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Abstract. The distribution of bifurcation angles found in ant foraging
networks has been shown to give polarity to the networks so that nest-
bound ants reaching a bifurcation can choose the appropriate direction.
In this paper, we use an individual-based model to test the hypothesis
that this distribution is an emergent property of a population of for-
aging ants optimising the trade-off between exploitation of the existing
network to maximise food intake and exploration of the environment to
maximise the population’s ability to rapidly adapt to novel or chang-
ing environments. We identify a parameter regulating an ant’s drives to
forage existing trails and explore uncovered areas of the environment as
a collective variable controlling the distribution of bifurcation angles in
the foraging network and we show that when the exploration-exploitation
trade-off is realised, the resulting distribution exhibits the same informa-
tional characteristics as that found in the original study.

Keywords: Exploration-exploitation trade-off, ant foraging, network
polarisation, bifurcation angle, stigmergy, self-organisation.

1 Introduction

Whilst many ant species use a wide variety of cues to orientate themselves (see
[1,2,3,4], for some examples), some ants rely primarily on chemical trails. For
those species, reorientation when displaced may be harder unless trails are po-
larised. In a recent study on Pharaoh’s ants, Jackson et al. [6] showed the dis-
tribution of bifurcation angles in their foraging networks to follow a normal
distribution with mean 53◦ and standard deviation 15◦. They argued that this
value (which is shared by other trail-laying species such as the leaf-cutters and
seed harvester ants studied by Acosta et al. [5]) is particularly information rich
since a returning forager would have a choice of two paths, one only of which
deviating greatly from its current heading. In a series of neat experiments, they
validated their geometry hypothesis by showing that whilst in straight trails
reorientation was as likely to be incorrect as correct, with a bifurcation angle
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of 55◦, the ratio of correct reorientations to incorrect reorientations was a sig-
nificant 5.63. Forty three percent of fed ants heading away from the nest (the
‘wrong’ direction) made a U-turn on meeting a bifurcation, and only 8% when
heading in the correct direction. Similarly, 47% of unfed ants made a course
change when heading in the wrong direction, and again, only 8% made incorrect
changes when heading away from the nest. Testing their hypothesis further, the
authors showed that the ability of ants to make correct course changes degraded
as the bifurcation angle was increased to 120 degrees, at which point the trail
lost its polarisation. These results clearly suggest that ants can use the trail
geometry to orientate themselves. As Collett and Waxman [7] pointed out, how-
ever, the study does not answer the question of how these angles are formed.
In particular, it does not explain whether they occur as a result of directional
decisions made by individuals when they first branch from a trail, or whether
they are formed when the trails become well-travelled.

Central to this question are the concepts of stigmergy [8] and self-organisation,
that is, the processes by which large numbers of agents interacting on a local
level can coordinate these interactions to produce the complex global behaviours
that are apparent in social insects colonies. Ants leave chemical trails in their en-
vironment so as to recruit more ants to forage newly discovered food sources, this
in turn recruits more ants to the trail in a positive feedback loop. This method
of communication through the environment was first described by Grassé [8]
and is known as stigmergy. Importantly it does not need any form of centralised
control, and individuals need only to react to local changes left by others within
their environment. Holland and Melhuish [9] described two minimal qualities
needed by an agent and its environment to support stigmergic interactions: (i)
the agent must be able to move within the environment, and modify parts of
it; (ii) the environment must be able modifiable, and the modifications should
persist long enough for other agents acting within it to be affected by them.
With such a small set of key features, it is no surprise that we should see many
cases of stigmergic interactions with nature. Many of the amazing displays by
social insects can in part be explained by stigmergy, however, on its own, it is
not enough. Stigmergy only describes how individual colony members are able
to communicate indirectly, but it does not explain how these interactions are co-
ordinated to produce the complex colony level behaviours. For this, we need to
include the ideas of self-organisation, that is, the ”set of dynamical mechanisms
whereby structures appear at the global level of a system from interaction among
its lower-level components” [10]. Bonabeau et al. [10] described four basic ingre-
dients needed for self-organising patterns to emerge (positive and negative feed-
back, amplification of fluctuations, and the presence of multiple interactions),
the signatures of which are the creation of spatiotemporal structures in an ini-
tially homogeneous medium, the possibility of multistability and the existence
of parametrically determined bifurcations. Applied to ant foraging, the positive
feedback relates to trail recruitment through the leaving of chemical markers.
Negative feedback can occur when food sources become depleted, or through
saturation when ants are physically unable to access a food source or to enter
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the nest owing to the number of other ants. Amplification of fluctuations occurs
in situations where ants lose the trail they are following and stumble upon a
new food source, the resulting trails will be amplified as more ants are recruited
to the new source. The presence of multiple interactions naturally results from
the sheer size of ant colonies. Bifurcation angles then become the signatures
of the resulting self-organised foraging network. These ideas are central to the
concept of quantitative stigmergy [11] which gives us a process by which we can
coordinate and regulate stigmergic interactions.

In this paper, we put forth the hypothesis that the distribution of bifurcation
angle observed by Jackson et al. is an emerging property of a population of forag-
ing ants optimising the trade-off between exploitation of the existing network to
maximise food intake and exploration of the environment to maximise the pop-
ulation’s ability to rapidly adapt to novel or changing environments. To test this
hypothesis, we constructed a simple individual-based model that incorporates
the qualities necessary for self-organisation and stigmergy to take place.

2 Model

The methods used to test our hypothesis are based on common techniques used
to examine ant behaviour and pattern formation in natural sciences. The simu-
lation used is a cellular automata (CA), of which the two major components of
our model are the ants and the pheromone concentration map. In the context of
CA, the ants are modeled as a Lattice Gas class of CA, in which particles operate
in a bi-directional grid, and their movement contains a random component. The
pheromone concentration map on the other hand falls in the deterministic class
of CA, in which states are associated with sites on the grid, and a state’s change
is a deterministic function of its surrounding sites [12,18]. The environment in
which the ants operate is a 500x400 lattice (the unit of distance used throughout
this study is the length of one ant). The single nest is located at the centre of the
grid, and has a radius of 7.5 units. Ants are released from the nest at a rate of 1
ant every 5 updates. The food sources are randomly placed in the environment,
and have a finite amount of food. Once a food source is depleted, it is removed
from the environment, and replaced by a new food source in a different location.

Each ant is described by its position on the lattice, its heading and velocity
and two coefficients that represent how fatigued the ant is (cf ) and the food
load it is carrying (cfl). At each update, the ant’s fatigue coefficient increases
by 0.0005 until its maximum value of 1 when the ant is considered dead from
exhaustion and is removed from the environment. Only when the ant is either
at a food source, or in the nest, does the fatigue coefficient decrease (multiplied
by a factor 0.9 at each update). The food load coefficient increases when an ant
is at a food site (+0.1 unit per update), and decreases when the ant is in the
nest (−0.1 unit per update).

Environmental stimuli and internal variables modulate five drives that con-
trol the ant’s heading and velocity. For simplicity, each of these drives will be
described in a polar coordinate system where the pole is the position of the ant
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on the lattice, and the polar axis is the ant’s current heading. Radial coordinates
will denote the velocity component of each drive.

Exploratory drive: This drive implements an ant’s ’urge’ to change to a new
heading deviating randomly from its current heading by ±15◦. The trajectory
is smoothed by spreading the change over αr updates.

d1 = (0,
−15 + rnd ∗ 30

αr
) (1)

where rnd is a random value between 0 and 1 drawn from a uniform distribution.

Exploitation drive: The movement of the ant is affected by the pheromone con-
centrations φ of its eight Moore neighbours

d2 = (
8∑

i=1

φi(1 − cfl)(1 − |θi|
180

), θi) (2)

where θi is the angular deviation to the ith Moore neighbour. Note that this
expression favours pheromone sites ahead of the ant. This is to prevent the ant
from turning around to follow its own trail.

’Move to food’ drive: Each food source has a draw area (of diameter fd = 3) in
which ants become ’aware’ of the food source, either visually or, in the case of
the blind army ants, through olfactory perception. This drive is only activated
when the ant gets within this area.

d3 = ((1 − cfl)(1 − df

fd
), θf ) (3)

where θf is the angular deviation to the food source and df is the distance to
the food source. The attraction to the food source is inversely proportional to
the distance to the food source.

’Return to nest’ drive: An ant will be drawn back to the nest either when it
has collected food, or when its fatigue coefficient increases above a threshold.
For simplicity, ants maintain a memory of the exact location of the nest relative
to their current position. This isn’t biologically plausible, of course, but since
ants can use path integration and other cues to locate their nest (see [19], for
example), it is an acceptable compromise.

d4 = (
8∑

i=1

φicfl(1 − |θi|
180

)r, θi) + (e−k(1−cf ), θn) (4)

where θn is the angular deviation to the nest, θi is the angular deviation to the ith

Moore neighbour, r regulates the ant’s directional selectivity, and k determines
at which fatigue level the drive will kick-in. The bias toward stronger pheromone
concentrations in front of the ant corresponds to observations that ants move
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quicker on trails than on unmarked areas [11]. Since the fatigue coefficient is
updated at each step, this is a plausible mechanism from an energetic viewpoint.
A value of r = 4 was used that implements a good compromise between accuracy
and energy saving by way of trail following. Parameter k was set to 10 throughout
the study, which corresponds to a fatigue coefficient of 0.5. The drive to return
to the nest increases in a non-linear fashion with the fatigue coefficient.

’Move forward’ drive: This drive simply ’motivates’ the ant to go forward.

d5 = (minv, 0) (5)

where minv is a constant ant velocity (set to 0.3 units per update in all runs).
It guarantees that all ants will move at a minimum speed, and also puts a limit
to the ant’s angular velocity (a similar constraint was used in [20]).

The ant’s actual movement is given by the weighted sum

d = γd1 + (1 − γ)d2 + d3 + d4 + d5 (6)

where γ is in the range [0, 1] and is used to regulate how exploratory/exploitative
the ant is. At γ = 1.0, the ant is fully exploratory and ignores pheromone con-
centrations. Conversely, at γ = 0.0, the ant will fully exploit existing chemical
trails. Consistent with animal observations [14,15] and other models [16,17,18],
ants lay pheromones both when leaving the nest and returning with food, al-
though returning ants do so at a higher concentration (0.1cfl unit of food per
location visited for ants returning to the nest compared with a fixed 0.01 for
ants leaving the nest). In addition, the level at which pheromones are no longer
deposited differs whether ants are returning to the nest (maximum concentration
of 1) or leaving the nest (maximum concentration of 0.2). A similar constraint
was used in [16,17].

Finally, two constraints complete the model: (i) as in [16,17], an ant’s maxi-
mum velocity is limited to 1 unit per update; (ii) a single lattice location can hold
a maximum of 15 ants. If an ant’s move takes it into a location that contains 15
ants, it attempts to move to the next grid location 1 unit away from its current
position while retaining its desired heading. This minimises the occurrence of
unwanted branching that might confound our results. It no site is available, the
ant remains in place.

3 Results

To examine the relationship between our putative controlling variable γ and the
distribution of bifurcation angle in the resulting foraging trail network, we run
simulations varying γ in the interval [0, 1] in steps of 0.1. The environments in
each simulation had two food sources. To avoid the random bias of differing
food source locations, the locations of food sources stayed constant between
simulations. Simulations were run for 10000 iterations, with a colony size of
1500 and food source size of 2000.
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Fig. 1. Left: Cumulated food intake (vertical axis, per run of 10,000 iterations) as a
function of γ (horizontal axis) over 16 runs. Food intake is given in unit of food where
1 is the maximum food load of an ant entering the nest at a given time. Solid line:
logistic regression (y=1274.00/(1+exp(-(0.93-x)/0.038), d.f.=157, p < 0.0001). Right:
Recovery times (per run of 10,000 iterations) as a function of γ (horizontal axis) over
16 runs. No data is available at γ = 1.0 since no food sources got depleted. Times are
given in number of iterations. Solid line: cubic fit by nonlinear regression (y=1788.08x3-
3190.93x2+1367.34x+49.88, d.f.=6, p < 0.01).

The trade-off between exploitation of the network and exploration of the en-
vironment was assessed through two ’fitness’ measures based on the amount of
food entering the nest at each time step. Cumulated food intake over the 10000
iterations of each run provided a measure of the ability of the network to exploit
the existing network. Robustness of the population to environmental changes
was assessed by the average time (recovery time) it took for the population to
find a new food source once a food source had been depleted. As shown by
Figure 1, simulations confirmed the role of γ in controlling the overall behaviour
of the population. Lower γ settings (highly exploitative) resulted in higher cu-
mulated food intake, whilst higher γ settings (highly explorative) resulted in
faster recovery times. The fact that recovery times were faster at γ = (0.1, 0.2)
than at γ = 0.3 was unexpected but finds its origin in a flaw of the model owing
to an absence of published data on the behaviour of the first ant off the nest in
a novel environment. The model being an individual-based model, such data is
critical to determine what the behaviour of a highly exploitative ant should be
when no established trail network exists. To circumvent this problem, ants were
sent off the nest at an angle drawn from a uniform distribution, with a minimal
amount of exploratory drive. In a small environment, when food sources are not
too far from the nest, this actually amounts to a fairly effective systematic ex-
ploration of the environment, thus the fast recovery times. For a given colony
size, increasing the size of the environment or placing the food source further
from the nest should suppress this artefact.
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Fig. 2. Left: Snapshot of a foraging network. The nest is found at the centre of the
figure. In the upper right quadrant, a new food source has just been discovered. The
brightness of a trail is proportional to its concentration in pheromone. The purple lines
denote bifurcations as used to construct Figure 3. Right: Close-up on a bifurcation.
Only Y junctions were considered, and a bifurcation angle θ was determined as the
angle between branches away from the nest.

To determine the optimal trade-off between exploration and exploitation, we
derived a ’fitness’ function y=I(1-1/RT) maximising food intake I for low recov-
ery time RT with I and RT approximated by the nonlinear regressions given in
Figure 1, after normalisation to [0, 1]. Theoretically, the maximum of this func-
tion is obtained when I = 1/RT . Experimentally, the maximum was obtained
at γ = 0.8, a highly explorative setting.

As in Jackson et al. [6], bifurcation angles were measured from well-structured
foraging networks over three of the 16 simulation runs collected1. Only networks
that showed well-established Y junctions were considered (see Figure 2, left).
A bifurcation angle was defined as the angle between the two branches away
from the nest (see Figure 2, right). The distribution of bifurcation angle for each
γ was determined using normal mixture modelling [21]. At γ = 0.8, the puta-
tive optimal trade-off between exploration and exploitation, the density function
showed a mean angle of 40.84◦ and a standard deviation of 12.69◦ (n = 67). In
comparison, Jackson et al. [6] found a mean of 53.48◦, and a standard deviation
of 14.88◦. The model used in this study being an abstract model with parameters
having little or no biological relevance, any outright comparison of the numer-
ical values of the means and standard deviations would have little significance.
Nevertheless, the data shown in Figure 3 (top) display three important char-
acteristics. First, the probability of bifurcation angles of more than 80◦ is very
small, which means that the resulting network is polarised. It is not the case
in more exploitative settings. Second, the number of clusters (or components)
as identified by Bayesian Information Criterion (BIC) decreases as γ increases.
As in Jackson et al.’s study, the distribution of the bifurcation angles at high
γ (highly explorative population) is a normal distribution. Third, as shown by
1 This is a very laborious activity which we are trying to automatise.
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Fig. 3. Top: Densities of bifurcation angles for γ = (0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9) (from
top to bottom) from three separate runs (n > 69 for all γ setting except for γ =
0.9 when n = 50. Note the different scale in vertical axis for γ = 0.9.). Horizontal
axis denotes angular values in degrees. Solid line, fit from normal mixture modelling
[21]. Bottom left: Mean (in degrees) of the largest cluster as a function of γ. Fit by
linear regression (R2 = 0.700; d.f. = 5, F = 11.69, p = 0.019). Bottom right: Standard
deviation (in degrees) of the largest cluster as a function γ. Fit by linear regression
(R2 = 0.637; d.f. = 5, F = 8.76, p = 0.032).
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Figure 3 (bottom), both mean and standard deviation of the main cluster (com-
ponent) show a statistically significant correlation with γ. This suggests that
γ, an individual-based control parameter, is indeed a control variable for the
distribution of bifurcation angle in the foraging network.

4 Conclusion

In providing evidence that an individual-based parameter can turn into a collec-
tive variable controlling the geometry of the foraging network, this paper aims to
answer an important question raised by Jackson et al.’s study, namely, whether
bifurcation angles occur though directional decisions made by individuals ants
when they first branch from a trail, or whether they form when travelled by
many ants [7]. Our results support the latter view, that is, bifurcation angles
are an emergent property of the stigmergic system. Our results also support
our hypothesis that the distribution of bifurcation angles observed by Jackson
et al. results from an optimisation of the trade-off between exploitation of the
existing network to maximise food intake and exploration of the environment
to maximise the population’s ability to rapidly adapt to novel or changing envi-
ronments. Whilst such an hypothesis is not unreasonable from an evolutionary
perspective, the limitations of using an abstract model with parameters have
little or no biological relevance are obvious. Yet, and as often when using the
animat approach, constructing a model raises interesting questions that warrant
further study: (i) what is the behaviour of the first ant off the nest? could indi-
vidual ants’ trajectories be modelled by correlated random walk? (ii) how could
the γ parameter be implemented: switching individual behaviour or changing
ratio of scouts to foragers?
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