
The Church-Turing Thesis and Timed

Computations (Draft)

Martin Berger∗

September 22, 2004

Consider the following program.

every 31 seconds

{

print "looking at my Gucci, it’s about that time!"

}

Our contentions are simple.

1. This program is mechanically computable, hence it must be expressible in every
model of mechanical computability.

2. One cannot verify that a given model of computation allows to express programs
such as the above unless elementary steps of computations are assigned durations
in the model. In particular, formalisms such as π-calculi, Turing Machines or
µ-recursive functions do not allow this verification and can thus not express the
program above.

3. Assigning durations to computations strictly extends conventional models of
computation.

But let’s begin at the beginning ...
The Church-Turing Thesis [2, 5] is one of the most famous and fundamental con-

jectures of the whole of computing theory. Its precise meaning and epistemological
status are controversial but its validity is rarely doubted. To simplify matters, we
shall avoid the problem of Church’s and Turing’s original intentions. We are inter-
ested in computation, or rather the limits of computation, not history. In our reading,
the Church-Turing Thesis asserts that computation is a phenomenon with sharp con-
ceptual boundaries, sharp enough in fact, to allow convincing mathematisation, for
example by way of Turing Machines or π-calculi. Our contention above, then, may be
summarised as claiming that the conventional demarcation of computation given by
the Church-Turing Thesis, is too restrictive and ought to be liberalised.

When we speak of the Church-Turing Thesis, we have statements like the following
in mind.

∗M.Berger@dcs.qmul.ac.uk. Thanks to Alexis Richardson for various discussions about
this paper.

1

The process of interaction with an environment, exchanging finite data in
each interaction, by a mechanical process with a finite program of instruc-
tions, in accord with the laws of physics, apart from resource constraints,
can be precisely simulated by a π-calculus process.

Several issues are worth noting. Firstly, the relation “simulating computation” is
one between a mathematical formalism and something informal, intangible, such as
physical processes. Hence it seems in principle impossible to mathematically decide if
a given formalism models computation. Secondly, although there are good reasons to
prefer interaction-based formalisms, the reference to the π-calculus could be replaced
by other models such as Turing Machines or µ-recursive functions. Finally, it is left
open what it means for a formalism to be “precisely simulated”.

The first two points, while raising interesting issues, do not concern us here. It
is the last point that is found wanting once one thinks seriously about timed compu-
tation. The problem is not that incorporating some notion of time into a model of
computation would allow to solve the halting problem, although we have not seen a
proof that such a drastic extension of computational power is impossible. The problem
is that the received form of the Church-Turing Thesis excludes timed algorithms, such
as our example above, tout-court from the realm of mechanical computability. Con-
ventional models of computation simply do not have temporal properties. We propose
to ameliorate this shortcoming by integrating the passing of physical time into models
of computation. Extending the work of this thesis, a real-timed π-calculus would be
the result, where each reduction step is assigned its duration, a real number greater
than 0. The Church-Turing Thesis could then be rephrased.

The process of interaction with an environment, exchanging finite data in
each interaction, by a mechanical process with a finite program of instruc-
tions, in accord with the laws of physics, apart from resource constraints,
can be precisely simulated by a real-timed π-calculus process.

Before delving into the details of our criticism, we would like to emphasise the spec-
ulative nature of this undertaking: we are neither fully convinced of its correctness
nor can we provide the details of how an appropriate real-timed π-calculus would look
like. In addition, one must distinguish two things:

• The problem under discussion here, whether models of computation ought to be
augmented so as to enable them to deal with timed computation.

• The question of the truth or falsehood of the temporally extended Church-
Turing Thesis. After all, the existence of universal models of computation may
be peculiar to the world of untimed computation. Maybe timed computation is
a fundamentally more vague concept.

The following points are also worthwhile to be borne in mind.

• We do not address the issue of just what kinds of duration assignments are
legitimate. Would it be a good idea to allow the assignment of 7 seconds to
every computational step in a terminating computation and 10 for all others?
Wouldn’t that allow a timed observer to solve the halting problem? It may be
necessary to permit only computable (in the conventional sense) assignments.
Another problematic duration assignment was proposed in the context of Accel-
erating Turing Machines [3]: the nth step in the computation takes 1

2n seconds.
Accelerating Turing Machines can decide the halting problem in finite time,
although taking an infinite number of steps in the process. Since all the avail-
able evidence suggests that Accelerating Turing Machines are not in accordance

2

with the laws of physics, such Xeno-assignments should probably also not be
admissible.

• Is it sufficient to extend conventional models of computation with a notion of
duration to capture all of timed computation? This might not be the case. It
could be necessary to integrate the passing of time more tightly with the com-
putational process, for example by adding timers. We will discuss this problem
only very briefly.

After this little excursion we will now defend and discuss the three claims above. Re-
garding (1), the strongest argument in favour of our little program’s being mechanically
computable is that it can easily be written with any modern programming environ-
ment on run-of-the-mill hardware. All that’s required is a conventional computer and
(maybe) a clock. Both are prototypical mechanical devices [6] and there does not
seem to be a reason to believe that this is no longer true for their combination. If the
Church-Turing Thesis wants to be taken seriously, it better allowed to express trivial
and ubiquitous programs such as the initial example.

Our argument for (2) has two parts. First, if we assign durations to all com-
putational steps, we can clearly decide (ignoring for simplicity the problem of the
decidability of the assignment) if the model generates what we interpret to be ap-
propriate temporal behaviour. Secondly, we could not think of a way of doing this
verification without an assignment of durations.

In defence of (3), it is clear that there is no such assignment in conventional models
of computations. Hence assignments do extend these models, at least set-theoretically.

We expect the following types of (related) reactions from defenders of the Church-
Turing Thesis.

The “Old-School Recursion Theorist’s”Reply: Of course Turing Machines
can simulate this algorithm. Its timing is an inessential detail that can and should be
ignored. All that matters is the function being computed, not the timing of the compu-
tational process. After all, even normal untimed computation proceeds in physical time
and space but we don’t care about this when pondering the essence of computation.

This objection may be the easiest to deal with. Timed algorithms abound in the
very fabric of computation: for example network flow-control algorithms such as TCP
[7] or various operating systems’ schedulers [1] are implemented using timers and their
temporal properties are vital to these algorithms. Of course the Old-School Recursion
Theorist could object that such claims misunderstand what it means for an algorithm
to function: the point of models of computation is to abstract away from pesky little
details like actual execution time. Well, maybe, and in case of the computation of,
say, the factorial function it might be reasonable to ignore how long its computation
takes. Why? Because we get something else: a number as a hard and fast result. We
can “measure” the correctness of the algorithm by looking at this result. In the case of
network flow-control algorithms or OS schedulers, this is very different. The correct-
ness of any implementation seems directly and indissolubly connected with temporal
properties. Crudely put, a scheduler is something that guarantees my processes access
to the CPU at least every 250 milliseconds. TCP ensures certain rather involved ratios
between network capacity and transmission speed. It makes little sense to talk about
the correctness of a scheduler or TCP without mentioning time. To appreciate the
significance of the temporal aspects involved, consider the following transformation of
sequential composition.

[[P ; Q]] = [[P]] ; sleep(1 year) ; [[Q]]

3

If timing was an inessential detail to TCP or OS schedulers, we could apply this trans-
formation without changing their semantic essence. Unfortunately, applying [[·]] to all
the world’s C programs would render the entire planet’s computational infrastructure
humanly unusable. While that is an irrelevant detail sub speciae aeternis, it appears
flippant to say that the intended semantics of such programs remains unaffected, at
least for humans with an average lifetime of 54 years.

The Old-School Recursion Theorist might now reply that one can say the same
thing about factorial functions: we could not humanly evaluate !n for most n, if
we’d apply the transform. But does that not suggest that timing is relevant even for
factorials?

The “Separate Physics and Computation!” Reply: It does not matter if
Turing Machines can simulate timed computation or not because timed computation
is not about pure algorithms. They are interactions of pure algorithms with physical
devices, in this case clocks. The Church-Turing Thesis is only concerned with pure
computation. The addition of clocks is no more relevant than the possibility of having
computers extended with loudspeakers to produce sound or with wheels to allow physical
movement.

We could just say: “fair enough, but if timed computation is not computation, it
is nevertheless something closely related and at least as interesting. It is also worth of
mathematisation and hence of a timed equivalent of the Church-Turing Thesis.”

But this is too conciliatory. Let’s look at the defender’s argument in more detail.
It is a variant of the first objection and based on a distinction between (models) of
pure algorithms and physical devices, the implication being that the latter have no
role to play in the description of the former. This is problematic for two reasons.
Firstly, ultimately every actual computation is a physical process and many models of
computation idealise these physical processes and devices to some degree. An example
would be the tape and head of a Turing Machine. So it cannot be the inclusion of
models of physical entities in formalisms for computing that is deemed problematic, it
is the inclusion of a specific kind of physical entity: the clock. But, and secondly, every
model of computation (that we can think of) uses some form of sequentialisation: “this
must happen, then that”, clearly a temporal property. Even domain-theoretic models
use fixpoint iteration [4] that is usually imagined as a discrete, temporal process. It
seems fair to say that time-stepping or discrete sequencing is intrinsic in all models
of computation already. What is missing in most models is an explicit duration of
the computational step. Once durations are specified, questions such as: “does this
program implement that algorithm which has these temporal properties?” seem nat-
ural. If these temporal properties never mattered, we would be justified to just have
a generic notion of discrete sequencing in the models, as, for example, given by the
reduction steps in λ-calculi or Turing Machines. But, as we have argued above, the
temporal properties do matter a lot in many situations, so it seems appropriate to
model them explicitly because they are not induced by interaction with some arbi-
trary physical device, they come from the physical behaviour of something essential
to computation itself: the flow of time.

Another problem with “Separate Physics from Computation!” is that our initial
example does not actually require interaction with a clock, although in practise, im-
plementations will. Conventional CPUs are constructed such that their computational
steps are executed within tight time bounds. It may be possible to use these bounds
to achieve the required temporal behaviour by judicious choice of translation into
machine code alone. Of course these time bounds are almost always achieved with
a clocking mechanism that “drives” the CPU. But this mechanism is not explicit in

4

the code being executed. It is also possible, although currently unusual, for CPUs to
lack an explicit clocking mechanism. That does not mean however, that computations
executed on such devices have no temporal properties. It is just that these properties
emerge from the physical properties of the executing hardware in a way that observers
describe as clockless. Whether this is useful terminology touches on interesting prob-
lems (summarised by the question “what is a clock?”), that we do not wish to discuss
further here.

The “That’s what I’m Saying!”Reply: Of course Turing Machines can sim-
ulate these algorithms. Just assume one step of a Turing Machines corresponds to
one unit of time of the algorithm. In other words, conventional models of computation
implicitly assign unit time, normalised to 1, to each computational step.

Yes, but this assignment needs to be done. Why pretend it is not part of the
computational model? This answer assumes an assignment, it is just not honest about
it.

It also suffers from a more serious defect. It is not enough to simply fix an assign-
ment once and for all, because every such assignment induces a minimal granularity
of time and hence excludes certain more finely timed algorithms. If, for example, we’d
assign 47 seconds as the duration of every computational step, our initial example
would not be computable. Unless there is convincing empirical evidence of a physical
limits to time-divisibility relevant to computation, none should be enforced by our
models of computation.

OK, Now We Have Durations, Are We Done Yet?

The arguments adumbrated above compellingly suggest to include a notion of duration
into models of computation. But is that all we need to capture timed computation?
Consider the following variant of our initial example.

on 14:Jan:1986 at 14:01:0221 GMT

{

print "looking at my Gucci, it’s about that time!"

}

Some, but not all of our arguments can be adapted to support the additional inclusion
of an absolute notion of time into models of computation to accommodate this example.

Even ignoring the problem of absolute time and its relation to computation, is our
augmented Church-Turing Thesis expressive enough? As already alluded to, many
timed algorithms implement their temporal behaviour with the help of timers. Is it
always possible, just armed with conventional models of computation augmented with
durations, to simulate behaviour induced by the presence of timers? We are not sure.
It might be possible to use busy-waiting to simulate timer driven interrupts, especially
when there are no lower limits on the granularity of time steps and if the criteria that
would warrant speaking of busy-waiting allowing to simulate timers, allow for some
imprecision ...

This raises another issue: what does it mean to observe a timed computation?
Should there be limits to observer’s time-measuring abilities? Relatedly, is it ap-
propriate to assign exact durations to computational steps? Wouldn’t intervals or
probabilities be better? Questions, questions ...

5

A Modest Proposal for a Research Programme

As pointed out, the Church-Turing Thesis is an empirico-philosophical assertion, not
a mathematical one and cannot be verified or contradicted by purely formal means.
Nevertheless, mathematical theorems can serve as evidence for or against its accep-
tance, the various mutual embeddability results of classical recursion theory being a
prime example.

What kind of theorem could be significant evidence for or against the temporally
extended Church-Turing Thesis? How about the following conjecture?

Conjecture 1 Let πa be the asynchronous π-calculus and ≈a one of its reasonable
equivalences, such as reduction-congruence or weak trace-equivalence. Let πd

a be the
asynchronous π-calculus extended with a reasonable notion of duration and ≈d

a one of
its reasonable equivalences. Then, in general, there is no mapping [[·]] from πd

a to πa

such that
[[P]] ≈d

a [[Q]] iff P ≈a Q.

This conjecture is attractive not only because despite its simplicity, establishing its
truth value appears difficult, but also because it assumes little apart from duration
assignment, essentially only the availability of appropriate notions of equivalence. This
should not be a surprise given, on one hand, our preceding discussion of the Church-
Turing Thesis with its subtext “what does it mean to observe a timed computation?”,
and the tight connection between notions of observation and equivalence on the other.
Indeed, it does not appear to be an exaggeration to say that our a solution of our
problem of timed computation would be but a special case towards answers for the
following two questions. What does it mean to observe computation? When are two
computations equal?

References

[1] Maurice Bach. The Design of the Unix Operating System. Prentice-Hall, 1986.

[2] B. Jack Copeland. The Church-Turing Thesis. Entry in the Stanford Encyclopedia
of Philosophy, http://plato.stanford.edu/entries/church-turing/.

[3] B. Jack Copeland and R. Sylvan. Beyond the universal turing machine. Aus-
tralasian Journal of Philosophy, 1998.

[4] Carl A. Gunter. Semantics of Programming Languages. MIT Press, 1995.

[5] Rolf Herken, editor. The Universal Turing Machine: a Half-Century Survey.
Springer, 1995.

[6] Giuseppe Longo. The difference between clocks and turing machines. In Arturo
Carsetti, editor, Functional Models of Cognition. Kluwer, 1999.

[7] Andrew S. Tannenbaum. Computer Networks. Prentice Hall, 1996.

6

