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Abstract—Quantile regression refers to the process of es-
timating the quantiles of a conditional distribution and has
many important applications within econometrics and data
mining, among other domains. In this paper, we show how
to estimate these conditional quantile functions within a Bayes
risk minimization framework using a Gaussian process prior.
The resulting non-parametric probabilistic model is easy to
implement and allows non-crossing quantile functions to be
enforced. Moreover, it can directly be used in combination
with tools and extensions of standard Gaussian Processes
such as principled hyperparameter estimation, sparsification,
and quantile regression with input-dependent noise rates. No
existing approach enjoys all of these desirable properties.
Experiments on benchmark datasets show that our method
is competitive with state-of-the-art approaches.

Keywords-Regression; Quantile Regression; Gaussian Pro-
cesses;

I. INTRODUCTION

In most regression studies, we are typically interested in
inferring a real-valued function whose values correspond
to the mean of response variables conditioned on the ex-
planatory variables. The application of this conditional mean
regression is ubiquitous. There are, however, many important
applications where we are interested in estimating either the
median or other quantiles such as estimating the potential
amount of money a customer can spend on a product rather
than his/her expected spending [1]. This is called quantile
regression and was introduced by Koenker and Bassett [2].

The unobservable nature of quantiles means that their pre-
diction is a challenging task. If we had a model p(y|x) of the
conditional distribution of response variables y conditioned
on the explanatory variables x, however, their prediction
would be much simpler as quantile estimation essentially
involves slicing this distribution at a certain quantile level.
This slicing operation is a convex optimization problem. Al-
though we are reducing a hard quantile estimation problem
to yet another hard problem, i.e. distribution modeling, the
latter is a well-studied subject in machine learning in particu-
lar Gaussian processes. At first glance, the usage of Gaussian
process distribution modeling for learning problems such as
classification or regression might violate Vapnik’s paradigm
of estimating only the relevant parameters directly [3].

This paradigm is in favor of estimating latent functions
while sidestepping distribution modeling. However, there
have been several studies that show superiority of Gaussian
processes based methods to infer flexible latent functions
[4], [5]. Our reduction approach is similar in spirit to the
Langford’s et al. [6] method in reducing quantile estimation
problem to series of classification problems.

Therefore, we propose in this paper to estimate condi-
tional quantile functions within a Gaussian process model
[7]. The well-known advantage of using such type of model
over non-Bayesian models is that of having an explicit
probabilistic formulation. This allows us to have a principled
way of performing model selection, as well as a predictive
posterior probability distribution over response variables. In
terms of quantile estimation, the latter is particularly useful
when we have censored or missing response variables [8].
From a practical point of view, our estimator can be easily
sparsified, therefore being able to handle large datasets,
and can take input dependent noise into account. More
importantly, our derived quantile estimator has the desirable
property that the estimated conditional functions at different
quantiles can never cross or overlap each other. Quantile
crossing occurs because each conditional quantile function
is independently estimated, and it has traditionally been one
of the challenging problems in the field [8], [9]. To our
knowledge, our quantile estimator is the first that enjoys
both sparsifiable and non-crossing properties while being
competitive with state-of-the-art alternatives as we will show
in our experiments.
Our contributions:
− A quantile estimator within a Bayes risk minimization

framework using a Gaussian process prior.
− A specific example of Bayes quantile estimator which

enjoys non-parametric, probabilistic model, principled
learning of free parameters, sparse approximation, het-
eroscedasticity and enforced non-crossing constraint.

− A novel Gaussian processes treatment of input-
dependent noise which allows jointly learning the free
parameters of the latent and observed processes.

− A theoretical analysis of our proposed estimator in
term of regret transform bound.



II. RELATED WORK

Most of existing work focuses on estimating each condi-
tional quantile function separately. A standard technique for
conditional quantile estimation is based on a linear model
[2]. In this model, the τ -th conditional quantile function
of y given x is assumed to be a linear function of the
vector of regressors, i.e. qτ (x) := 〈x, β(τ)〉, where β(τ)
is a vector of coefficients dependent on τ . Estimation of
coefficients is done by minimizing the pinball loss function.
It is shown that the minimization can be reformulated as a
linear programming problem and can be solved efficiently
with interior point techniques [8].

The assumption of a linear relationship between the re-
gressors and the conditional quantile function is quite restric-
tive. Takeuchi et al. [10] propose a nonparametric approach
to quantile regression based on kernel methods. The dual of
a regularized version of pinball loss minimization is solved
via standard quadratic programming techniques. Several
extensions to incorporate commonly desired constraints such
as non-crossing constraints and a monotonicity constraint
are also discussed. This method provides state-of-the-art
performance.

Langford et al. [6] show that the quantile regression
problem can be reduced to a series of classification problems
such that a small average error rate on the classification prob-
lems leads to a provably accurate estimate of the conditional
quantile. The estimation of τ -th conditional quantile function
is first reduced to a set of importance weighted binary
classification problems. This problem is further reduced
to ubiquitous unweighted binary classification problem via
rejection sampling. This method is computationally efficient
thus is able to handle large datasets.

The closest work to Quantile Gaussian processes is the
work of Yu and Moyeed [11]. They introduce a Bayesian
approach for quantile estimation based on the linear model.
An asymmetric Laplace distribution is used as a likelihood
function, p(y|x, β(τ)), and the prior on the coefficients is
chosen to be improper uniform, (p(β(τ)) ∝ 1). Although
the prior is improper, they proved that the posterior dis-
tribution will be proper. A Markov chain Monte Carlo
(MCMC) method is used to infer this posterior distribution,
p(β(τ)|x, y). Finally, the posterior mean is used for quantile
estimation, i.e. qτ (x) := 〈x, βMAP(τ)〉. We focus on a
different notion of prior distribution, usage of any likelihood
function, and a different procedure for quantile estimation.
Precisely these differences allow us to derive the desirable
properties mentioned in the introduction.

III. QUANTILE ESTIMATION AS AN OPTIMIZATION
PROBLEM

Given m observed data points D = {(xi, yi)}mi=1, where
yi ∈ Y (the set of outputs) and xi ∈ X (the set of
regressors or inputs), the goal of quantile regression is to
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Figure 1. The pinball loss function.

infer a conditional quantile function qτ (x) from observed
data points.

Definition 1 (Conditional Quantile): Let τ ∈ (0, 1). The
conditional quantile qτ (x) for a pair of random variables
(x, y) ∈ X × R is defined as the function qτ : X → R
for which pointwise qτ (x) is the infimum over q for which
Pr(y ≤ qτ |x) = τ .

The idea behind quantile regression arises from the ob-
servation that minimizing the `1-loss function yields the
median. The symmetry of the `1-loss function implies that
minimization of

∑m
i=1 |yi − q| must give an equal number

of yi − q terms lying on either side of zero. Koenker and
Bassett [2] generalize this idea to obtain a quantile regression
estimator by tilting the loss function. This loss function is
given in Figure 1 and is known as a pinball loss function,

Lτ (ξ) :=
{
τξ, if ξ ≥ 0
(τ − 1)ξ, if ξ < 0.

In this paper, our goal is to estimate the latent quantile
function qτ (x) in a Bayesian framework with a Gaussian
Process prior, which we will develop in the next section.

IV. BAYESIAN FRAMEWORK

Assuming we can estimate the conditional distribution
p(y|x), the Bayes quantile estimator is found by minimizing
expected value of the pinball loss function, i.e.

q(opt)
τ = argmin

qτ

∫
Lτ (y − qτ )p(y|x)dy = argmin

qτ

Rτ (qτ )

(1)
where Rτ (qτ ) := Ep(y|x)[Lτ (y − qτ )] is the Bayes risk.

Lemma 2: The Bayes risk in Equation (1) is convex in
qτ .

Proof: The Bayes risk is a convex combination of
convex loss functions, which must itself be convex.

The subsequent sections will deal with modeling the
conditional distribution p(y|x). We will describe a model
based on Gaussian processes framework. Before introducing
the model, let us briefly review Gaussian processes.

Gaussian Process Prior: In the Gaussian process
framework, the output yi at input location xi is assumed
to be a corrupted version of a latent function q(xi), i.e.
yi = q(xi) + εi where εi is the noise term. A Gaussian



process can be used to define a prior distribution over these
latent functions [7], q ∼ GP(m(x), k(x, x′)), where m(x) is
the mean function (assumed to be zero) and the covariance
k(x, x′) between functions at input x and x′ is defined by
Mercer kernel functions [7].

Likelihood for Quantile Regression: In the Bayesian
setting, there is a distinction between the likelihood function
and the loss function. The likelihood defines the probability
of observing the noisy outputs given the latent functions,
whereas the loss function measures the regret of making
a specific decision. We can in fact define any likelihood
function to model the data. For the purpose of this paper,
we give a specific example for the likelihood function where
we choose to believe that the noise term is independent and
normally distributed, εi ∼ N (0, σ2

n) where σ2
n is the noise

variance.
Predictive Distribution: Choosing a Gaussian likeli-

hood leads to tractable Bayesian inference, i.e. the standard
Gaussian process conditional mean regression [7]. Thus,
the predictive distribution over latent functions is given as
q∗|x∗, X, Y ∼ N (µ∗, σ

′2
∗ ) with the moments as follows

µ∗ = k∗T (σ2
nI +K)−1Y (2)

σ
′2
∗ = k(x∗, x∗)− k∗T (σ2

nI +K)−1k∗. (3)

In these equations, we have K ∈ Rm×m, Kij = k(xi, xj)
and k∗ ∈ Rm×1, k∗i = k(x∗, xi). Here k denotes covariance
function. The predictive distribution over output y∗ is also
normally distributed, i.e. y∗|x∗, X, Y ∼ N (µ∗, σ

′2
∗ + σ2

n :=
σ2
∗).

Quantile Estimator: Under the assumption that the
true conditional distribution p over y is Gaussian with mean
µ and variance σ2, we can evaluate the risk in (1) for a given
quantile estimate q1:

Rτ (q) = (µ− q)
[
τ − Φµ,σ2(q)

]
+ σφµ,σ2(q) (4)

Proposition 3 (Quantile Estimator): The empirical solu-
tion q∗τ to (1) using the predictive distribution y∗|x∗, X, Y ∼
N (µ∗, σ2

∗) is given by the zero of the following function:
fτ (q) = Φµ∗,σ2

∗
(q)− τ .

Proof: Since the objective function is
convex, the (global) minimizer of Rτ (.) with
p(y∗|x∗, X, Y ) = N (µ∗, σ2

∗) is given by
∂qτ
{
∫
Lτ (y∗ − qτ )p(y∗|x∗, X, Y )dy∗} = 0.

Thus, the τ -th quantile estimate is given by

q∗τ = µ∗ + σ∗Φ−1(τ). (5)

Remark: In literatures, (5) is known as a location-scale
model. Several methods have been proposed to estimate both
location and scale functions simultaneously (c.f. [8]). This

1φµ,σ2 (x) denotes the density at x of the Gaussian random variable with
mean µ and variance σ2 and Φµ,σ2 (z) =

∫ z
−∞ φµ,σ2 (x)dx denotes the

CDF. Φ(z) := Φ0,1(z) is the standard Gaussian CDF.

is a special case of our framework with a specific choice of
likelihood function.

Our estimator carries several advantages. The first is that
our estimator inherently enforces a non-crossing constraint.
Estimation of several conditional quantile functions can
cause two or more estimated functions to cross or overlap.
This is due to each conditional quantile function being in-
dependently estimated. This phenomenon should not happen
as the true quantile functions are defined to be non-crossing.

Corollary 4 (Non-Crossing Estimator): For
p(y∗|x∗, X, Y ) is independent of τ , the Bayes quantile
estimator is a monotone increasing function of τ .

Proof: Provided p(y∗|x∗, X, Y ) is independent of τ and
has finite density this is immediate from the fact that the
inverse CDF is monotonically increasing.
There have been several approaches addressing the non-
crossing constraint. He [9] transformed the non-crossing
constraint into a positivity constraint, however, this might
not be desirable from the non-parametric point of view.
Takeuchi et al. [10] imposed the non-crossing constraint as
linear constraints, however, this means that every adjacent
pair of conditional quantile functions should be computed
when multiple quantiles are needed. Recently, Shim et al.
[12] used a location–scale model and estimated both location
and scale functions simultaneously via SVM. It is shown that
the proposed method works slightly better than the method
of [10] but offers conceptual simplicity since it estimates the
location and scale functions simultaneously.

Secondly, by approximating the predictive distribution
over quantile functions with conditional mean Gaussian
process regression, we have a large pool of sparse ap-
proximation methods at our disposal. Several approximative
models, such as subset of regressors, subset of datapoints,
projected process, and Bayesian committee machine have
been proposed for Gaussian process regression in order to
deal with the high time and storage requirements for large
training datasets. Many of the approximations use a subset I,
|I| = n, of datapoints (the support set) from the full training
set D, |D| = m, see e.g. [7] for more details. Finally, we can
elegantly deal with input-dependent noise as shown below.

V. HETEROSCEDASTIC QUANTILE ESTIMATION

In many real-world problems, the local noise rates are
important features of data distributions and hence of con-
ditional quantiles that have to be modeled accurately. Our
Bayesian approach allows a simple but elegant solution
to handle this locally varying noise: use heteroscedastic
Gaussian processes instead of standard ones.

In contrast to the standard Gaussian process approaches
discussed so far, we now do not assume a constant noise
level n(x) at location x but place a prior over it. More
precisely, an independent Gaussian process is used to model
the logarithms of the noise levels, denoted as z(x) =
log(n(x)). This noise process is governed by a different



covariance function kz , parameterized by θz . The locations
X̄ = {x̄1, x̄2, . . . , x̄l} for the ”training” noise levels Z̄ =
{z̄1, z̄2, . . . , z̄l} can be chosen differently from the ones used
for the noise-free process.

Since the noise rates zi at the original locations
x1, x2, . . . , xm are now independent latent variables in the
combined regression model, the predictive distribution for
y∗ changes to p(y∗|x∗,D, θ) =

∫∫
p (y∗|x∗, z∗,D, Z, θ) ·

p
(
z∗, Z|x∗, X, X̄, Z̄, θz

)
dz∗dZ, where Z denotes the pre-

dicted (logarithmized) noise levels at the original locations
X . Given (z∗, Z), the prediction p (y∗|x∗, z∗,D, Z) is Gaus-
sian with mean and variance as defined by (2) and (3)
replacing the constant noise level σ2

n × I with the diagonal
matrix diag(exp(Z)).

The problematic term is p(z∗, Z|x∗, X, X̄, Z̄). It makes
the integral difficult to handle analytically. Instead, we seek
for the solution using the most probable noise estimates, i.e.,
p(y∗|x∗,D, θ) ≈ p (y∗|x∗, z∗, X, Y, Z) where (z∗, Z) are
the mean predictions of the latent noise process. To jointly
estimate θ, θz , and Z̄ from data, we seek an MAP solution
that maximizes log p(Z|y,X, X̄, θ) = log p(y|X,Z, θ) +
log p(Z|X, X̄, θ) + const., where (overloading notation) θ
now also includes θz and Z̄. One may now find the gradient
of this objective function with respect to the hyperparameters
θ and employ it within a gradient-based optimization to find
the corresponding solution.

VI. REGRET TRANSFORM BOUND

Our approach to solving the quantile estimation problem
can be thought of as a reduction. The problem we really wish
to solve is quantile estimation (Problem A) but the problem
we actually solve is a Gaussian Process regression (Problem
B) and then we use this to get a quantile estimation. A
natural question in this sort of reductions is: given a measure
of how well we solve Problem B, what can we say about
how well will we solve Problem A?

Questions like this are typically answered in terms of
regrets. The regret of a τ -th quantile point estimate q under
a true point distribution p(y|x) is ∆Rτ (q) := Rτ (q) −
Rτ (qopt), where qopt is the best τ -th quantile estimate in
(1) under p.

Theorem 5: Suppose p∗ = N (µ∗, σ2
∗) is a predictive

distribution at the point x∗ and the true point distribution
is p = N (µ, σ2). Then, if KL(p∗||p) ≤ ε, the regret of the
corresponding τ -th quantile estimator q∗τ satisfies

∆Rτ (q) ≤
√

2ε(τσ + 1)(|Φ−1(τ)|+ 1). (6)

This bound depends not only on how well the true normal
distribution can be estimated (the

√
ε term) but also on the

quantile being estimated (τ ) and the variance of the true
distribution (σ). These dependencies are quite natural. If the
true distribution is spread out a small error in estimating it
can lead to large errors in its quantiles. Also, since there is
little mass in the highest and lowest quantiles, an error in

estimating the true distribution can potentially make large
changes to a quantile location.

The proof of this theorem relies on the Lipschitz continu-
ity of several functions related to Gaussian densities which
we establish in the following lemma.

Lemma 6: Upper bounds on the Lipschitz constants for
the functions q 7→ φµ,σ2(q) and q 7→ (µ − q)Φµ,σ2(q) are
σ−2 and σ−1, respectively.

Proof: The first and second derivatives
of φµ,σ2(q) are φ′µ,σ2(q) = µ−q

σ2 φµ,σ2(q) and

φ′′µ,σ2(q) = (µ−q)2−σ2

σ4 φµ,σ2(q). Thus, the maximal/minimal
values for φ′µ,σ2(q) occur when φ′′µ,σ2(q) = 0. That
is, when q = µ ± σ. Thus, for all q ∈ R, we have
|φ′µ,σ2(q)| ≤ |φ′µ,σ2(µ± σ)| = σ

σ2
1√

2πσ2 = 1
σ2
√

2π
< σ−2.

Similarly, the first and second derivatives of (µ−q)Φµ,σ2

are (µ−q)2−σ2

σ2 φµ,σ2(q) and (µ−q)3−3σ2(µ−q)
σ4 φµ,σ2(q). Thus,

its first derivative is maximal/minimal at either q = µ
or µ − q = ±

√
3σ. Substituting these solutions back

into the first derivative gives
∣∣∣ ddq (µ− q)Φµ,σ2(q)

∣∣∣ ≤
1√

2πσ2 max
{

1, 2e−3/2
}
< σ−1 and proves the lemma.

Proof: [Theorem 5] The regret under the assumption
that p is the true point distribution is given by (4) for
q and qopt as ∆Rτ (q) = τ(qopt − q) + σ[φµ,σ2(q) −
φµ,σ2(qopt)] + (µ − qopt)Φµ,σ2(qopt) − (µ − q)Φµ,σ2(q).
Letting Γµ,σ2(q) := (µ − q)Φµ2

σ
(q) and by the Lipschitz

conditions of Lemma 6 we can write, |∆Rτ (q)| ≤ τ |qopt−
q|+σ|φµ,σ2(q)−φµ,σ2(qopt)|+ |Γµ,σ2(qopt)−Γµ,σ2(q)| =
(τ + σ−1)|qopt− q|. We now note that, by equation (5) that
|qopt − q| ≤ |µ − µ∗| + |Φ−1(τ)||σ − σ∗|, where (µ, σ)
and (µ∗, σ∗) are the moments for the true and predictive
distribution, respectively. Thus, it is sufficient to bound the
difference in means and variances between these distribu-
tions.

We now make use of our assumption that KL(p∗||p) < ε.
The KL-divergence for two Gaussians is the well-known
expression, KL(p∗||p) = ln

(
σ
σ∗

)
+ σ2

∗
2σ2 + (µ−µ∗)2

2σ2 − 1
2 . Since

σ∗ and µ∗ can be chosen independently, we note that the
upper bound implies both |µ−µ∗| < σ

√
2ε and ln(σ/σ∗)+

1
2 (σ2
∗/2σ

2 − 1) < ε. The well-known bound ln(x) ≤ x− 1
for all x > 0 can be rearranged to give ln(x) ≥ 1− 1

x and
so ε > ln( σσ∗ )+ 1

2 (σ
2
∗
σ2 −1) ≥ 1− σ∗

σ + 1
2 (σ

2
∗
σ2 −1) = (σ−σ∗)2

2σ2 .

Thus, it is also the case that |σ − σ∗| < σ
√

2ε. Combining
all these bounds proves the result.

VII. EXPERIMENTAL EVALUATION

Our intention here is to investigate to which extent the
performance of the Quantile GP is comparable to state-of-
the-art quantile estimation approaches.

A. Synthetic Data

In this experiment, we are interested to analyze the
quality of our estimator under the condition of known noise



τ
0.1 0.25 0.5 0.75 0.9

Example 1
QSVM 0.0822 0.0641 0.0274 0.0238 0.0937
HQGP 0.0621 0.0410 0.0306 0.0379 0.0563

Example 2
QSVM 0.0987 0.2465 0.5090 0.8044 0.9393
HQGP 0.5286 0.2938 0.2398 0.4793 0.9927

Table I
ABSOLUTE LOSS COMPARISON ON EXAMPLE 1 AND EXAMPLE 2.
QSVM: QUANTILE SVM, [10]; HQGP: HETEROSCEDASTIC QUANTILE

GP, I.E. OUR APPROACH.

distribution. We focus on two cases, namely the Gaussian
noise case and the Chi-squared noise case:

Example 1 (Heteroscedastic Gaussian Noise) We gen-
erate 100 samples from the following stochastic process:
x ∼ U(−1, 1) and y = µ(x) + σ(x)ξ with µ(x) =
sinc(x), σ(x) = 0.1 exp(1− x), and noise, ξ ∼ N (0, 1).
Example 2 (Heteroscedastic Chi-squared Noise) We
generate 200 samples from the following stochastic
process: x ∼ U(0, 2) and y = µ(x) + σ(x)ξ with
µ(x) = sin(2πx), σ(x) =

√
2.1−x

4 , and noise, ξ ∼ χ2
(1)− 2.

For the case of known noise distribution, the true quantile
values can be computed simply via inverse cumulative
distribution function of noise density, i.e. qtrue

τ = µ(x) +
σ(x)Φ−1

ξ (τ) with Φξ(.) is given as ΦN (0,1)(.) or Φχ2
(1)

(.)−2
for Example 1 or 2, respectively. The absolute errors for
each estimated quantile regression functions are given in
Table I. For comparison, we contrast the performance of
our method with SVM based quantile estimator [10]. It is of
no surprise that our estimator shows superior performance
in Gaussian noise corrupted data while falls short in Chi-
squared noise model case. In the latter case, our estimator
tries to approximate a single right-tail Chi-squared density
with a double tail Gaussian density and thus the produced
estimates suffer badly in the lower quantile regime. However,
in the real data, the noise model miss-specification is less
apparent and as it is shown in the next section our quantile
estimator delivers competitive performance with state-of-
the-art approaches. This is partly due to the competitive
advantage of Gaussian processes based estimator to be a
superior mean predictor.

B. Real Data

We are interested to assess the effectiveness of our
quantile estimator in comparison to the linear model by
[2], the SVM based approach by [10], and the learning
reduction based approach by [6] for several real datasets.
We implemented our approach in Matlab using [7] GPML
Toolbox.

τ
Dataset 0.1 0.5 0.9

Antigen A 0.293±0.105 0.264±0.050 0.292±0.087
B 0.123±0.033 0.249±0.033 0.128±0.018
C 0.122±0.031 0.266±0.021 0.131±0.015
D 0.116±0.021 0.255±0.028 0.126±0.015

Weather A 0.291±0.034 0.293±0.024 0.301±0.045
B 0.067±0.015 0.218±0.034 0.118±0.013
C 0.075±0.011 0.176±0.028 0.123±0.011
D 0.057±0.010 0.097±0.015 0.068±0.017

Mcycle A 0.396±0.080 0.389±0.019 0.387±0.056
B 0.090±0.012 0.202±0.019 0.085±0.008
C 0.094±0.011 0.190±0.015 0.083±0.010
D 0.092±0.025 0.186±0.018 0.089±0.010
E 0.079±0.019 0.187±0.021 0.070±0.016

BMD A 0.328±0.028 0.325±0.0340 0.324±0.073
B 0.122±0.017 0.306±0.039 0.152±0.025
C 0.121±0.020 0.311±0.041 0.154±0.027
D 0.135±0.014 0.310±0.045 0.168±0.030
E 0.123±0.017 0.309±0.045 0.153±0.027

Calif. A 0.283±0.038 0.225±0.009 0.254±0.068
Housing B † † †

C 0.108±0.014 0.263±0.023 0.167±0.006
F 0.104±0.016 0.272±0.018 0.175±0.024

Table II
PINBALL LOSS COMPARISON: 5-FOLD CROSS VALIDATION ERRORS ±

STD. THE BEST RESULT IS IN BOLDFACE. A: LINEAR, [2]; B: QUANTILE
SVM, [10]; C: REDUCTION TO CLASSIFICATIONS, [6]; D: QUANTILE

GP; E: HETEROSCEDASTIC QUANTILE GP; F: SPARSE QUANTILE GP. †:
PROGRAM FAILS (LARGE DATASET).

Datasets: We used three regression datasets from the UCI
repository (Antigen-972, Weather-238 and Motorcycle-133);
one dataset from the Elements of Statistical Learning Book
(BMD-485); and one dataset from StatLib repository (Cali-
fornia Housing-20640). We normalized all datasets to have
zero mean and unit standard deviation for each coordinate
[10].

Model Selection: In our approach, we use squared
exponential covariance function. Gaussian RBF Kernel is
used for Quantile SVM with the kernel width and regular-
ization parameters fitted with the trick described in [10].
For learning the reduction method, Expectation Propagation
(EP) approximation of Gaussian process classification [7]
with squared exponential covariance function is used as base
classifier learners. We fix the number of classifiers at 100 for
all datasets [6]. For the linear model, there is no parameter
to be tuned.

Sparse Approximation: As stated in Section IV, our
estimator can be easily sparsified. This relies on advances of
sparse approximation methods for conditional mean Gaus-
sian process regression. In our experiments, we use the
projected process (PP) [7]. We assess the performance of

2Number of observations.



(a) Takeuchi et al. (b) Langford et al. (c) Quantile GP (d) Heteroscedastic QGP

Figure 2. Illustration of conditional quantile analysis for Silverman’s motorcycle dataset via Quantile SVM (Takeuchi et al.), Reduction (Langford et al.),
Quantile GP, and Heteroscedastic QGP. The dataset exhibits heteroscedasticity. Non-crossing constraint is not enforced in Reduction and enforceable in
Quantile SVM via additional linear constraints and is an inherent property of Quantile GP.

this sparse approximation in the California Housing dataset.
Input-dependent noise: We optimized the hyperparame-

ters of both the noise-free and the noise process jointly using
a scaled conjugate gradient approach. As locations X̄ of the
latent noise process, we selected 10 points linearly spaced
in the bounding interval of the given input location.

Results: We run the linear model, SVM, learning reduc-
tion, and Gaussian process methods for 3 different quantile
values for each dataset, i.e. at 0.1, 0.5 and 0.9. For Quantile
SVM, we perform nested 5-fold cross-validation. There is
no need to perform nested cross-validation for our approach,
learning reduction approach, and the linear model as the free
parameters are selected via log evidence, EP approximation
of log evidence or there is no free parameter, respectively.
The 5-fold cross validation results are summarized in Ta-
ble II. Arguably, our estimator performs on par with (if
not exceeding) state-of-the-art SVM and learning reduction
based method. Noticeably, our approach has a competitive
advantage over Quantile SVM for large datasets where
the later approach might fail due to high memory and
computational time requirements.

An illustration of the estimated quantile regression func-
tions via SVM, learning reduction, and Gaussian process
methods on the Motorcycle dataset is given in Figure 2.

VIII. CONCLUSIONS AND FUTURE RESEARCH

We tackled the quantile estimation problem by modeling
the conditional distribution and subsequently slicing the
distribution at the respective quantile level to get the estimate
of the latent quantile function. This approach is preferable
when multiple quantile regression functions are needed and
captures rather well the characteristics of the datasets.

In this paper, we have focussed on the specific example
of Bayes quantile estimator, i.e. with Gaussian likelihood
function. While this offers several appealing properties, the
framework is by no means restricted to this. Our proposed
Bayes quantile estimator offers two design parameters: like-
lihood function (for robustness, a heavier tail distribution
function might be more preferable) and non-parametric CDF
(estimation of CDF directly from the data via residuals /
errors).

ACKNOWLEDGMENT

The authors would like to thank Alex Smola, Marcus Hut-
ter, and Marconi Barbosa for useful comments and sugges-
tions. NICTA is funded through the Australian Government’s
Backing Australia’s Ability initiative, in part through the
ARC. The research was supported by the Pascal Network
and the Fraunhofer ATTRACT fellowship STREAM.

REFERENCES

[1] C. Perlich, S. Rosset, R. D. Lawrence, and B. Zadrozny,
“High-quantile modeling for customer wallet estimation and
other applications,” in KDD ’07. ACM, 2007, pp. 977–985.

[2] R. Koenker and G. Bassett, “Regression quantiles,” Econo-
metrica, vol. 46, no. 1, pp. 33–50, 1978.

[3] V. Vapnik, Estimation of Dependences Based on Empirical
Data. Springer, 1982.

[4] C. Rasmussen, “Evaluation of Gaussian processes and other
methods for non-linear regression,” Ph.D. dissertation, De-
partment of Computer Science, University of Toronto, 1996,
http://www.kyb.mpg.de/publications/pss/ps2304.ps.

[5] H. Nickisch and C. E. Rasmussen, “Approximations for bi-
nary gaussian process clasification,” JMLR, vol. 9, pp. 2035–
2078, 2008.

[6] J. Langford, R. Oliveira, and B. Zadrozny, “Predicting condi-
tional quantiles via reduction to classification,” in UAI, 2006.

[7] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes
for Machine Learning. Cambridge, MA: MIT Press, 2006.

[8] R. Koenker, Quantile Regression. Cambridge University
Press, 2005.

[9] X. He, “Quantile curves without crossing,” The American
Statistician, vol. 51, no. 2, pp. 186–192, may 1997.

[10] I. Takeuchi, Q. V. Le, T. Sears, and A. J. Smola, “Non-
parametric quantile estimation,” J. Mach. Learn. Res., vol. 7,
2006.

[11] K. Yu and R. A. Moyeed, “Bayesian quantile regression,”
Statistics & Probability Letters, vol. 54, pp. 437–447, 2001.

[12] J. Shim, C. Hwang, and K. H. Seok, “Non-crossing quantile
regression via doubly penalized kernel machine,” in Compu-
tational Statistics, vol. 24, 2009, pp. 83–94.


