Sequentiality and the w-Calculus *

Martin Berger! Kohei Honda! Nobuko Yoshidat

Abstract. We present a type discipline for the w-calculus which pre-
cisely captures the notion of sequential functional computation as a spe-
cific class of name passing interactive behaviour. The typed calculus
allows direct interpretation of both call-by-name and call-by-value se-
quential functions. The precision of the representation is demonstrated
by way of a fully abstract encoding of PCF. The result shows how a
typed m-calculus can be used as a descriptive tool for a significant class
of programming languages without losing the latter’s semantic proper-
ties. Close correspondence with games semantics and process-theoretic
reasoning techniques are together used to establish full abstraction.

1 Introduction

This paper studies a type discipline for the 7-calculus which precisely captures
the notion of sequential functional computation. The precision of the represen-
tation is demonstrated by way of a fully abstract encoding of PCF. Preceding
studies have shown that while operational encodings of diverse programming lan-
guage constructs into the w-calculus are possible, they are rarely fully abstract
[28,32]: we necessarily lose information by such a translation. The translation
of a source term M will generally result in a process containing more behaviour
than M. Type disciplines for the m-calculus with significant properties such as
linearity and deadlock-freedom have been studied before [9, 16,21, 22,29, 30, 37],
but, to our knowledge, no previous typing system for the m-calculus has en-
abled a fully abstract translation of functional sequentiality. The present work
shows that a relatively simple typing system suffices for this purpose. Despite
its simplicity, the calculus is general enough to give clean interpretations of both
call-by-name and call-by-value sequentiality, offering a basic articulation of func-
tional sequentiality without relying on particular evaluation strategies.

The core idea of the typing system is that affineness and stateless replication
ensure deterministic computation. Sequentiality is guaranteed by controlling the
number of threads through restricting the shape of processes. While the idea
itself is simple, the result would offer a technical underpinning for the potential
use of typed w-calculi as meta-languages for programming language study: hav-
ing fully abstract descriptions in this setting means ensuring the results obtained
in the meta-language to be transferable, in principle, to object languages. In a
later exposition we wish to report how the proposed typed syntax can be a pow-
erful tool for language analysis when coupled with process-theoretic reasoning
techniques.

* A short version appears in Proc. of TLCA’01, the 5th International Confer-
ence on Typed Lambda Calculi and Applications, LNCS, Springer, May, 2001.
tQueen Mary, University of London, U.K. University of Leicester, U.K.



From the viewpoint of the semantic study of sequentiality [6, 10,27], our work
positions sequentiality as a sub-class of the general universe of name passing in-
teractive behaviour. This characterisation allows us to delineate sequentiality
against the background of a broad computational universe which, among others,
includes concurrency and non-determinism, offering a uniform basis on which
various semantic findings can be integrated and extensions considered. A signifi-
cant point in this context is the close connection between the presented calculus
and game semantics [3,20,23]: the structure of interaction of typed processes
(with respect to typed environments) precisely conforms to the intensional struc-
tures of games introduced in [23] and studied in e.g. [2, 11, 20, 25, 26]. It is notable
that the type discipline itself does not mention basic notions in game semantics
such as visibility, well-bracketing and innocence (although it does use a syntactic
form of I0-alternation): yet they are derivable as operational properties of typed
processes. We use this correspondence combined with process-theoretic reason-
ing techniques to establish full abstraction. While we expect a direct behavioural
proof would be possible, the correspondence, in addition to facilitating the proof,
offers deeper understanding of the present type discipline and game semantics.

We briefly give comparisons with related work. Hyland and Ong [24] pre-
sented a m-calculus encoding of innocent strategies of their games and show op-
erational correspondence with a w-calculus encoding of PCF. Fiore and Honda
[11] propose another m-calculus encoding for call-by-value games [20]. Our work,
while being built on these preceding studies, is novel in that it puts forward a
general type discipline where typability ensures functional sequentiality. In com-
parison with game semantics, our approach differs as it is based on a syntactic
calculus representing a general notion of concurrent, communicating processes.
In spite of the difference, our results do confirm some of the significant findings
in game semantics, such as the equal status owned by call-by-name and call-by-
value evaluation. From a different viewpoint, our work shows an effective way to
apply game semantics to the study of basic typing systems for the m-calculus, in
particular for the proof of full abstraction of encodings. Concerning the use of
the m-calculus as the target language for translations, [28] was the first to point
out the difficulty of fully abstract embeddings of functional sequentiality and
[32] showed that the same problems arise even with the higher-order 7-calculus.
While some preceding work studies the significance of replication and linearity
of channels [9, 16, 22,29, 31, 34, 37], none offers a fully abstract interpretation of
functional sequentiality.

In the remainder, Section 2 and 3 introduce the typed calculus. Section 4
analyses operational structures of typed terms. Based on them Section 5 estab-
lishes full abstraction. The technical details, including proofs omitted from the
main sections of the paper, can be found in the full version [4].

Acknowledgements. We thank Makoto Hasegawa and Vasco Vasconcelos for
their comments. The first two authors have been partially supported by an EP-
SRC grant (GR/N/37633).



2 Processes

2.1 Syntax

We use a variant of the m-calculus as our base syntax. As in typed A-calculi, we
start from the leanest untyped syntax. The following gives the reduction rule of
the asynchronous version of the m-calculus, introduced in [8, 18]:

2(§)-P | z(0) — P{5/§} (1)

Here § denotes a potentially empty vector y...yn, | denotes parallel composition,
z(%).P is input, and Z(7) is asynchronous output. Operationally, this reduction
represents the consumption of an asynchronous message by a receptor. The idea
extends to a receptor ! z(¢).P with recursion or replication:

12(§)-P | 7(8) — 12(§)-P | P{3/7, (2)

where the replicated process remains in the configuration after reduction.

Types for processes prescribe usage of names [29,36]. To be able to do this
with precision, it is important to control dynamic sharing of names. For this
purpose it is essential to distinguish free name passing and bound (private) name
passing: the latter allows tight control of sharing and can control name usage in
more stringent ways. In the present study, using bound name passing alone is
sufficient. Further, to have tractable inference rules, it is vital to specify bound
names associated with the concerned output. Thus, instead of (v §)(Z(7)|P), we
write Z(¢) P, and replace (1) by the following reduction rule.

2(@)-Plz() Q@ — wNP|Q) 3)

Here “Z(%) @” indicates that Z(%) is an asynchronous output exporting ¥ which
are local to @. The rule corresponding to (2) is given accordingly. To ensure
asynchrony of outputs, we add the following rule to the standard closure rules
for | and (v z).

P — P = zZ(§P — z(y) P 4)

Further, the following structural rules are added to allow inference of interaction
under an output prefix.

(2 (PlQ) = @) P)lQ  iffn(@)Nn{Z} =0, ()
(2 (vy)P = wyz() P ify ¢ {7} (6)

By these rules we maintain the dynamics based on the original asynchronous
calculus (up to the equation Z(2) P = (v Z)(ZT(Z)|P)), while enabling output
actions to be typed with the same ease as input actions. Name-passing calculi
using only bound name passing, called 7I-calculi, have been studied in [7, 33].
Another useful construct for typing is branching. Branching is similar to the
“case” construct in typed A-calculi and can represent both base values such as



booleans or integers and conditionals. While binary branching has some merit,
we use indexed branching because it simplifies the description of base value
passing. The branching variant of the reduction (3) becomes:

zl&;er(§:)-Pi] | Ting(3;) @ — (v §;)(F | Q) (M)

where we assume j € I, with I(# () denoting a finite or countably infinite
indexing set. Accordingly we define the rule for replicated branching. Branching
constructs of this kind have been studied in tyco [35] and other calculi [12,15,
17] (the corresponding type structure already appeared in Linear Logic [1,13]).

Augmenting the original asynchronous syntax with bound output and branch-
ing, we now arrive at the following grammar.

P = zx(9).P input | P|Q  parallel
| =(y) P output | (vz)P hiding
| z[&;cr(7;)-P;] branching input | O inaction
| Tini(2) P selection | IP replication

In !P we require P to be either a unary or branching input. The bound/free
names/variables are defined as usual and we assume the variable convention for
bound names. The structural rules are standard except for the omission of |P =
IP|P and the incorporation of (5) as well as (6) together with the corresponding
rules for branching output. The reduction rules are as explained above, which
also include variants of (3) and (7) for replicated branching inputs.

2.2 Examples

Henceforth we omit trailing zeros and null arguments and write z[&;P;] for
z[&:i()-Fi].

(i) [n]w €<y u(a).@in,. Each time [n], is invoked, it replies by telling its number,
n. Here a natural number becomes a stateless server.

(i) [succ]y d:ef!u(ya).y(b) b[&, @ing,41]. [succ], describes the behaviour of a
successor function, which queries for its argument, a natural number as in
(i) above, and returns its increment. This is another stateless server but this
time it asks its client for an input.

(iii) 'u(za).Z(2b) ([1]: | b[&;ain;]). This represents a type-2 functional Az.z1 :
(Nat=>Nat) = Nat. When the process is invoked, it queries for its argument
(which is a function itself), that function then asks back for its own argument,
to which [1], replies. Finally the process receives, at b, an answer to its own
question, based on which it answers to the initial question.

3 Typing

3.1 Action Modes

Functional computation is deterministic. There are two basic ways to realise this
in interacting processes. One is to have (at most) one input and (at most) one



output at a given channel (such a channel is called affine). Another is to have
a unique stateless replicated input with zero or more dual outputs. These ideas
have been studied in the past [13,15,16,21,22,31,34,37]. To capture them in
typing, we use the following action modes, denoted p,q, . ..:

!, Affine input ?1 Affine output
!» Replicated input ?. Output to replicated input

We also use L to denote the presence of both input and output at an affine
channel. In the table above, the mode on the left and that on the right in the
same row are dual to each other, denoted P (for example, !; = ?1).

3.2 Channel Types

Channel types indicate possible usage of channels. We use sorting [29] augmented
with branching [1,13,15,17,35] and action modes. The grammar follows.

= {1, T) = (D) | (D) | [&ier Tl | [&ier 7)™
Tu=Tr | 0 Tu= (D) | ()| [@ier BT [@ier Tl

In the first line 7 denotes the dual of 7, which is the result of dualising all action
modes and exchanging @ and &. A type of form (7,7) is called pair type, which
we regard as a set. [&;e;...] corresponds to branching and [®;e;...] corresponds

to selection. As an example of types, let Nat® = def [Dien]”* and Nat® = def (Nat®)'«
Then in la(z).Zin,, = is used as Nat® while a is used as Nat®.

A further idea in functional computation is asking a question and receiving
a unique answer [3,23]. A type is sequential when for each subexpression:

(i) In (7)',if 7 # € then there is a unique 7; of mode ?1, while each 7; (i # j) is
of mode ?.- Dually for (7)%<. The same applies to [&;c; 7)™ and [®;er 757

(ii) In (7)", each 7; is of mode ?,,, dually for (7)?. The same applies to [&;c1 T5]"
and [@;er 7571

As an example, (Nat°Nat®)'> is a sequential type for [succ], in §2.2 (ii).

3.3 Action Types and I0-Modes

The sequents we use have the form I' -y P> A. T is a base, i.e. a finite map
from names to channel types, P is a process with type annotations on binding
names, A is an action type, and ¢ is an I0-mode. Intuitively, an action type
witnesses the real usage of channels in P with respect to their modes specified
in I (thus controlling determinacy); an I0-mode ensures P contains at most one
active thread (thus controlling sequentiality). Below in (i) we use a symmetric
partial operator ® on action modes generated from !y ©?, =1,?,0%, =7,
and !, ® 7, =!,. Thus, for example, !, ® !, is undefined. This partial algebra
ensures that only one-one (resp. one-many) connection is possible at an affine
(resp. replicated) channel.



(i) An action type assigns action modes to names. Each assignment is written
pz. fn(A) denotes the set of names in A. A partial operator A ® B is defined
iff p ® ¢ is defined whenever px € A and gz € B; then we set A® B =
(A\B)U(B\A)U{(p®q)z | px € A,qz € B}. We write A < B when A® B
is defined. The set of modes used in A is md(A).

(i) An IO-mode is one of {1,0}. Weset it®@1=1and 100 =001 =0. Note 000
is not defined. When ¢ ® ¢ is defined we write ¢; < ¢5.

In I0-modes, o indicates a unique active output (consider it as a thread): thus
0 # o shows that we do not want more than one thread in a process.

3.4 Typing Rules

(Zero)
T" Sequential

F"I Obw

(In't) (C/§="7A)
T'hx: ('7")!1
I-g:Frog P>C™®

(Par)
F"m P¢I>Ai (i=1,2)
A1 = AQ ¢1 = ¢2

(Res)
Fz:aby PrAQprx
pe{llu}

I |_¢10¢2 P1|P2 >A O As

(Out™) (C/j=AxMz)
Lkez:(H)h
r-g:7+1 PoC

Fky (vz:a)Pr A

(Weak-1)
Thz: 4,7

Tk, PrA™

b1 .’E(gj‘?)PDA@!l(E

(In*) (C/§="7.4)
T'hx: ('F)!“’
L-gj:7rg P>C™®

Pl‘of(ﬂ:?)PDA@?ﬂE

(Out®™) (C/j=Ax?,2)
Cka: ()
L g:7r1 PoC

P|-¢PDA®J_:E

(Weak-?7,)
'Fx:7,
Thy PoA™®

Prilz(y: 7).PrAQ!lur

P Z(y: ) PPAG Tu

F|—¢ P[>A®?u.’1:

Fig. 1. Sequential Typing System

The typing rules are given in Figure 1. The rules for branching/selection are
defined similarly and left to Appendix A. The following notation is used:

?0A  Ast.md(A4) ={?,} AT Ast. .z &fn(4)
?7A Ast.md(A)={?,71} A®B AUBs.t. fn(A)Nf(B)=10
Az A\{pt}st. {#} Cfn(4) T-A TUAst fT)NnA)=0
Pk x:7 denotes z:7 or z:{r,7) in I, while I' I z:p indicates T F x : 7 such

that the mode of 7 is p. Typed processes are often called sequential processes.
The sequent I' -4 P A is often abbreviated to I' -4 P.



We briefly illustrate each typing rule. In (Zero), we start in 1-mode since
there is no active output. In (Par), “<” controls composability, ensuring that at
most one thread is active in a given term. In (Res), we do not allow 71, ?,, or
!y-channel to be restricted since these actions expect their dual actions exist in
the environment (cf. [16,19,22]). (In't) ensures that z occurs precisely once (by
C*) and no free input is suppressed under prefix (by C/§ = ?A). (Out’™) also
ensures an output at x occurs precisely once, but does not suppress the body
by prefix since output is asynchronous (essentially the rule composes the output
prefix and the body in parallel). (Weak-_L) allows assigning the same type after a
pair of dual affine channels disappears following an interaction. This is essential
for subject reduction. (In'~) is the same as (In't) except no free ?;-channels are
suppressed (note that if a ?;-channel is under replication then it can be used
more than once). (Out’) and (Weak-?,,) say ?,-channels occur zero or more
times, and it does not suppress any actions. Finally, in (Out”*) and (Out’«), the
premise must have r-mode for otherwise we would end up with more than one
thread. Note that, for input, we require the premise to be o-mode. This together
ensures single-threadedness to be invariant under reduction, as we discuss later.

3.5 Examples

The following examples indicate how the present type discipline imposes strong
constraints on term structure.

(i) Given T =a:()**-b:(()*,()**) - ¢:()**, we build sequential processes one by
one, starting from inaction. (1) T F; 00, (2) T'Fpar ?1a, and
3) Tk bar?a®!1b. Then we have:

Thob|bar?ia® b with 26O b= 1b and 0@1=0

where “1b” means name b is no longer composable. Note for any ¢, I' I/4
b.a | b.¢ since b is affine.
(ii) Given I' = a: ()% -b:(()**,()?~), we have:
—Thg a|bar?,a®!,bwith ?,a0?,a=7,aand0®1=0; and
—Tho ba|bv?,a®!,b with 2,0 1,b = 1,b.
However, for any ¢, I' I/4 @ | !b.@ | b since 0 ® o is undefined. This example
shows control by modes is essential even if ?,,-mode channel does not appear
in parallel; we can check after one step interaction between !b.@ and b, two
messages to a will appear in parallel.

(iii) For [n], in Example 2.2 (i), we have u:Nat® 1 [n], (see § 3.2 for Nat®).

(iv) For [succ], in Example 2.2 (ii), we can derive u:(Nat°Nat®)"s k1 [succ]s,.

(v) For the process in Example 2.2 (iii), let 7 ef ((Nat®°Nat®)?~Nat®)'~. Then we
have u : 7 b1 lu(za).Z(2b) ([1]. | b[&ienGini]) & L, u.

(vi) A copy-cat [z — y|” d:ef!:v(a).ﬂ(b)b.a copies all behaviour starting at one
channel to those starting at another. Let 7 = (()**)* and T = z:7-y:7.



Then (1) T-a:()*1-b: ()" b1 bav?1a® b, (2) Ta: ()" o g(b)b.ar?1a®?,y,
with (?1a® 110)/b="1a,and 3) T 1 [z = y]" > lwz ® 7wy
Taking for example (v z)(P|[z — y]™) with P e Z(a)a.c¢, we can check that
all actions of P are copied from z to y (this does not include ¢ which is
emitted by P).
(vii) Let A = z:{7,7)-y:(1,7)-2:(7,7) and 7 = (()*1)'>. Then we have:
— connection of two links: T'Fr [z = y]" | [y = 2] > lwz @ 1Ly ® 7,2 with
Ly®?uy = !uy'
— links to a shared resource at z: T'Fr [z —= 2] |[y = 2] > luz®@lLy® w2
with 7,2 ® ?,2 = 7,2.
However, for any ¢ and environent, [z — z]” | [t = y]|” which represents
non-deterministic forwarding is untypable since !,x ® !,z is undefined.

def 2.\1 def _ —
(viii) Let p = ([®sen]™)' and Q= (v 2y)([z = yl|ly — 2]°[2(a) a[&ienZing)).
Then u:p Frlu(2).Q2 > 1,u. Unlike [n],, it returns nothing when asked, rep-
resenting the undefined.

3.6 Basic Syntactic Properties

The type discipline satisfies the following standard properties. In (i) and (ii)
below, the partial order < on bases is generated from set inclusion and the rule
P<A = T':-z:7<A-z:(r,7). The order on action types is simply set

inclusion. In (iii) we let —» €f = U(—)*.

Proposition 1. (i) (weakening) If A <T and Aty P then T+, P.

(ii) (minimal type) A typable process has a minimum base and action type. Fur-
ther, if '3 P and Ay P then ¢ = 1.

(iii) (subject reduction) IfT'F4 P and P — Q then T' 4 Q.

We say an occurrence (subterm) in a process is an active input (resp. active
output) if it is an input-prefixed (resp. output-prefixed) term which neither occurs
under an input prefix nor has its subject bound by an output prefix.

Proposition 2. (i) Let ' 4 P> A ® px such that p € {!,,!1}. Then there is
an active input with free subject x in P.

(i) Let T ¢ P. (1) If ¢ = 1 there is no active output in P; (2) If ¢ = o there
is a unique active output in P; and (3) In both cases, two input processes
never share the same name for their subjects, either bound or free.

Corollary 1. (determinacy) IfI' Fy P and P — Q; (i = 1,2) then Q1 = Q-
and ¢ = o.
3.7 Contextual Equality

Corollary 1 suggests non-deterministic state change (which plays a basic role in
e.g. bisimilarity and testing/failure equivalence) may safely be ignored in typed



equality, so that a Morris-like contextual equivalence suffices as a basic equality
over processes. Let us say z is active when it is the free subject of an active
input/output, e.g. z in (v W)(Z(F)P | R) assuming = ¢ . We first define:

Lk P, &f 'ty P — P' with z activein P’ and Tty Pr A® 712,

Choosing only affine output as observables induces a strictly coarser (pre-)con-
gruence than if we had also included non-affine output (?,-actions are not con-
sidered since, intuitively, they do not affect the environment). We can now define
a typed equality. Below, a relation over sequential processes is typed if it relates
only processes with identical base, action type and I0-mode. A relation <D= is
a typed congruence when it is a typed equivalence closed under typed contexts
and, moreover, it satisfies: if ' > A and A b4 P = Q then I' 4 P = Q.

Definition 1. =, is the maximum typed congruence on sequential processes
such that: if 'y P =, Q and 'y P, then T' 4 @ ;.

4 Analysis of Sequential Interactive Behaviour

4.1 Preamble

The purpose of the rest of the paper is to demonstrate that our typed processes
precisely characterise the notion of functional sequentiality. By functional se-
quentiality we mean the class of computational dynamics that is exhibited by,
for example, call-by-name and call-by-value PCF. Concretely we show, via an
interpretation u : a® Fr [M; : o], that, for a PCF term F M; : o (i = 1,2),
we have My = M, iff u : a° b1 [M] @ o]y Sy [M2 @ ]y Here 22 is the stan-
dard contextual equality on PCF-terms [14]. To this end we first introduce typed
transitions to give a tractable account of processes interacting in typed contexts
(the latter, like the former, must be input-output alternating). We then show
that these transitions satisfy central properties of the intensional structures of
games introduced in [23], namely visibility, bracketing and innocence. In partic-
ular, by innocence, any sequential process is representable by the corresponding
innocent function up to redundant 7-actions. Further, the typed behaviour of a
composite process P|Q is completely determined by that of P and Q. Finally
we show, ¢ la game semantics, that any difference between typed processes in
.., can be detected by sequential “tester” processes whose graphs as innocent
functions are finite. But finite processes in (the interpretation of) PCF types
are in turn representable by PCF-terms up to 2, leading to the completeness of
the interpretation. Since soundness is easy by operational correspondence, this
establishes full abstraction. In the following we illustrate key steps of reasoning
to reach finite definability.

Note on terminology. In this section, correspondence with typed transition
and intensional structures of games is a central topic. Since there is some dif-
ference in terminology between process calculi and game semantics, we list the
correspondence for reference.



O’s Question (0Q) [ P’s Answer (PA) | 74

P’s Question (PQ) ( 72, O’s Answer (OA) ) %4
Note that “O” is usually used to indicate “Opponent” in game semantics, which
corresponds to input in our (process-algebraic) terminology. To avoid confusion,

we shall consistently use “input” and “output” rather than “Opponent” and
“Player”.

4.2 Typed Transitions

Let P & ‘m(yz) J(c)ez and Q def Z(y2z)(!y(c).¢|z.w). Then P|Q is well-typed, and
we have:

P|Q — (vy2)(Ply(c)e.z) | (‘y(c).c|z.w))
— (vyze)((Plez) | (¢lz.w]ly(c).2))
— (vyze)((P[2) | (z-wlly(c)-2))
— (yze)(P | (w]'y(c)-)).

This example suggests that input and output alternate in typed interaction.
Indeed this is the only way sequential processes interact: if P does an output
and () does an input, then the derivatives of P and () should now be in 1-mode
and o-mode, respectively. If they interact again, input and output are reversed.
Typed transitions are built on this idea.

First we generate untyped transitions P BN Q, with labels 7, z(), (%),
zin;(7) and Zin;(¥) by the following rules.

(In) z(9).P @ P (Our) zT(F)P E(_E; P
(Bra)  afleics(@).P] "2 P (SeL)  mingm)P Y p

The rules for replicated input are defined similarly. The contextual rules are stan-
dard except for closure under asynchronous output (we omit the corresponding
rule for branching).

(Our-¢) P-L P within()N{f} =0 = =P - z(i)P

To turn this into typed transitions, we first restrict the transitions of a pro-
cess of mode o to only 7-actions and outputs since (as discussed at the outset)
the interacting party should always be in 1-mode. Secondly, if a process has Lz
(resp. !, x) in its action type, then both input and output at = (resp. output at
x) are excluded since, again, such actions can never be observed in a typed con-
text. It is easy to check that sequential processes are closed under the restricted
transition relation. The resulting typed transitions are written:

Thy P-5T-7:7h, Q

where ¥: 7 assigns names introduced in [ as prescribed by I". Typed 7-transitions
coincide with untyped 7-transitions, hence typing of transitions restricts only
observability of actions, not computation. Basic properties of transitions follow.

10



Proposition 3. (i) (IO-alternation) LetI' 4 P TN Fy Q. Then (1) ¢ =1,
and (2) 1y is input iff lo is output and vice versa.

(i) (determinacy) IfT' k4 P LA Fy Qi (i =1,2) then Q1 =4 Q2.

(iii) (unique output) IfT' o P L, p, (1=1,2) then ly =4 la.

As an example of typed transitions, let ef (Nat°Nat®)'». Then, using the

notation in Examples 2.2 (ii), we have:

z:7 k1 [succ]y, ) u:T,y:Nat®,a:Nat® o 5(b) b[&;en Ginitq] | [succ]y

IO u:T,y:Nat®,a:Nat®,b:Nat® 1 b[&;enaingy1] | [succ]y
bing w:T,y:Nat®,a:Nat®,b:Nat® bq @inj;q | [succ],
ke u:T,y:Nat®,a:Nat®,b:Nat® 1 0 | [succ]y,

4.3 Visibility and Well-Bracketing

Let us write T by P28 A by Qif THy, P 5050 T T AL, Q
with I; # 7 (0 <i <n). For i < j, we write I; ~p I; (read: [; binds ;) when the
subject of I; is bound by I; (e.g. z(y) ~p Yiny,). Clearly, in typable processes,
input only binds output and vice versa. mvy, corresponds to justification of moves
in games. Now we define the notion of views as follows. "l;...I,,7® is defined first,

with s,t,... ranging over sequences of labels.
re0 — @
Cs-1,0 ={n}urs™® l,, output
Fs-1,70 = {n} 1, input, Vi.i Apn
Ts1-li-s2-1, "0 ={i,n}U"s l, input,i ~p n

Input view, denoted "s™!, is defined dually by exchanging os and 1s as well
as input and output. We often confuse "s™ and "s™ with the corresponding
sequences. We now define:

Definition 2. (visibility) Let T' b4 P == Ay Q. Then s =1, - -1, is input-
visible if whenever l; 1, is input such that I; ~, I;, we have j € Tly - --[;7I. Dually
we define output-visibility. We say I' ¢ P is visible if whenever I 4 P == and
s is input-visible then it is output-visible.

The first key result follows.
Proposition 4. T' 4 P is visible.

The proof proceeds by first establishing that it suffices to consider only well-
knit traces where the only free input (if any) is an initial one. We then use
induction on the typing rules to show that well-knit traces are visible. The only
non-trivial cases are input prefixes and parallel composition. For input prefixes
we use Proposition 3.2 (i). For parallel composition, we use composite transitions

11



of T' kg P|@ which record the transitions of P and @ contributing to the those
of P|@Q as a whole. Such transitions can be written in a matrix with four rows.
For example, a composite transition of a sequential process (omitting types)
lz(c).y(e).e[&ienCiniy1] | ly(e).Z(e').e'[&icn€in;] is given as follows, writing P
and () for the first and second components of parallel composition:

P-visible :  z(c) Cing
P-7: y(e) einy

Q-7 : y(e) einy
Q-visible : Z(e') €'iny

If such a sequence is well-knit and input-visible in its observable part (i.e. the
first and fourth rows), then it satisfies the switching condition [3,23], i.e. the
action of P (resp. (}) moving from one row to another is always an output. To
establish this we use IO-modes of derivatives and input-visibility. Then output
visibility is immediate using standard game semantics technique [20, 23, 26].

Next, well-bracketing [3,23] says that later questions are always answered
first, i.e. nesting of bracketing is always properly matched. Below, following the
table in §4.1, we call actions of mode !, and 7, questions while actions of mode
!, and ?7; are answers.

Definition 3. Let ' s P == A F,; @Q be input-visible. Then s is well-
bracketing if, whenever s’ = s - l; - s1 - l; for a prefix s’ of s is such that (1)
l; is a question and (2) [; is an answer free in s; - [;, we have l; v 1.

Now we say I' 4 P is well-bracketing if whenever I' 4 P é, s is well-
bracketing and [ is output, then sl is well-bracketing. Then we have:

Proposition 5. I' 4 P is well-bracketing.

The proof uses induction on typing rules, noting that it suffices to consider well-
knit sequences. The non-trivial cases are input by !, and parallel composition.
The former holds because a !,-prefix does not suppress a free output with action
mode 7y, while the latter follows from the switching condition [20, 23, 26].

Definition 4. (legal trace) Let I' -4y P ==. Then s is legal if it is both input-
visible and well-bracketing.

4.4 Innocence

Innocence [23] says that a process does the same action whenever it is in the
same “context”, i.e. in the same output-view. To establish innocence of traces of
typed processes we begin with the following lemma, proved by analysis of possible
redexes relying on the shape of the syntax imposed by the type discipline.

Lemma 1. (permutation) Let T k1 P hlalgla A F1 Q such that i Ap s and
Iy Ay 3. Then T PPBB2 AL .

12



By the above lemma and visibility, we can transform any transition of form

I'ky P =2 with  output, to T kg P =L where ¢ = "s™. Since an output is
always unique (cf. Proposition 2 (ii)), we can now conclude:

Proposition 6. (innocence) Let I' +, P b (i = 1,2) such that: (1) both
sequences are legal; (2) both Iy and ls are output; and (3) "s17° =, "s20. Then
we have "s10 1] =4 Ty 0 - [y,

Note that contingency completeness in [23] corresponds to the property that any
legal trace ending in an output has a legal extension ending with an input, which
is immediate by Proposition 3.2 (i) and typability of transitions. Therefore, up
to redundant 7-actions, a sequential process is precisely characterised by the
function mapping a set of output views to next actions. This is the innocent
function representation of a sequential process.

It is now easy to see that well-knit legal traces of I' k4, P;|P> are uniquely
determined by those of T' Fy, P; (i = 1,2) in the same way that innocent
strategies are composed in the appropriate category of games [23].

4.5 Factoring Observables

An important property of 2., is that any violation of 22, can be detected by a
tester process which is finite in the sense that the cardinality of the graph of its
induced innocent function is finite. In particular, for our full abstraction result,
we need finite processes which are type-wise translatable to (the interpretation
of) PCF terms. To this end, we first show that the congruence =, can be
obtained by only closing terms under |, given an appropriate base (Context

Lemmoa, cf. [27]). Then we use the following result to unfold replication.

Proposition 7. (open replication) Assume I' -y Py | P> | R where R is a repli-
cation with subject x. ThenT' -y Py | Py |R=_, (P |R) | (vz)(P: | R).

The proof of Proposition 7 uses a bisimulation induced by the typed transition
(_Which stays within ). We can then establish the following proposition where
I" denotes the result of dualising each type occurring in T'.

Proposition 8. (finite testability) AssumeD 1 Pip 2,41 Q-+ 2,yn @z (i =
1,2) such that fn(T) = {§,2}. Then T 1 P, #.. P iff there exist finite T 1
R; > luy; (1 < j < n) and a finite T-z:Nat® Fg S ?,2® 712 such that
(IL;R;|P1|S) Uz and (II; R;| P|S) Y, or its symmetric case.

Towards the proof, we first take, by the Context Lemma mentioned above, a
tester of form T -z : Nat® F T’ which, when composed with P;, gives different
observables. We then make, using Proposition 7, all shared replicated processes
private to their “clients”. This gives processes R; and S’ which have the same
types as R; and S above. Finally, the shapes of types allow to consider processes
R;, P; and S (to be precise by turning S to u(z).S) as strategies in games. We

13



(Type) Nat® ¥ [@;en]”  [o1.an_1Nat]® % (@g.a5_Nat®)%
(Base) (° f g (E-z:a)° f go.z:a0

(Terms) Below we set 8 = [@1..an—1Nat].

[z : o] def [w — 2]*°

[Azo : a0-M : ao=f]u def lu(zoxr.n_12). (V') ([M]u | Arg( @1...2n—12)P)
[MN : Bl def lu(e1..Tn—12).(Ww' o) ([M : = Blu | [N : alzg | Arg{w' zo...xn—12)°"7)
[n: Nat], % 1u(z)zin,
[succ(M) : Nat] E 1u(z).(v 2)([M]x | F(¥)y[&nex Zinni1])
[pred(M) : Natl, ' 14(2). (v 2)([M]. | Z0)yl&nenZina-1))
[ifzero M then N else L: 3],
def V(1. 2 12).(v m)([M]m | (22 [&i(v ') (P; | Arg{u' 1.2 —12)P)])
where Py def [N]u else P; def [L]w:-
[pe : .M : au B wm)(ju = m*° | [M : a]m | [ = m]*°)

&Nat] def _

£ )Ly - pil™ | [ - 2

Arg(xﬁz)[

Fig. 2. Encoding of PCF

can now appeal to finite testability in games, cf. [23], from which, by retranslat-
ing finite innocent strategies to finite processes, we conclude that finite testers
suffice. Alternatively we can directly reason at the level of the w-calculus and
its typed transitions, showing that any behaviour characterised by a finite inno-
cent function (which is enough for testability) is realisable by (typable) syntactic
processes [5, 38].

5 Full Abstraction

5.1 Interpretation

We consider PCF with a single base type, Nat, without loss of generality. Let
a == Nat | a= 3. We write [a;..apNat] (n < 0) for a; = (...(a, = Nat)..).
Now the syntax of PCF terms are given by:

M 2= z|Xx:aM|MN|n|succ(M) | pred(M)
| ifzero M then N else L | uz:a.M

We omit operational semantics and the typing rules [14]. The mappings from
PCF types and terms to m-types and terms, which are due to Hyland and Ong
[24], are given in Figure 2. Copy-cat processes are given by [z — z/][&i (7] 4

2[&; (7). ini(y' )11, [yi; = vij]77] and for replicated types: [z — ']l&s (7]

tw

14



def !x[&i(gj}).yini(gpi)l'[ij lyi; — yi;177]. Copy-cats for unary types are special

cases where the indexing sets are singletons. The interpretation of [a;..a,Nat]
says a process, when asked for its value, asks back questions at types ai, .., @p,
receives the results to these questions, and finally returns a natural number as
the answer to the initial question.

5.2 Soundness

This is by the standard computational adequacy [27], which is proved by both-

way operational correspondence, cf. [28]. Below let LNt %14(2) Nt where
Q7 is given in Example 3.5 (v).

Theorem 1. (computational adequacy) M :Nat |} iff [M : Nat], %., LNt

Corollary 2. (soundness) E- M = N :a if E°-u:a® b1 [M:a]y 2 [N:a]y

5.3 Completeness

Assume P is typed under (the interpretation of) a PCF-type and, moreover, it
is finite, i.e. is representable by an innocent function. By [3,23] or by a direct
syntactic transformation, P can be mapped into a so-called finite canonical-form,
which in turn is easily transformed to a standard PCF term without changing
meaning in its interpretation up to 2,.,. Thus we obtain:

Theorem 2. (finite definability) Let E°-u:a® b1 P> 1,u be finite. Then E°-u:
a® b [M:a]y .y P for some M.

This result indicates that, in essence, only sequential functional behaviour inhab-
its each type. Now suppose - M1 = M, : a but u : Nat® b1 [Mi]y Peg [Ma]w.
Then the latter’s difference is detectable by finite processes (Proposition 8). By
Theorem 2 we can consider these finite testers as interpretations of PCF-terms
so that we know, for example, [C[M;] : Nat] | and [C[M:] : Nat] f. But this
means, by Theorem 1, C[M;] : Nat | and C[M;] : Nat f}, contradicting our
assumption. We have now reached the main result of the paper.

Theorem 3. (full abstraction) E°-u:a® & [M; : oy S [M2 : @]y if and only
ifE}—MlEMz:a.

By replacing 22,., and = with the corresponding precongruences, we similarly
obtain inequational full abstraction. It is also notable that a fully abstract in-
terpretation of call-by-value sequentiality is easily gotten by simply changing

71

the interpretation of types. The following comes from [20]. (1) Nat* & [®ien]
and (4 = B)* ¥ (4 = B))™; (2) (Nat = B)° ¥ [&;enB*]* and, when
A # Nat, (A = B)* ¥ (4°B*)'. For example, Nat = Nat is interpreted as
([&ien[@ien]?1]'*) 1, where the function first signals itself, receives a natural
number, then returns the result. Again the only inhabitants of A°® are easily

15



the encodings of call-by-value PCF terms, from which we obtain full abstrac-
tion. The result also extends to recursive types [11]. Further, another change
in interpretation of types allows us to fully abstractly capture the semantics of
call-by-name PCF with observability at higher-order types. These results may
suggest the power and flexibility of the present framework for the semantic anal-
ysis of sequentiality.

References

1. Abramsky, S., Computational interpretation of linear logic. TCS, Vol. 111, 1993.

2. Abramsky, S., Honda, K. and McCusker, G., A Fully Abstract Game Semantics
for General References. LICS, 334-344, IEEE, 1998.

3. Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for PCF.
Info. & Comp., Vol. 163, 2000.

4. Berger, M. Honda, K. and N. Yoshida. Sequentiality and the w-Calculus. To appear
as a QMW DCS Technical Report, 2001.

5. Berger, M. Honda, K. and N. Yoshida. Genericity in the w-Calculus. To appear as
a QMW DCS Technical Report, 2001.

6. Berry, G. and Curien, P. L., Sequential algorithms on concrete data structures
TCS, 20(3), 265-321, North-Holland, 1982.

7. Boreale, M. and Sangiorgi, D., Some congruence properties for m-calculus bisimi-
larities, TCS, 198, 159-176, 1998.

8. Boudol, G., Asynchrony and the pi-calculus, INRIA Research Report 1702, 1992.

9. Boudol, G., The pi-calculus in direct style, POPL’97, 228-241, ACM, 1997.

10. Curien, P. L., Sequentiality and full abstraction. Proc. of Application of Categories
in Computer Science, LNM 177, 86-94, Cambridge Press, 1995.

11. Fiore, M. and Honda, K., Recursive Types in Games: axiomatics and process rep-
resentation, LICS’98, 345-356, IEEE, 1998.

12. Gay, S. and Hole, M., Types and Subtypes for Client-Server Interactions, ESOP’99,
LNCS 1576, 74-90, Springer, 1999.

13. Girard, J.-Y., Linear Logic, T'CS, Vol. 50, 1-102, 1987.

14. Gunter, C., Semantics of Programming Languages: Structures and Techniques, MIT
Press, 1992.

15. Honda, K., Types for Dyadic Interaction. CONCUR’98, LNCS 715, 509-523, 1993.

16. Honda, K., Composing Processes, POPL’96, 344-357, ACM, 1996.

17. Honda, K., Kubo, M. and Vasconcelos, V., Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. ESOP’98, LNCS 1381,
122-138. Springer-Verlag, 1998.

18. Honda, K. and Tokoro, M., An Object Calculus for Asynchronous Communication.
ECOOP’91, LNCS 512, 133-147, Springer-Verlag 1991.

19. Honda, K. Vasconcelos, V., and Yoshida, N. Secure Information Flow as Typed
Process Behaviour, ESOP ’99, LNCS 1782, 180-199, Springer-Verlag, 2000.

20. Honda, K. and Yoshida, N. Game-theoretic analysis of call-by-value computation.
TCS Vol. 221 (1999), 393-456, North-Holland, 1999.

21. Kobayashi, N.; A partially deadlock-free typed process calculus, ACM TOPLAS,
Vol. 20, No. 2, 436-482, 1998.

22. Kobayashi, N., Pierce, B., and Turner, D., Linear Types and w-calculus, POPL’96,

358-371, ACM Press, 1996.

16



23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

38.

A

Hyland, M. and Ong, L., On Full Abstraction for PCF: I, IT and III. 130 pages,
1994. To appear in Info. & Comp.

Hyland, M. and Ong, L., Pi-calculus, dialogue games and PCF, FPCA’95, ACM,
1995.

Laird, J., Full abstraction for functional languages with control, LICS’97, IEEE,
1997.

McCusker, G., Games and Full Abstraction for FPC. LICS’96, IEEE, 1996.
Milner, R., Fully abstract models of typed lambda calculi. TCS, 4:1-22, 1977.
Milner, R., Functions as Processes. MSCS, 2(2), 119-146, CUP, 1992.

Milner, R., Polyadic w-Calculus: a tutorial. Proceedings of the International Sum-
mer School on Logic Algebra of Specification, Marktoberdorf, 1992.

Pierce, B.C. and Sangiorgi. D, Typing and subtyping for mobile processes. LICS’93,
187-215, IEEE, 1993.

Quaglia, P. and Walker, D., On Synchronous and Asynchronous Mobile Processes,
FoSSaCS 00, LNCS 1784, 283-296, Springer, 2000.

Sangiorgi, D., Ezpressing Mobility in Process Algebras: First Order and Higher
Order Paradigms. Ph.D. Thesis, University of Edinburgh, 1992.

Sangiorgi, D. m-calculus, internal mobility, and agent-passing calculi. TCS,
167(2):235-271, North-Holland, 1996.

Sangiorgi, D., The name discipline of uniform receptiveness, ICALP’97, LNCS
1256, 303-313, Springer, 1997.

Vasconcelos, V., Typed concurrent objects. ECOOP’94, LNCS 821, 100-117.
Springer, 1994.

Vasconcelos, V. and Honda, K., Principal Typing Scheme for Polyadic w-Calculus.
CONCUR’98, LNCS 715, 524-538, Springer-Verlag, 1993.

Yoshida, N., Graph Types for Monadic Mobile Processes, FST/TCS’16, LNCS
1180, 371-387, Springer-Verlag, December, 1996.

N. Yoshida., Berger, M. and Honda, K., Strong Normalisation in the w-Calculus,
To appear as a MCS Technical Report, University of Leicester, 2001.

Typing Rules for Branching

(Bra't) (Ci/7i = 7A) (Sel’) (Ci/§; = A < ?ix)
T'Fax: [&ie]ﬁ]!l T'kFax: [@iejﬁ]?l
P-g}:ﬁl-gPibC;” P-gi:ﬁ}-IPDC

Dby z[&icr(§i: 7). P> AQ e T'ho Tin(g; : T5) P> AQ Tz

(Bra') and (Sel’~) are similarly defined.

17



