data set3 consists of 28× 28-size images of hand-written digits from 0 through
9. We use a small sample of the available training set to simulate the situation when we only have
limited number of labeled examples and test the performance on the entire available test set. In this
experiment, we look at a binary n-task (n ∈ {3, 5, 7, 10}) problem. We consider digits {8, 9, 0},
{6, 7, 8, 9, 0}, {4, 5, 6, 7, 8, 9, 0} and {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} for the 3-task, 5-task, 7-task and 10-
task, respectively. To simulate the problem that we have distinct label dictionaries for each task,
we consider the following setting: in the 3-task problem, the first task has binary labels {+1,−1},
where label +1 means digit 8 and label −1 means digit 9 and 0; in the second task, label +1 means
digit 9 and label −1 means digit 8 and 0; lastly in the third task, label +1 means digit 0 and label
−1 means digit 8 and 9. Similar one-against-rest grouping is also used for 5-task, 7-task and 10-task
problems. Each of the tasks has its own input x.

Algorithms We couldn’t find in the literature of multitask learning methods addressing the same
problem as the one we study: learn multiple tasks when there is no correspondence between the
output spaces. Therefore we compared the performance of our multitask method against the baseline
given by the maximum entropy estimator applied to each of the tasks independently. Note that
we focus on the setting in which data sources have disjoint sets of covariate observations (vide
Section 3) and thus a simple strategy of multilabel prediction with union of label sets corresponds
to our baseline. For both ours and the baseline method, we use a Gaussian kernel to define the
implicit feature map on the inputs. The width of the kernel was set to the median between pairs
of observations, as suggested in [17]. The regularization parameter was tuned for the single task
estimator and the same value was used for the multitask. The weight on the joint entropy term was
set to be equal to 1.

Pairwise Label Correlation Section 3 describes the multitask objective function for the case of
the 2-task problem. For the case when the number of tasks to be learned jointly is greater than 2, we
experiment in two different ways: in one approach we can define the joint entropy term on the full
joint distribution, that is when we want to learn jointly 3 different tasks having label y, y′ and y′′,
we can then define the joint entropy as H(y, y′, y′′) = −

∑
y,y′,y′′ p(y, y

′, y′′) log p(y, y′, y′′). As
more computationally efficient way, we can consider the joint entropy on the pairwise distribution
instead. We found that the performance of our method is quite similar for the two cases and we
report results only on the pairwise case.

Results The experiments are repeated for 10 times and the results are summarized in Table 1. We
find that, on average, jointly learning the multiple related tasks always improves the classification

3http://yann.lecun.com/exdb/mnist
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Table 1: Performance assessment, Accuracy ± STD. m(m′) denotes the number of training data
points (number of test points). STL: single task learning; MTL: multi task learning and Upper
Bound: multi class learning. Boldface indicates a significance difference between STL and MTL
(one-sided paired Welch t-test with 99.95% confidence level).

Tasks m (m’) STL MTL Upper Bound
8 \-8 15 (2963) 77.39±5.23 80.03±4.83 93.42±0.87
9 \-9 15 (2963) 91.12±5.94 91.96±5.42 95.99±0.75
0 \-0 120 (2963) 98.66±0.67 98.21±0.92 98.79±0.25
Average 89.06 90.07 96.07

6 \-6 25 (4949) 81.79±10.18 83.86±9.51 96.37±1.06
7 \-7 25 (4949) 70.73±16.58 72.84±15.77 91.99±2.23
8 \-8 25 (4949) 62.52±10.15 66.77±9.43 92.05±1.76
9 \-9 25 (4949) 63.80±13.70 67.26±12.65 92.53±1.65
0 \-0 150 (4949) 97.35±1.33 96.60±1.64 97.59±0.62
Average 75.84 77.47 94.10

4 \-4 70 (6823) 71.69±6.83 73.49±6.77 91.20±1.55
5 \-5 70 (6823) 67.55±4.70 70.10±4.61 89.30±0.34
6 \-6 70 (6823) 86.31±2.93 87.21±2.77 94.03±0.95
7 \-7 70 (6823) 83.34±3.54 84.02±3.69 91.94±0.90
8 \-8 70 (6823) 75.61±6.00 76.97±5.12 87.46±1.69
9 \-9 70 (6823) 63.69±11.42 65.74±10.15 86.89±1.79
0 \-0 210 (6823) 97.20±1.49 96.56±1.67 97.24±0.73
Average 77.91 79.16 91.15

1 \-1 100 (10000) 96.59±2.11 96.80±1.91 96.89±0.59
2 \-2 100 (10000) 67.77±3.49 69.95±2.68 88.74±1.94
3 \-3 100 (10000) 72.59±5.90 74.18±5.54 87.59±2.95
4 \-4 100 (10000) 69.91±5.82 71.76±5.47 92.87±0.94
5 \-5 100 (10000) 53.78±2.78 57.26±2.72 85.71±1.38
6 \-6 100 (10000) 79.22±5.21 80.54±4.53 92.93±0.98
7 \-7 100 (10000) 76.57±10.2 77.18±9.43 89.83±1.24
8 \-8 100 (10000) 63.57±2.65 65.85±2.50 83.51±0.63
9 \-9 100 (10000) 63.28±6.69 65.38±6.09 84.94±1.45
0 \-0 300 (10000) 98.43±0.84 97.81±1.01 98.49±0.40
Average 74.17 75.67 90.82

accuracy. When assessing the performance on each of the tasks, we notice that the advantage of
learning jointly is particularly significant for those tasks with smaller number of observations.

5.2 Ontology

News Ontologies In this experiment, we consider multiclass learning in a 2-task problem. We
use the Reuters1-v2 news article dataset [18] which has been pre-processed4. In the pre-processing
stage, the label hierarchy is reorganized by mapping the data set to the second level of topic hier-
archy. The documents that only have labels of the third or fourth levels are mapped to their parent
category of the second level. The documents that only have labels of the first level are not mapped
onto any category. Lastly any multi-labelled instances are removed. The second level hierarchy
consists of 53 categories and we perform experiments on the top 10 categories. TF-IDF features are
used, and the dictionary size (feature dimension) is 47236. For this experiment, we use 12500 news
articles to form one set of data and another 12500 news article to form the second set of data. In the
first set, we group the news articles having the label {1, 2}, {3, 4}, {5, 6}, {7, 8} and {9, 10} and
re-label it as {1, 2, 3, 4, 5}. For the second set of data, it also has 5 labels but this time the labels are

4http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html
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Table 2: Yahoo! Top Level Categorization Results. STL: single task learning accuracy; MTL:
multi task learning accuracy; % Imp.: relative performance improvement. The highest relative
improvement at Yahoo! is for the topic of ‘Computer & Internet’, i.e. there is an increase in accuracy
from 48.12% to 52.57%. Interestingly, DMOZ has a similar topic but was called ‘Computers’ and it
achieves accuracy of 75.72%.

Topic MTL/STL (% Imp.) Topic MTL/STL (% Imp.)

Arts 56.27/55.11 (2.10) News & Media 15.23/14.83 (1.03)
Business & Economy 66.52/66.88 (-0.53) Recreation 68.81/67.00 (2.70)
Computer & Internet 52.57/48.12 (9.25) Reference 26.65/24.81 (7.42)
Education 62.48/63.02 (-0.85) Regional 62.85/61.86 (1.60)
Entertainment 63.30/61.37 (3.14) Science 78.58/79.75 (-1.46)
Government 24.44/22.88 (6.82) Social Science 31.55/30.68 (2.84)
Health 85.42/85.27 (1.76) Society & Culture 49.51/49.05 (0.94)

Table 3: DMOZ Top Level Categorization Results. STL: single task learning accuracy; MTL:
multi task learning accuracy; % Imp.: relative performance improvement. The improvement of
multitask to single task on each topic is negligible for DMOZ web directories. Arguably, this can be
partly explained as DMOZ has higher average topic categorization accuracy than Yahoo! and there
might be more knowledge to be shared from DMOZ to Yahoo! than vice versa.

Topic MTL/STL (% Imp.) Topic MTL/STL (% Imp.)

Arts 57.52/57.84 (-0.5) Reference 67.42/67.42 (0)
Business 54.02/53.05 (1.83) Regional 28.59/28.56 (0.10)
Computers 75.08/75.72 (-0.8) Science 42.67/42.09 (1.38)
Games 78.58/78.58 (0) Shopping 75.20/74.62 (0.54)
Health 82.34/82.55 (-0.14) Society 57.68/58.20 (-0.89)
Home 67.47/67.47 (0) Sports 83.49/83.53 (-0.05)
News 61.70/62.01 (-0.49) World 87.80/87.57 (0.26)
Recreation 58.04/58.25 (-0.36)

generated by {1, 6}, {2, 7}, {3, 8}, {4, 9} and {5, 10} grouping. We split equally the news articles
on each set to form training and test sets. We run a maximum entropy estimator independently,
p(y|x, θ) and p(y′|x′, θ′) , on the two sets achieving accuracy of 92.59% for the first set and 91.53%
for the second set. We then learn the two sets of the news articles jointly and in the first test set,
we achieve accuracy of 93.81%. For the second test set, we achieve an accuracy of 93.31%. This
experiment further emphasizes that it is possible to learn several related tasks simultaneously even
though they have different label sets and it is beneficial to do so.

Web Ontologies We also perform an experiment on the data integration of Yahoo! and DMOZ
web directories. We consider the top level of the Yahoo!’s topic tree and sample web links listed in
the directory. Similarly we also consider the top level of the DMOZ topic tree and retrieve sampled
web links. We consider the content of the first page of each web link as our input data. It is possible
that the first page that is being linked from the web directory contain mostly images (for the purpose
of attracting visitors), thus we only consider those webpages that have enough texts to be a valid
input. This gives us 19186 webpages for Yahoo! and 35270 for DMOZ. For the sake of getting
enough texts associated with each link, we can actually crawl many more pages associated with the
link. However, we find that it is quite damaging to do so because as we crawl deeper the topic of the
texts are rapidly changing. We use the standard bag-of-words representation with TF-IDF weighting
as our features. The dictionary size (feature dimension) is 27075. We then use 2000 web pages from
Yahoo! and 2000 pages from DMOZ as training sets and the remainder as test sets. Table 2 and 3
summarize the experimental results.

7



From the experimental results on web directories integration, we observe the following:

• Similarly to the experiments on MNIST digits and Reuters1-v2 news articles, multitask
learning always helps on average, i.e. the average relative improvements are positive for
both Yahoo! and DMOZ web directories;

• The improvement of multitask to single task on each topic is more prominent for Yahoo!
web directories and is negligible for DMOZ web directories (2.62% and 0.07%, respec-
tively). Arguably, this can be partly explained as Yahoo! has lower average topic catego-
rization accuracy than DMOZ (c.f. 60.22% and 64.68 %, respectively). It seems that there
is much more knowledge to be shared from DMOZ to Yahoo! in the hope to increase the
latter’s classification accuracies;

• Looking closely at accuracy at each topic, the highest relative improvement at Yahoo! is
for the topic of ‘Computer & Internet’, i.e. there is an increase in accuracy from 48.12%
to 52.57%. Interestingly, DMOZ has a similar topic but was called ‘Computers’ and it
achieves accuracy of 75.72%. The improvement might be partly because our proposed
method is able to discover the implicit label correlations despite the two topics being named
differently;

• Regarding the worst classified categories, we have ‘News & Media’ for Yahoo! and ‘Re-
gional’ for DMOZ. This is intuitive since those two topics can indeed cover a wide range
of subjects. The easiest category to be classified is ‘Health’ for Yahoo! and ‘World’ for
DMOZ. As well, this is quite intuitive as the world of health contains mostly specific jargon
and the world of world has much language-specific webpage content.

6 Discussion and Conclusion

We presented a method to learn classifiers from a collection of related tasks or data sets, in which
each task has its own label set. Our method works without the need of an explicit mapping between
the label spaces of the different tasks. We formulate the problem as one of maximizing the mutual
information among the label sets. Our experiments on binary n-task (n ∈ {3, 5, 7, 10}) and mul-
ticlass 2-task problems revealed that, on average, jointly learning the multiple related tasks, albeit
with different label sets, always improves the classification accuracy. We also provided experiments
on a prototypical application of our method: classifying in Yahoo! and DMOZ web directories.
Here we deliberately used small amounts of data–a common situation in commercial tagging and
classification. This shows that classification accuracy of Yahoo! significantly increased. Given that
DMOZ classification was already 4.5% better prior to the application of our method, this shows
the method was able to transfer classification accuracy from the DMOZ task to the Yahoo! task.
Furthermore, the experiments seem to suggest that our proposed method is able to discover implicit
label correlations despite the lack of label correspondences.

Although the experiments on web directories integration is encouraging, we have clearly only
touched the surface of possibilities to be explored. While we focused on the categorization at the
top level of the topic tree, it might be beneficial (and further highlight the usefulness of multitask
learning, as observed in [2–4, 9]) to consider categorization at deeper levels (take for example the
second level of the tree), where we have much fewer observations for each category. In the extreme
case, we might consider the labels as corresponding to a directed acyclic graph (DAG) and encode
the feature map associated with the label hierarchy accordingly. One instance as considered in [19]
is to use a feature map φ(y) ∈ Rk for k nodes in the DAG (excluding the root node) and associate
with every label y the vector describing the path from the root node to y, ignoring the root node
itself.

Furthermore, the application of data integration which admit a hierarchical categorization goes be-
yond web related objects. With our method, it is also now possible to learn classifiers from a collec-
tion of related gene-ontology graphs [20] or patent hierarchies [19].
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ularization. In Gábor Lugosi and Hans U. Simon, editors, Proc. Annual Conf. Computational
Learning Theory. Springer Verlag, June 2006.

[13] Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification. In CIKM ’05:
Proceedings of the 14th ACM international conference on Information and knowledge man-
agement, pages 195–200, New York, NY, USA, 2005. ACM.

[14] A.L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:915–
936, 2003.

[15] A. J. Smola, S. V. N. Vishwanathan, and T. Hofmann. Kernel methods for missing variables. In
R.G. Cowell and Z. Ghahramani, editors, Proceedings of International Workshop on Artificial
Intelligence and Statistics, pages 325–332, 2005.

[16] Bharath Sriperumbudur and Gert Lanckriet. On the convergence of the concave-convex pro-
cedure. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems 22, pages 1759–1767. MIT Press, 2009.

[17] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997. Download:
http://www.kernel-machines.org.

[18] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection
for text categorization research. The Journal of Machine Learning Research, 5:361–397, 2004.

[19] Lijuan Cai and T. Hofmann. Hierarchical document categorization with support vector ma-
chines. In Proceedings of the Thirteenth ACM conference on Information and knowledge man-
agement, pages 78–87, New York, NY, USA, 2004. ACM Press.

[20] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene
ontology: tool for the unification of biology. the gene ontology consortium. Nat Genet, 25:25–
29, 2000.

[21] J. M. Borwein and Q. J. Zhu. Techniques of Variational Analysis. CMS books in Mathematics.
Canadian Mathematical Society, 2005.

9



Supplementary Material
Multitask Learning without Label Correspondences

A Proof of lemma 2

Proof Denote by B a Banach space and let B∗ be its dual. Denote space of conditional
distributions P = {py|x | p(y|x) ≥ 0,

∑
y∈Y p(y|x) = 1,∀x ∈ X, y ∈ Y}. Let A be the conditional

expectation operator of the feature map φ(x, y) with respect to conditional distribution p(y|x), that
is Apy|x = Ey∼p(y|x)[φ(x, y)]. Fenchel’s Duality [21, Theorem 4.4.3] states

inf
py|x∈P

{f(py|x) + g(Apy|x)} = sup
θ∈B∗

{−f∗(A∗θ)− g∗(−θ)}. (12)

First, note that the adjoint of the linear operator A is
〈
Apy|x, θ

〉
=
〈
A∗θ, py|x

〉
, then we have〈∑

y∈Y py|xφ(x, y), θ
〉

=
∑
y∈Y py|x 〈φ(x, y), θ〉, thus A∗θ = 〈φ(x, y), θ〉. Define

f(py|x) = py|x log py|x + c · py|x + Λpy|x(
∑
y∈Y py|x − 1) where c is the constant part w.r.t. py|x

(i.e. the gradient of the joint entropy), we the have f∗(p∗y|x) = Λp∗
y|x

+ exp(p∗y|x − 1− c− Λp∗
y|x

)

as its dual. Hence the dual of
∑
x∈X

[
−H(py|x) + λ

∑
y∈Y gy(x)py|x

]
is

m∑
i=1

[∑
y

exp(〈θ, φ(xi, y)〉 − 1− λgy(xi)− Λp∗
y|x

) + Λp∗
y|x

]
(13)

Solving for optimality in Λp∗
y|x

gives
∑m
i=1 log

∑
y exp(〈θ, φ(xi, y)〉 − λgy(xi)). Similarly for

x′ ∈ X′. The dual of the approximate moment matching constraint follows directly from [5,
Lemma 6].
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