Motivation

Problem

Solution

Experiments

Extensions

イロト イポト イヨト イヨト

Summary

1/26

Learning Multi-View Neighborhood Preserving Projections

Novi Quadrianto

Joint Work with Christoph H. Lampert (IST Austria)

ICML Bellevue, 30th June 2011

• Several features can be used to describe content of the images, such as Color, Text, shape, ...

• Query objects and objects in the database have different representations.

- Projecting data in different representations into a shared space, with a special structure;
- In short, it is a multi-view distance metric learning problem;
- Solution: neighborhood structure preservation.

What we have:

- Two sets of m observed data points, $\{x_1, \ldots, x_m\} \subset \mathcal{X}$ and $\{y_1, \ldots, y_m\} \subset \mathcal{Y}$ describing the same objects;
- A cross-neighborhood set S_{x_i} for each $x_i \in \mathcal{X}$ that corresponds to a set of data points from \mathcal{Y} that are deemed similar to x_i .

What we want:

• Projection functions, $g_1 : \mathcal{X} \to \mathbb{R}^D$ and $g_2 : \mathcal{Y} \to \mathbb{R}^D$, that respect the neighborhood relationship $\{\mathcal{S}_{x_i}\}_{i=1}^m$.

Assumption:

• A linear parameterization of the functions $g_1^w(x_i) := \langle w_1, \phi(x_i) \rangle$ for H_1 basis functions $\{\phi_h(x_i)\}_{h=1}^{H_1}$ and $w_1 \in \mathbb{R}^{D \times H_1}$ and likewise for g_2 with the weight parameter $w_2 \in \mathbb{R}^{D \times H_2}$.

• Folk Wisdom:

Keep your friends (read: matching samples) close and your enemies (read: non-matching samples) close far far away;

• Turning Wisdom into a Regularized Risk Functional:

• Folk Wisdom:

Keep your friends (read: matching samples) close and your enemies (read: non-matching samples) close far far away;

• Turning Wisdom into a Regularized Risk Functional:

$$\underbrace{\sum_{i,j=1}^{m} L^{i,j}(w_1, w_2, x_i, y_j, \mathcal{S}_{x_i})}_{\text{The Wisdom Loss}} + \underbrace{\eta \Omega(w_1) + \gamma \Omega(w_2)}_{\text{The Regularizer}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\underbrace{L^{i,j}(w_1, w_2, x_i, y_j, \mathcal{S}_{x_i})}_{\text{The Wisdom Loss}} = \underbrace{\frac{\mathbf{I}_{\llbracket y_j \in \mathcal{S}_{x_i} \rrbracket}}{2} \times L_1^{i,j}}_{\text{The Friends Loss}} + \underbrace{\frac{\left(1 - \mathbf{I}_{\llbracket y_j \in \mathcal{S}_{x_i} \rrbracket}\right)}{2} \times L_2^{i,j}}_{\text{The Enemies Loss}}$$

イロン イロン イヨン イヨン 三日

8 / 26

with

$$L_1^{i,j} = \|g_1^{w_1}(x_i) - g_2^{w_2}(y_j)\|_{\text{Fro}}^2$$

$$L_2^{i,j}(\beta_d) = \max(0, 1 - \|g_1^{w_1}(x_i) - g_2^{w_2}(y_j)\|_{\text{Fro}}^2).$$

$$\underbrace{L^{i,j}(w_1, w_2, x_i, y_j, \mathcal{S}_{x_i})}_{\text{The Wisdom Loss}} = \underbrace{\frac{\mathbf{I}_{\llbracket y_j \in \mathcal{S}_{x_i} \rrbracket}}{2} \times L_1^{i,j}}_{\text{The Friends Loss}} + \underbrace{\frac{\left(1 - \mathbf{I}_{\llbracket y_j \in \mathcal{S}_{x_i} \rrbracket}\right)}{2} \times L_2^{i,j}}_{\text{The Enemies Loss}}$$

with

$$\begin{split} L_{1}^{i,j} &= \|g_{1}^{w_{1}}(x_{i}) - g_{2}^{w_{2}}(y_{j})\|_{\text{Fro}}^{2} \\ \hline L_{2}^{i,j}(\beta_{d}) &= \max(0, 1 - \|g_{1}^{w_{1}}(x_{i}) - g_{2}^{w_{2}}(y_{j})\|_{\text{Fro}}^{2}) \\ \hline L_{2}^{i,j}(\beta_{d}) &= \begin{cases} -\frac{1}{2}\beta_{d}^{2} + \frac{a\lambda^{2}}{2}, & \text{if } 0 \leq |\beta_{d}| < \lambda \\ \frac{|\beta_{d}|^{2} - 2a\lambda|\beta_{d}| + a^{2}\lambda^{2}}{2(a-1)}, & \text{if } \lambda \leq |\beta_{d}| \leq a\lambda \\ 0, & \text{if } |\beta_{d}| \geq a\lambda, \end{cases}$$

where $\beta_d = \|g_1^{w_1}(x_i) - g_2^{w_2}(y_j)\|_{\text{Fro}}.$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $L_2^{i,j}(\beta_d) = L^1_{\rm cv}(\beta_d) - L^2_{\rm cv}(\beta_d)$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ()
10 / 26

Recall:

• Objective = Enemies term + Friends term + Regularizers

$$\underbrace{\frac{\left(1-\mathbf{I}_{[\![y_j\in\mathcal{S}_{x_i}]\!]}\right)}{2}\times(L^1_{\mathsf{cv}}}_{\mathsf{Concave Function}}\underbrace{-L^2_{\mathsf{cv}})+\frac{\mathbf{I}_{[\![y_j\in\mathcal{S}_{x_i}]\!]}}{2}\times L^{i,j}_1+\eta\Omega(w_1)+\gamma\Omega(w_2)}_{\mathsf{Convex Functions}}$$

イロン イロン イヨン イヨン 三日

11/26

The ConCave-Convex Procedure (CCCP):

. . .

Algorithm A-Multi-View Neighborhood Preserving Projection

Assume: $g_1^w(x_i) := \langle w_1, \phi(x_i) \rangle$ and $g_2^w(y_i) := \langle w_2, \psi(y_i) \rangle$ Input: $X = \{x_1, \dots, x_m\}$ and $Y = \{y_1, \dots, y_m\}$, $\{S_{x_i}\}_{i=1}^m$, NOutput: w_1^* and w_2^* Initialize w_1 and w_2 for t = 1 to N do Solve CCCP w.r.t. w_1 and obtain w_1^t Solve CCCP w.r.t. w_2 and obtain w_2^t end for

Algorithm B–Hybrid-{PCA and Multi-NPP}

Assume: $g_1^w(x_i) := \langle w_1, \phi(x_i) \rangle$ and $g_2^w(y_i) := \langle w_2, \psi(y_i) \rangle$ Input: $X = \{x_1, \dots, x_m\}$ and $Y = \{y_1, \dots, y_m\}$ and $\{S_{x_i}\}_{i=1}^m$ Output: w_1^{PCA} and w_2^* Initialize w_2 Solve CCCP w.r.t. w_2 while fixing $w_1 = w_1^{\text{PCA}}$

Experimentations on a image retrieval task Israeli-Images dataset:

- 1000 images with 11 categories;
- View 1: global color descriptors;
- View 2: local SIFT descriptors.

Baselines:

- Principal Component Analysis (PCA);
- Canonical Correlation Analysis (CCA).

Performance metric:

• k-Nearest Neighbor classification metric.

Algorithm A v. Baselines (PCA and CCA) for Color Query - Color Database (accuracy \pm std):

Method	#dim	5-NN	10-NN	30-NN
Original	64	31.4±2.52	31.3±3.87	30.4±3.55
PCA	10	28.9±2.25	30.1±2.35	29.4±3.08
	50	31.3 ± 3.12	31.4 ± 3.46	30.3±2.99
CCA	10	24.8±3.86	24.7±3.42	24.0±3.78
	50	29.9 ± 3.43	28.2±2.78	26.6±4.06
Ours	10	26.4±4.33	27.6±3.39	27.4±3.54
	50	30.0±3.90	29.5±2.81	30.2±3.98

Algorithm A v. Baselines (PCA and CCA) for SIFT Query - SIFT Database (accuracy \pm std):

Method	#dim	5-NN	10-NN	30-NN
Original	300	32.2±2.37	33.2±3.18	30.2±4.00
PCA	10	29.6±1.99	30.2±3.18	29.9±2.84
	50	$31.8 {\pm} 3.30$	32.8±3.33	30.2±4.05
CCA	10	$16.7 {\pm} 1.88$	17.7±2.48	19.1±2.00
	50	$19.4 {\pm} 3.14$	$21.7{\pm}3.91$	20.6±3.08
Ours	10	31.4±3.92	32.9±3.16	33.4±3.62
	50	$34.0{\pm}2.76$	35.4±2.83	34.2±1.67

Algorithm A v. Baselines (PCA and CCA) for Color Query - SIFT Database (accuracy \pm std):

Method	#dim	5-NN	10-NN	30-NN
PCA	10	9.3±1.66	9.3±2.03	$10.0{\pm}2.31$
	50	$9.4{\pm}1.17$	$10.7 {\pm} 1.38$	$10.5{\pm}2.04$
CCA	10	$15.4{\pm}4.27$	$15.8 {\pm} 4.53$	$15.9{\pm}4.59$
	50	$16.2 {\pm} 4.83$	$16.8 {\pm} 5.27$	$18.2{\pm}6.30$
Ours	10	18.6±2.07	18.9±2.28	18.7±2.21
	50	20.4±3.43	20.4±2.88	21.8±3.21

Algorithm A v. Baselines (PCA and CCA) for SIFT Query - Color Database (accuracy \pm std):

Method	#dim	5-NN	10-NN	30-NN
PCA	10	8.2±2.54	9.2±3.35	9.4±3.36
	50	8.6±2.65	9.8±2.47	9.8±3.33
CCA	10	12.5±2.98	13.8±2.36	13.8 ± 2.82
	50	$13.2{\pm}1.77$	$13.2{\pm}2.32$	$13.4{\pm}2.62$
Ours	10	19.0±3.63	20.8±3.52	22.0±3.98
	50	22.6±2.07	22.9±1.93	22.4±4.30

Algorithm A v. Algorithm B (accuracy \pm std): Color Query - SIFT Database

Method	#dim	5-NN	10-NN	30-NN
Ours Type A	10	$18.6{\pm}2.07$	18.9 ± 2.28	18.7 ± 2.21
	50	20.4±3.43	20.4±2.88	21.8 ± 3.21
Ours Type B	10	24.2±2.59	24.9±2.72	26.3±2.82
	50	30.0±3.20	29.2±3.12	30.2±3.42

SIFT Query - Color Database

Ours Type A	10	$19.0{\pm}3.63$	20.8±3.52	22.0±3.98
	50	22.6±2.07	22.9±1.93	22.4±4.30
Ours Type B	10	18.8±3.59	19.1±3.14	19.4±3.71
	50	27.8±4.27	26.8±4.28	27.0±3.09

Kernelization:

• Representer Theorem,

 $w_1 = \sum_{i=1}^m \alpha_i k(x_i, \cdot), \text{ and } w_2 = \sum_{j=1}^m \beta_i l(y_j, \cdot), \text{ for a positive-definite kernel } k : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \text{ and a kernel } l : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}.$

Beyond 2-View:

• For the case with more than two data sources we build an analogous objective function by summing up the terms of all pairwise objectives.

- We address the problem of projecting data in different representations into a shared space with a structure;
- We formulate an objective function that maps together matching samples and pushes apart non-matching samples;
- We show that this resulting objective function can be efficiently optimized using the convex-concave procedure (CCCP);
- Our proposed approach has a direct application for cross-media and content-based retrieval tasks.

- We address the problem of projecting data in different representations into a shared space with a structure;
- We formulate an objective function that maps together matching samples and pushes apart non-matching samples;
- We show that this resulting objective function can be efficiently optimized using the convex-concave procedure (CCCP);
- Our proposed approach has a direct application for cross-media and content-based retrieval tasks.

- We address the problem of projecting data in different representations into a shared space with a structure;
- We formulate an objective function that maps together matching samples and pushes apart non-matching samples;
- We show that this resulting objective function can be efficiently optimized using the convex-concave procedure (CCCP);
- Our proposed approach has a direct application for cross-media and content-based retrieval tasks.

- We address the problem of projecting data in different representations into a shared space with a structure;
- We formulate an objective function that maps together matching samples and pushes apart non-matching samples;
- We show that this resulting objective function can be efficiently optimized using the convex-concave procedure (CCCP);
- Our proposed approach has a direct application for cross-media and content-based retrieval tasks.

Thank you