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Modelling approaches for simple dynamic
networks and applications to disease
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In this paper a random link activation–deletion (RLAD) model is proposed that gives
rise to a stochastically evolving network. This dynamic network is then coupled to a
simple susceptible-infectious-suceptible (SIS) dynamics on the network, and the resulting
spectrum of model behaviour is explored via simulation and a novel pairwise model
for dynamic networks. First, the dynamic network model is systematically analysed
by considering link-type independent and dependent network dynamics coupled with
globally constrained link creation. This is done rigorously with some analytical results
and we highlight where such analysis can be performed and how these simpler models
provide a benchmark to test and validate full simulations. The pairwise model is
used to study the interplay between SIS -type dynamics on the network and link-type-
dependent activation–deletion. Assumptions of the pairwise model are identified and
their implications interpreted in a way that complements our current understanding.
Furthermore, we also discuss how the strong assumptions of the closure relations can
lead to disagreement between the simulation and pairwise model. Unlike on a static
network, the resulting spectrum of behaviour is more complex with the prevalence of
infections exhibiting not only a single steady state, but also bistability and oscillations.

Keywords: dynamic network; birth-and-death process; Markov Chain; epidemic;
pairwise model; bifurcation

1. Introduction

Many real-world systems ranging from neuroscience and epidemiology to
computer sciences and socioeconomics can be represented as well-defined units
interacting via a static or dynamic set of links or connections (Broder et al.
2000; Kossinets & Watts 2006; Vernon & Keeling 2009; Sporns 2011). The
wide applicability of networks as a modelling tool has captured the attention
of many different research communities and has led to the development of a large
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body of research at the interface of network/graph theory, stochastic processes,
probability theory, discrete mathematics and computer sciences (Albert &
Barabási 2002; Newman 2003). Initially, most of the research concentrated on
the structure and properties of real-world networks and aimed to understand and
uncover the laws that gave rise to the observed or empirical networks. In parallel,
a different research direction emerged, namely the study of how the properties
and structure of the network impact on the dynamical processes taking place on
it (e.g. flow of information on the Web, disease transmission on social networks
and self organization of neurons). While earlier research focused on the dynamics
or evolution of networks (Dorogstev & Mendes 2002; Chan et al. 2003) without
considering the dynamical processes they support, latter research considered fixed
and static networks and mainly focused on the dynamics on networks. However,
in many cases considering both the dynamics of the network and on the network
is essential to understand the problem that is being modelled, but doing so
raises several challenges. Firstly, capturing and modelling the interaction between
the two dynamics are non-trivial with little empirical evidence and second, the
increased complexity reduces analytical tractability with results mainly relying
on simulation.

Over the last few years, various simple classes of models have been proposed
where both the dynamics of the network and on the network are considered
(Gross & Blasius 2008). For example, Saramäki & Kaski (2005) proposed a model
where nodes are distributed on a ring and links are divided into short-range (SR)
and long-range (LR) links. SR links are considered to be fixed and connect nodes
to their nearest neighbours. LR links vary randomly, meaning that an infected
node tries to infect with some probability, a node chosen at random and succeeds
to do so if the chosen individual is susceptible. The authors formulated a simple
ODE model that is similar to pairwise models and used this to derive analytical
results for disease transmission threshold and to validate simulation results.

Gross et al. (2006) proposed a network-based model where (SI ) links/pairs
(i.e. a link between a susceptible (S) and infectious (I) individual) are broken at
a certain rate with susceptible nodes immediately re-wiring to other susceptible
nodes chosen at random from the entire population. Again, a simple pairwise type
model was used to derive a low-dimensional dynamical system that describes the
interaction of network and disease dynamics. This model operates on the strong
assumption that the status of each node is globally available. Risau-Gusman &
Zanette (2009) relaxed the assumptions of the model proposed by Thilo et al.
and considered the case when the susceptible node from an (SI ) pair re-wires to
a node chosen at random from the entire network regardless of its state. They
generalized the model further and considered the case where not only susceptible
nodes are allowed to change their contacts, but also the infectious nodes can do so.
In this model, when an SI link is cut, the I node will reconnect with probability q
to a node chosen at random and independently of its state, and with probability
1 − q the susceptible node will keep the contact and look to reconnect at random.
Both papers use pair-approximation models to validate simulation results.

Grindrod & Higham (2010) proposed two simple models of undirected evolving
graphs by starting from the complete state space S with |S| = 2N (N−1)/2 possible
elements or different graphs over N nodes. With this in place, the evolution
of a graph can be represented as a path in the state space S governed by
Proc. R. Soc. A
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some stochastic process P(Gi+1|Gi , Gi−1, . . .), where Gi is the state of the graph,
represented as a symmetric adjacency matrix, at discrete time step i. While this
formulation is exact and can be extended to continuous time, the drawback of
this approach comes from the large number of transition probabilities for time
independent processes (i.e. 2N (N−1)) or the Kolmogorov transition equations (i.e.
2N (N−1)/2). The authors proposed an edge birth-and-death model where each edge
can become activated or deleted at a fixed probability that is independent of all
other edges or the current state of the graph. They extended this to a more
sophisticated model where link activation and deletion depend on some form of
proximity between edges as given by the initial set-up of the nodes (e.g. fixed
location on a line with nodes connected according to some connectivity kernel).
The aim of their study was twofold: first to use such models to simulate a series
of dynamic or evolving networks and second to fit evolving network models to
data and use likelihood-based estimation of model parameters.

Miller et al. (2011) and Volz & Meyers (2007), using the probability generating
function (PGF) formalism or edge-based compartmental modelling, have recently
also studied a variety of dynamic network models (e.g. mean-field social
heterogeneity (MFSH) and dynamic fixed degree with or without dormant
contacts) coupled with susceptible-infectious-recovered (SIR) dynamics. However,
these network dynamics are not coupled with the epidemic and the authors
propose low-dimensional ODEs that capture the time evolution of the epidemic
well. Calculations of the basic reproductive number, R0, are also presented
with focus on the impact of partnership duration and social heterogeneity on
epidemics.

In this paper, we consider a set of simple dynamic networks based on the
link birth-and-death or activation–deletion model, and also a variant of this,
where link birth/activation is globally constrained. In order to provide a succinct
overview of different analytical methodologies and their limits when applied to
such models, the paper considers four scenarios of increasing complexity: the
impact of simple network dynamics on the structure of the network when node
dynamic is absent (§2, unconstrained and globally constrained link creation),
when the nodes are static but labelled (§3) and when the dynamic network
is coupled with susceptible-infectious-suceptible (SIS) node dynamics (§4). To
conclude, we study in depth the impact of network dynamics and its coupling
with the disease transmission on the outcome of epidemics (§5). For the first three
models, results are obtained by using the exact formulation in terms of Markov
Chains and Kolmogorov equations and a mean-field type approach with further
results from simulation. These methodologies cannot deal with the final scenario,
however, the output of the analytical models can be used as a benchmark to test
the validity of the full simulation model. The full simulation model is used in
conjunction with a novel pairwise approximation to investigate and characterize
the full spectrum of behaviour. The agreement between simulation and pairwise
model is discussed in detail. This is done by providing some new insight into how
the assumptions of the pairwise model can be interpreted and how the strong
assumptions of the closure relation can lead to disagreement between the two
models. Parameter regimes where agreement is excellent are identified, however,
many open questions remain regarding the exact relation between simulation
results and output from the pairwise model.
Proc. R. Soc. A
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In this section, the impact of simple network dynamics on the structure and
properties of the network is explored. We present different modelling techniques
to derive exact or approximation models and compare these to simulation results.
Two simple network dynamics are considered: (i) random link activation–deletion
(RLAD), whereby non-active or non-existing links are activated with a given
rate (e.g. a), while existing ones are deleted with some other rate (e.g. u)
and (ii) globally constrained RLAD, whereby the above link creation process is
constrained globally, i.e. the higher the number of active links the lower the rate
at which new links are activated. Initially, the simple dynamics of the network are
studied without considering any dynamics on the network or any link activation
or deletion that may depend on node labels.

(a) Random link activation–deletion: probabilistic approach

Let us consider an undirected and unweighted network with N nodes where
the maximum number of edges is M = N (N − 1)/2. The dynamics of edges
evolve according to the following two simple rules. Non-active or absent links
are activated independently at random at rate a while existing links are broken
independently at random at rate u. Let (X(t))t≥0 be an integer-valued random
variable that represents the number of edges/links in the network at time t. If
P(X(t) = k) = pk(t) then the Kolmogorov equations for pk are given by

dpk(t)
dt

= a[M − (k − 1)]pk−1(t) − [a(M − k) + uk]pk(t) + u(k + 1)pk+1(t),

(2.1)

where k = 0, 1, 2, . . . , M with pM+1(t) = p−1(t) = 0 (no link activation when k = M
and no link deletion when k = 0). The average number of edges in the graph at
time t can be defined as K1(t) = ∑M

k=0 kpk(t). Upon using equation (2.1) and after
some simple algebra, the equation for K1(t) follows easily and is given by

K̇ 1(t) =
M∑

k=0

kṗk(t) = aM − (a + u)K1(t). (2.2)

Hence, at equilibrium

K eq
1 = aM

a + u
.

The equilibrium value can also be found heuristically by determining the number
of edges K eq

1 at which the total rate of link activation (a(M − K eq
1 )) is balanced

by the total rate of link deletion (uK eq
1 ). For this set-up, the average number of

links per node or average node degree is given by

〈k〉(t) = 2
∑M

k=0 kpk(t)
N

= 2K1(t)
N

.

A traditional and commonly used method to determine the probability
distribution as given by the forward Kolmogorov equations above (equation (2.1))
Proc. R. Soc. A
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is via the PGF technique. This is defined as

G(t, s) =
M∑

k=0

pk(t)sk , (2.3)

where s is a placeholder variable that allows to concentrate all the information
about the probability distribution into one single function. Multiplying
equation (2.1) by sk , followed by summation for k = 0, 1, . . . , M and some simple
calculations gives rise to the following partial differential equation

vG(t, s)
vt

= (1 − s)(as + u)
vG(t, s)

vs
− aM (s − 1)G(t, s) (2.4)

and
G(0, s) = sm0 for (t, s) ∈ [0, ∞) × (0, 1), (2.5)

where the initial condition corresponds to starting with m0 edges (i.e. pm0(0) = 1
and pk(0) = 0 for ∀k ∈ {0, 1, 2, . . . , M } \ {m0}). This is a first-order homogeneous
partial differential equation that can be solved using the method of characteristics
and its solution is given by

G(t, s) =
(

u + as + u(s − 1)e−(a+u)t

u + as + a(1 − s)e−(a+u)t

)m0
(

u + as + a(1 − s)e−(a+u)t

a + u

)M

. (2.6)

From the equation above, K1(t), the expected number of edges in the network is
given by vG(t,1)

vs , and in the limit of t → ∞, K1(t) tends to its equilibrium value
defined as

K eq
1 = lim

t→∞
vG(t, 1)

vs
= aM

a + u
. (2.7)

Moreover, for t → ∞

G(t, s) →
(

a

a + u
s + u

a + u

)M

, (2.8)

which is the generating function of the binomial distribution with M trials and a
per-trial probability of success p = a/(a + u). The excellent agreement between
the exact model and simulation is shown in figure 1a, and confirms that the
formulation of the two models is correct and consistent. The number of equations
in the exact model scale as O(N 2) which restricts its applicability to small
networks.

(b) Random link activation–deletion: mean-field approach

To overcome the limitations of the exact model and to gain more insight
into the properties or structure of the network, a different modelling approach
is presented below. Here, the network is considered as a population of nodes
where nodes can be classified according to their number of links/contacts and
the rates of moving to either more highly or less well connected classes. Hence,
the modelling relies on deriving evolution equations for the number of nodes with
degree 0, 1, 2, . . . , N − 1. Let nk denote the number of nodes with k contacts where
Proc. R. Soc. A
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Figure 1. (a) Time evolution of 〈k〉 given by equation (2.2) (solid line, Kolmogorov model) compared
with simulation (open circles). (b) Degree distribution at equilibrium as given by equation (2.9)
(solid line, mean-field model) compared with simulation (open circles). Results from the mean-
field model are identical to the binomial distribution Bin(N − 1, 〈k〉/(N − 1) = a/(a + u)). For
both (a, b), u = 1 and a = (u〈k〉/(N − 1) − 〈k〉) is set to obtain different values of the average
degree at equilibrium (e.g. 〈k〉 = 2, 5, 10, 20). All simulations start from a completely sparse graph
with N = 100.

0, 1, 2, . . . , N − 1. Based on simple heuristic reasoning, the evolution equations for
nks are given by

dnk(t)
dt

= a[(N − 1) − (k − 1)]nk−1(t)

− {a[(N − 1) − k] + uk}nk(t) + u(k + 1)nk+1(t). (2.9)

This approach is similar to compartmental models where, in this case, transitions
between compartments represent link gain or link loss. Solving the equations
above provides information about the number of nodes with different connectivity
Proc. R. Soc. A
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but does not test whether such a network is realizable. This bears strong
similarities to some modelling approaches where networks are simply considered
in terms of nodes and their stubs but without being connected up in a coherent
network (Ball & Neal 2008; Lindquist et al. 2011). The linear system of ordinary
differential equations lends itself to some simple analysis. The rates matrix is of
particular interest as this determines the eigenvalues (lj) and the corresponding
eigenvectors (sj), where j = 0, 1, . . . N − 1, that are used to construct the solution
of the system. The solution of the system in terms of these is given by

n(t) =
N−1∑
j=0

cjsj exp(lj t),

where cjs are some arbitrary constants. Owing to the special structure of the rates
matrix, all eigenvalues but one have negative real parts. The single eigenvalue
with a non-negative real part is in fact a zero eigenvalue. Hence, when t → ∞,
the solution of equation (2.9), n(t) = (n0(t), n1(t), . . . , nN−1(t)) tends to the
eigenvector associated with the 0 eigenvalue times some constant, n(t) → Cs0
when t → ∞. It is easy to show analytically that

sj
0 =

(
N − 1

j

) (
a

a + u

)j (
u

a + u

)N−1−j

for j = 0, 1, . . . N − 1.

This is equivalent to the binomial distribution with N − 1 trials and a per trial
probability of success given by a/(a + u). This is further illustrated in figure 1b
where the degree distribution, for large time, is plotted for different 〈k〉 values.
Again, the agreement of the mean-field model with simulation is excellent, and
confirms that, as expected, the simple RLAD model leads to simple Erdős–Rényi
type networks.

(c) Globally constrained random link activation–deletion: probabilistic approach

Both real and theoretical networks are usually sparsely connected with 〈k〉 	 N
and thus it is natural to impose a limit on the total number of edges in the graph.
To do this, the simple RLAD model is extended to include a carrying capacity
(Kmax

1 ) that can limit link activation. This carrying capacity can be viewed as the
maximum number of links allowable in the network. Of course this is not the only
approach to limiting the number of edges in the network. It could be argued that
a more realistic approach would be to introduce a local neighbourhood capacity to
nodes in the network (see Taylor et al. 2012). Here, we continue with the global
constraint and following the same notation as above, the globally constrained
RLAD (GC-RLAD) model leads to the following equations

dpk(t)
dt

= a[M − (k − 1)]
(

1 − k − 1
Kmax

1

)
pk−1(t)

−
[

a(M − k)
(

1 − k
Kmax

1

)
+ uk

]
pk(t) + u(k + 1)pk+1(t), (2.10)

where k = 0, 1, 2, . . . , M with obvious modifications for k = 0 and k = M . Using a
similar approach as above, the equation for K1(t), the average number of edges
Proc. R. Soc. A
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in the graph at time t, is given by

K̇ 1(t) = aM −
(

a + a

Kmax
1

M + u

)
K1(t) + a

Kmax
1

K2(t), (2.11)

where K2(t) = ∑M
k=0 k2pk(t) is the second moment of the edge number distribution

at time t. This equation cannot be solved directly since it involves the second
moment of the edge distribution and an equation for this is needed. As an
alternative to this exact approach, we consider the most obvious and simplest
approximation whereby K2(t) = K 2

1 (t). The following theorem shows that this
approximation becomes exact in the limit of M → ∞.

Theorem 1. For the solution K ∗
1 of equation (2.11) upon substituting K2(t) by

K 2
1 (t) the following statement holds. Provided that Kmax

1 /M remains constant as
M → ∞, then for any T > 0 there exists a constant C > 0 such that

|K1(t) − K ∗
1 (t)| ≤ C

M
for t ∈ [0, T ],

where K1(t) = ∑M
k=0 kpk(t).

The proof of the theorem is rather technical and it will be presented in a
more wider context as part of an additional paper. However, figure 2a confirms
our statement and shows the excellent agreement between the exact and the
approximation model even for small networks, where M is also small. Using this
result, a quadratic equation for the edge value at equilibrium (K ∗,eq

1 ) follows easily,

K ∗,eq
1 = M

2

⎡
⎣(

1 + Kmax
1

M

(
1 + u

a

))
±

√(
1 + Kmax

1

M

(
1 + u

a

))2

− 4
Kmax

1

M

⎤
⎦ .

(2.12)

While both solutions are positive, the smaller of the two can be confirmed as
the correct equilibrium value given that the number of edges in the network
cannot be larger than the carrying capacity. In the case of Kmax

1 = M , our
argument follows immediately.

(d) Globally-constrained RLAD: mean-field approach

Following the same considerations as for the RLAD model and using the same
notation, the globally constrained RLAD at the node level is characterized by the
following equations

dnk(t)
dt

= a[(N − 1) − (k − 1)]
(

1 − e(t)
Kmax

1

)
nk−1(t)

−
{

a[(N − 1) − k]
(

1 − e(t)
Kmax

1

)
+ uk

}
nk(t) + u(k + 1)nk+1(t),

(2.13)
Proc. R. Soc. A
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Figure 2. (a) Time evolution 〈k〉 given by equation (2.10) (solid line, Kolmogorov model) compared
with the approximation obtained from equation (2.11) (open circles). Here, N = 50. (b) Degree
distribution at equilibrium based on equation (2.13) (thick grey line, mean-field model) compared
with simulation (open circles) and to the binomial distribution Bin(N − 1, 〈k〉/(N − 1)) (solid black
line) with N = 100. For both (a) and (b), u = 1, Kmax

1 = M and a is set to obtain different values
of the average degree at equilibrium (e.g. 〈k〉 = 2, 5, 10, 20). This can be done by assuming that
all parameters in equation (2.12), except a, are known and solving a modified version of this
(2K ∗,eq

1 = 〈k〉N ) to obtain the desired a. All simulations start from a completely sparse graph.

where e(t) is given by

e(t) = 1
2

N−1∑
k=0

knk(t).

In figure 2b, for a given set of parameters, we show that the mean-field approach
can again be used to predict the degree distribution of the network, and as before,
the numerical results suggest that networks based on the GC-RLAD dynamics
Proc. R. Soc. A
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are also randomly connected with binomial distribution. However, in this case,
the good agreement with the binomial distribution could not be demonstrated
analytically directly from equation (2.13).

3. Simple stochastically evolving networks in the presence of node labelling

The network dynamics so far has only been considered without the dynamics
on the network and independently of node and/or link type. To explore the
full impact of the dynamics on the network, it is advisable that a step-by-step
approach is taken as proposed by Gross et al. (2006). First, the impact of network
dynamics can be investigated independently of node and/or link characteristics
which could either be imposed externally and be static or be dynamic as a result
of a separate dynamics running on the network. Second, the network dynamics
based on static node/edge labelling can be investigated, and finally, the impact
of coupling the dynamics of the network with the dynamics on the network
needs to be considered. In the latter and most interesting case, the state of the
nodes will have an impact on the network dynamics and vice versa (e.g. breaking
susceptible-infected links impacts on the networks with the converse also being
true; neuronal activation impacts on networks through experience-dependent
plasticity and vice versa).

(a) SI labelling

Be it disease or information transmission, the manipulation of networks via
preferential node/link addition and/or deletion provides a powerful mechanism to
influence and optimize processes unfolding on the network. For example, disease
transmission can be slowed or halted if links between susceptible and infected
individuals are cut fast enough (Gross et al. 2006). Using the analogy of simple
epidemic models, such as the SIS model, nodes are labelled at random as S or
I . In the spirit of the network dynamics so far, all pair types can be activated
or deleted at random with pair-type-dependent rates. The rates at which (SS),
(SI ) and (II ) links are activated are denoted by aSS , aSI and aII , respectively.
Similarly, uSS , uSI and uII represent the rates at which (SS), (SI ) and (II ) links
are deleted. These labels are permanent and do not change during the evolution
of the network. In this case, the Kolmogorov equations can be written down
but are far more complicated compared with the previous cases. The state space
is now given in terms of three variables, namely the counts of the various link
types (SS), (SI ) and (II ). These take values from 0 to {S}({S} − 1), {S}{I } and
{I }({I } − 1), respectively, where {S} and {I } = N − {S} are the initial number of
nodes labelled S and I . It is more practical to use the mean-field approach and
write down ODEs for the number of different pair types. For brevity, only the
equations for the globally constrained case are given,

dnSS (t)
dt

= aSS [{S}({S} − 1) − nSS (t)]
(

1 − e(t)
K

)
− uSSnSS (t), (3.1)
Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


Dynamic networks and epidemics 11

 on January 19, 2012rspa.royalsocietypublishing.orgDownloaded from 
dnSI (t)
dt

= aSI [{S}{I } − nSI (t)]
(

1 − e(t)
K

)
− uSI nSI (t), (3.2)

and
dnII (t)

dt
= aII [{I }({I } − 1) − nII (t)]

(
1 − e(t)

K

)
− uII nII (t), (3.3)

where now K is the carrying capacity, and e(t) is given by

e(t) = nSS (t) + 2nSI (t) + nII (t)

and represents the number of doubly counted edges. It is worth noting that here
nAB (where A, B ∈ {S , I }) stands for doubly counted edges (i.e. a single SS pair
counts for two SS edges in nSS ). Similarly, the carrying capacity K needs to be
understood as such. The expected number of pairs at equilibrium (SSeq, SIeq, IIeq)
are given as the solutions of the following simple equations,

aSS [{S}({S} − 1) − SSeq]
(
1 − eeq

K

)
= uSSSSeq, (3.4)

aSI ({S}{I } − SIeq)
(
1 − eeq

K

)
= uSI SIeq (3.5)

and aII [{I }({I } − 1) − IIeq]
(
1 − eeq

K

)
= uII IIeq, (3.6)

where
eeq = SSeq + 2SIeq + IIeq

and {S}({S} − 1), {S}{I } and {I }({I } − 1) are constants determined by the initial
number of S and I s. These equations allow us to find the equilibrium values at
which the total rate of link activation equals the total rate of link deletion. The
following proposition shows that the solution of equations (3.4)–(3.6) is unique.

Proposition 1. The system given by equations (3.4)–(3.6) has a unique solution
given as

SSeq = K1y
A1 + y

, SIeq = K2y
A2 + y

, IIeq = K3y
A3 + y

,

where
K1 = {S}({S} − 1), K2 = {S}{I }, K3 = {I }({I } − 1),

and

A1 = K
uSS

aSS
, A2 = K

uSI

aSI
, A3 = K

uII

aII

and y is the unique root of the function

h(y) = K1A1

A1 + y
+ 2K2A2

A2 + y
+ K3A3

A3 + y
− y + K − (K1 + 2K2 + K3)

in the interval [0, K ]. Finding the solution of the equation h(y) = 0 reduces easily
to find the root of a fourth degree polynomial.
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Figure 3. The time evolution of the number of (SS), (SI ) and (II ) pairs from simulation compared
with analytic equilibrium values ((SS)-solid, (SI )-dashed and (II )-dotted) predicted by the mean-
field model. All simulations start from a completely sparse graph with N = 100 and with 80% of
nodes labelled initially as S . The other parameters are aSS = aSI = aII = 0.317 and uSS = uSI =
uII = 1.0.

Proof. Multiplying equations (3.4)–(3.6) by K/aSS , K/aSI and K/aII ,
respectively, and introducing the following new notation

x1 = SSeq, x2 = SIeq, x2 = IIeq, y = K − (x1 + 2x2 + x3),

allows us to recast equations (3.4)–(3.6) as follows,

x1 = K1y
A1 + y

, x2 = K2y
A2 + y

, x3 = K3y
A3 + y

.

Substituting these expressions into the definition of y and using that

Kiy
Ai + y

= Ki − KiAi

Ai + y
,

the following equation for y is obtained

K1A1

A1 + y
+ 2K2A2

A2 + y
+ K3A3

A3 + y
− y + K − (K1 + 2K2 + K3) = 0.

This shows that y is a root of function h. It is easy to see that h is a
decreasing function, hence it has at most one root. Moreover, h(0) = K > 0
and h(K ) < 0, since KiAi/(Ai + K ) < Ki . Therefore h has a unique root in the
interval [0, K ]. �

It is important to note that if the network dynamics is not globally constrained,
equations (3.4)–(3.6) decouple and each equilibrium value can be found based
on results from the non-constrained random link creation–deletion case. The
excellent agreement between the theoretical equilibrium, as defined above, and
simulation is illustrated in figure 3.
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4. Interaction of network and disease dynamics: simulation and pairwise model

In this section, the dynamics of the network and the simple SIS model are studied
concurrently using individual-based stochastic simulations and a low-dimensional,
deterministic pairwise model that acts as an approximate model in the sense that,
under appropriate conditions, output from the stochastic/exact model should
tend to results based on the deterministic limit.

(a) Simulation model and validity checks

The simulation is implemented on a network of fixed size with N nodes. Disease
transmission (t-transmission rate across an (SI ) link), recovery (at rate g), link
creation (at rate aab with a, b ∈ {S , I }) and deletion (at rate ucd with c, d ∈ {S , I })
all act simultaneously and give rise to the coupled disease and network dynamics.
The simulation is based on synchronous updating, where, to be in line with
the Markovian framework, the simulation time step (Dt) is kept small enough
to try and ensure that not more than one event/update happens per single
iteration. In a small time interval Dt, a susceptible node with k infectious
neighbours becomes infected with probability 1 − exp(−ktDt), while an infectious
node recovers with probability 1 − exp(−gDt). The activation and cutting of
links can be easily performed by considering all pairs of nodes, independently
of whether they are connected. If connected, an edge of type (ab) is cut with
probability 1 − exp(−uabDt), while a non-existing edge between nodes of type
c and d is activated with probability 1 − exp(−acdDt). For globally constrained
link creation, the unconstrained rate (acd) is simply multiplied by (1 − f ), where
f is the fraction of existing over allowable links given by the carrying capacity.
All the above processes are modelled as simple Poisson processes that happen
independently of each other.

The resulting simulation has an added level of complexity compared with
simple disease transmission models, and it is therefore important that the
simulation model be validated. In this case, the checking and benchmarking of
the simulation are possible owing to the theoretical work developed in §§2 and 3.
For example, to test the correctness of the implementation of the link-activation
deletion mechanism, the following checks have been performed and completed
successfully: (a) comparison of simulation output, with no epidemic and link-type
independent activation–deletion, to analytical results from §2, (b) comparison of
simulation output, with no epidemics but with labelled nodes, to analytical results
from §3. In both cases, the basis for comparison was the average number of links,
and in the case of (b), the average number of different link types. While in this
paper, the globally constrained RLAD was not coupled with epidemics, it was
implemented and tested against analytical results from §2.

(b) Pairwise model formulation for a dynamic network

In line with the standard pairwise models (Keeling 1999; Simon et al. 2011)
and the notations established above, we can now heuristically write down
equations for the rate of change of individuals and pairs for the dynamic network
Proc. R. Soc. A
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as follows,

d[I ]
dt

= t[SI ] − g[I ], (4.1)

d[SI ]
dt

= g([II ] − [SI ]) + t([SSI ] − [ISI ] − [SI ])
− uSI [SI ] + aSI ((N − [I ])[I ] − [SI ]), (4.2)

d[II ]
dt

= −2g[II ] + 2t([ISI ] + [SI ]) − uII [II ] + aII (([I ] − 1)[I ] − [II ])
(4.3)

and
d[SS ]

dt
= 2g[SI ] − 2t[SSI ] − uSS [SS ] + aSS ((N − [I ])(N − [I ] − 1) − [SS ]).

(4.4)

The system of equations is complemented by theoretical initial conditions or taken
as expected counts from the simulation model. Triples are closed according to the
simple closure given by

[ABC ] = n − 1
n

[AB][BC ]
[B] ,

where n is the average number of links per node. This closure implicitly assumes
that the precise type of nodes (e.g. S or I ) around a node in state B are
independent. This type of closure is widely used for homogeneous random
graphs (Keeling 1999; House & Keeling 2010) with no clustering and also for
unclustered random graphs with close to Poisson degree distribution (Taylor
et al. 2011). The equations above account for link activation–deletion and,
without any further constraints, have been made dependent on the type of link
being activated/deleted. For example, terms such as aSI ((N − [I ])[I ] − [SI ]) and
uSI [SI ] account for the activation and deletion of (SI ) links, where (N − [I ])[I ] −
[SI ] denotes the number of potential (SI )-type links that are not yet connected.

(c) Comparison of pairwise model to simulation: a general consideration

In formulating such a low-dimensional model, the immediate key question is
whether such a simple system can approximate, at least qualitatively, results
obtained from the simulation model. The answer to this question depends strongly
on the network structure, the type of dynamics and how the proposed closure
performs when these factors combine. An important observation that is generally
valid for all pairwise models with the known closures is that terms such as
−t[SI ] are exact. Thus, the network structure and the formation of correlations as
measured by CAB = N [AB]/(n[A][B]), where A, B ∈ {S , I }, should be conserved.
However, the evolution equation for [SI ] relies on the exact expectation of triples
which is approximated by the closure and thus is not exact. We note that values
of the correlation measure close to one indicate that the true expected number of
pairs is close to the value obtained in the case where nodes are labelled at random
as S and I rather than as a result of the dynamics unfolding on the network. The
strong assumption of independence in the closure leads to a closed ODE system
that dissipates the true correlations to some degree but, not completely. This
Proc. R. Soc. A
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argument follows simply from considering a simpler closure at the pair level,
i.e. [SI ] can be approximated by [SI ] = n[S ][I ]/N . This obviously removes all
correlations and gives rise to a system that is equivalent to the mean-field SIS
model. Using the closure at the level of triples, rather than pairs, will conserve
some of the correlations at pair level, however, a deviation from the simulation
model is unavoidable. To shed some further light on the impact of closure, it is
important to make a distinction between whether nodes are labelled at random
as S and I or whether (SS), (SI ) and (II ) links are placed at random to form a
labelled graph (labelling is to be understood as carried out at random and fixed
in time as opposed to being the result of an epidemic unfolding on the graph).
Nodes labelled at random will lead to all pair correlation being close to one,
CAB = N [AB]/(n[A][B]) � 1, where A, B ∈ {S , I }, in which case, the triples can
be counted in terms of singles as follows:

[ABC ] = n(n − 1)[A][B][C ]
N 2

.

This in turn is equivalent to the closure in terms of pairs. The main difference
between the two closures is that the first, more realistic one, allows for pair
correlations that are different from one, and thus not random, while keeping
the distribution of links random. Thus, the first closure can accommodate
more realistic scenarios where non-random pair correlation and random link
distribution can coexist. For the agreement between simulation and ODE
(equations (4.1)–(4.4)) to hold, we can give the following sufficient conditions:

— CAB = N [AB]/(n[A][B]) � 1, where A, B ∈ {S , I },
— [ABC ] = ((n − 1)[AB][BC ])/n[B] holds and the pair correlation can differ

from one, CAB = 1, where A, B, C ∈ {S , I },
where the first implies the second but not vice versa.

The conditions above are rather strong and are easily violated even for simple
static networks where the ODE model with an even more sophisticated closure
(House & Keeling 2010) will fail to match the outcome of simulation as shown
by Taylor et al. (2011). However, these conditions are not necessary to get good
agreement. Even when the second condition is not fulfilled (i.e. [ABC ] = ((n −
1)[AB][BC ])/n[B]), it is still possible to get reasonably good agreement over
time in the expected number of infecteds as illustrated in figure 4.

Our discussion of the results and agreement between the two models will
revolve around the arguments presented above and the concept of preferential
link or edge dynamics. These will be used to underpin our explanation of results
from model comparisons. Preferential link dynamics is a direct result of the
model ingredients, which allows us to tune link activation and deletion such
that certain type of links can be over- or under-represented compared with a
random link distribution scenario. Moreover, this means that nodes of certain
type preferentially connect to nodes of similar or different nature leading to non-
trivial correlation structures on the network. This alone can explain why the ODE
with the triple approximation cannot capture such type of correlation structures
on the network. In extreme cases, this can be easily illustrated by regimes where
the graph breaks down into sub-graphs that are dominated by either S or I nodes
and where these sub-graphs can be close to fully connected or with no edges. For
example, if out of all link activation–deletion rates only uSS and aII are non-zero,
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Figure 4. Results from the average of 100 realizations on networks of size N = 100 with an initial
average degree 〈k〉 = 10, and corresponding output from the ODE model (simulation results, thin
black lines; ODE, thick black lines). The other parameter values are g = 0.05, t = 0.025, uSI = 0.5,
uSS = 0.5, uII = 0.5, aSI = 0.02, aSS = 0.02 and aII = 0.02. The networks were seeded with 10
infectious nodes. The prevalence of infection is plotted over time (a), and the true expected number
of triples from the simulation is compared with (b) the approximate value of triples from the closure
with singles and pairs taken from the ODE.

it is straightforward to obtain a regime where the network over time is such that
S nodes are isolated and lose all their links, while the I nodes tightly cluster into
an almost completely connected graph. In cases, such as these, the ODE will fail
to capture the true dynamics owing to the isolation of susceptibles.

While correlations will not necessarily invalidate the agreement between the
two models we identify them as an important factor in determining whether the
two models will agree. Other important factors can contribute to whether good
agreement is observed. For example, the parameter values could be such that an
initially unclustered network may become clustered with higher link density and
in this case, the assumptions of the simple closure will break down. The effect
of clustering, however, can be counteracted by the network becoming even more
densely connected, at which point, the mean-field limit can be approached.

5. Model behaviour: impact of network dynamics on epidemic

In this section, the focus is on identifying possible system behaviours and
understanding the coupled impact of disease and network dynamics on epidemics.
The analysis starts with the consideration of the closed pairwise system which is
four dimensional and lends itself to standard bifurcation analysis to determine all
possible steady states and their stability as a function of the model parameters.
Using the parametric representation method (PRM; Simon et al. 1999), a more
rigorous approach used to investigate global bifurcations, four different regimes
are identified (figure 5). The analysis shows that the interaction of network
and disease dynamics leads to a spectrum of behaviours ranging from a single
stable disease-free steady state to stable oscillations. More precisely, there are
three types of bifurcations. First, a transcritical bifurcation where the disease-
free steady state loses stability with the disease becoming established and thus
Proc. R. Soc. A
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Figure 5. Bifurcation diagram showing the full possible spectrum of behaviour. The parameter space
is divided into four distinct regions as follows: the disease-free is the only stable equilibrium (above
the transcritical and saddle–node bifurcation curves), two stable (disease-free and endemic) and
one unstable equilibria with non-zero infectious prevalence (between the transcritical and saddle–
node bifurcation curves), one unstable (disease-free) and a stable endemic equilibria (below the
transcritical curve and outside the Hopf bifurcation island), and finally, Hopf island with a stable
limit cycle and unstable disease-free and endemic equilibria. Parameter values are as follows: N =
100, n = 10, aSS = 0.004, aSI = 0.005, aII = 0, uSS = 0.005, uII = 0 and g = 1.0. (Online version
in colour.)

giving rise to a stable endemic equilibrium. Second, a saddle–node bifurcation
which gives rise to the coexistence of two stable equilibria (one being disease-
free and the other endemic) with an unstable equilibrium; and finally, a Hopf
bifurcation, where the stable endemic equilibrium looses its stability and gives
rise to a stable limit cycle. From a disease control viewpoint, of main interest is the
region above the transcritical and saddle–node bifurcation curves. In this region,
only the disease-free equilibrium is stable indicating that the deletion or breaking
of (SI ) edges curtails the spread of the epidemic and leads to a desirable disease-
free steady state. As expected, the regions where different model behaviours are
observed can vary and depend on model parameters. For example, in figure 5,
the region of bistability is small compared with the Hopf island that covers a
considerable part of the parameter space. This case was chosen to illustrate a
range of potential outcomes and the rich behaviour of a relatively simple model
that can lead to outcomes other than a stable disease-free or stable endemic state,
as in the case of the simple SIS model on a static network.

Owing to the dynamic nature of the network, the average degree of the nodes
(i.e. n as given in the triple closure) is a variable itself and changes with time.
Hence, the analysis above performed for a fixed n serves only as an indicator of
possible system behaviours but can give good results if n is a slow variable where,
for example, the network dynamics is much slower compared with the epidemic or
if n does not vary considerably. We also note that n only enters via the (n − 1)/n
term which for realistic networks that are well connected is close to one. For
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dynamic networks with type-dependent rates of link activation and deletion, the
average degree of a susceptible node can be different to that of infective nodes.
It is therefore more appropriate to use the following triple closure

[ABC ] = nB − 1
nB

[AB][BC ]
[B] ,

where nB is the average degree of a node of type B. Replacing n by nS (t) = ([SS ] +
[SI ])(t)/S in the ODE prevents the straightforward derivation of analytical
results but allows for fast numerical exploration of the parameter space to identify
different possible model outcomes. If in good agreement with simulation, the ODE
provides a simple and easy way to explore the full spectrum of behaviour for a
large number of parameters, a problem that is extremely difficult to tackle via
simulation alone.

The interplay between the two dynamics merits further scrutiny from the
viewpoint of the relative time scale of the two processes. In particular, three
different regimes can be identified: (i) fast network dynamics compared with
the spread of the epidemic, (ii) comparable time scales, and (iii) slow network
dynamics relative to disease transmission. As expected, in the limit of networks
that mix fast (i.e. regime (i)), the simulation approaches the standard mean-field
model, figure 6, given by

dI (t)
dt

= t〈k〉S(t)I (t)
N

− gI (t),

where 〈k〉 represents the average degree, once the network has reached its
equilibrium. For quick network dynamics, 〈k〉 is approached much faster
compared with the time scale of the epidemic, and this value can be used
as an input in the standard mean-field model above. This approach is in
fact equivalent to decoupling the system of two ODEs composed of the
simple mean-field model above and the evolution equation for K1(t) given by
equation (2.2). For fast network dynamics, 〈k〉 quickly approaches 2K1/N , where
K1 = lima,u→∞(aM/(a + u)) with creation and deletion rates chosen to obtain a
plausible, positive value. Thus, the average degree of the network at the steady
state serves as input to the mean-field epidemic model and the system decouples.
The setup in the third regime leads to some interesting behaviour of the coupled
system. A slow network dynamics, relative to the spread of the epidemic, may
make the coupled process look like disease transmission on a static network.
However, this will only hold initially as shown in figure 6, where a well-established
epidemic can be brought to a halt by a slow but potent network dynamics
that thins the networks sufficiently. The same figure also illustrates that when
the thinned network can still support an epidemic, the slow network dynamics
applies a delayed but severe correction to the steady state, i.e. reduced infection
prevalence level. When the timescales are comparable, the processes evolve hand-
in-hand and this regime is explored further both from an application and model
agreement viewpoint.

Good agreement between pairwise model and simulation would demonstrate
that the ODE model can be used as an effective tool to investigate possible model
outcomes. In what follows, we identify parameter sets where such agreement for
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Figure 6. Results from the average of 200 simulations on networks with N = 100, g = 1, t = 0.5
and an initial average degree of 10. Each run was initially seeded with 10 infectious nodes. (a)
Time evolution of the infection prevalence for network dynamics of increasing magnitude. The
grey lines represent simulation results for a = 0.01 and u = 0.2375 (dotted), a = 0.1 and u = 2.375
(dashed-dotted) and a = 0.5 and u = 11.875 (dashed). The solid black line represents the solution
of the standard, mean-field epidemic model solved with 〈k〉 = 4 which is equivalent to an epidemic
with an infinitely fast dynamics but with an average degree of 4. (b) Time evolution of infection
prevalence for different network dynamics with a = 0.01 and u = 0.2375 (black lines), and a = 0.01
and u = 0.485 (grey lines), and with an average degree at equilibrium given by 〈k〉 = 4 and 〈k〉 = 2,
respectively. Output from the pairwise models (solid lines), with the same parameters, are plotted
along with the simulation results (dashed lines).

the coupled dynamics case exists. The results are based on extensive individual-
based stochastic network simulations for a large selection of different parameter
combinations. The degree to which preferential link creation can be captured by
the ODE depends on the parameter values. As expected when all link activation–
deletion rates are not type dependent (i.e. aSS = aSI = aII and uSS = uSI = uII ),
the agreement between ODE and simulations is excellent as illustrated in figure 7
for a range of different parameter values. In this regime, the assumption of
independence of links of the triple closure performs even better than on a static
network as the random breaking and creating of links helps to dissipate some
of the high correlation in triplets (e.g. [III ]) observed with SIS -type dynamics.
Random activation–deletion helps to decrease the building of correlation in
the network that may otherwise invalidate the independence assumption. Good
agreement between the two models also holds for parameter values that are much
different from the equal activation and deletion rates scenario. Figure 8 shows
that agreement can also be found for more realistic parameter values where, for
example, efforts to control a disease may require a higher uSI rate compared
with other link deletion rates. In such situations however, care has to be taken
since the agreement depends on whether the precise parameter values will lead to
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Figure 7. Results from the average of 50 realizations on networks of size N = 100 with an initial
average degree 〈k〉 = 10, and corresponding output from the ODE model for various values of t

(simulation results, open triangles, squares and circles; ODE, solid lines). The other parameter
values are g = 1.0, uSS = uSI = uII = 0.5. The black, dark-grey and light-grey lines correspond to
all as being equal to 0.06, 0.04 and 0.02, respectively. The networks were seeded with 20 infectious
nodes. The prevalence from the ODE is plotted after 200 time units and the simulation results
are normalized from time 160 to 200, this is a region where the average prevalence settles to a
steady state.
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Figure 8. Results from the average of 100 realizations on networks of size N = 100 with an
initial average degree 〈k〉 = 10, and corresponding output from the ODE model (simulation
results, thin black lines; ODE, thick black lines). The other parameter values are g = 0.2, t = 0.1,
uSI = 0.5, uSS = 0.3, uII = 0.6, aSI = 0.03, aSS = 0.04 and aII = 0.03. The networks were seeded
with 20 infectious nodes. The inset shows the good agreement in the average degree of the
evolving network.
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Figure 9. Results based on simulation and pairwise model showing bistability. The upper branch
(open circles) obtained using the continuation method on networks of size N = 100 and 50
realizations. The solid black line and grey lines are the corresponding results based on the pairwise
model for N = 100 and N = 94, respectively. The lower branch from the simulation (black dots)
and the continuation from the upper branch (open circles) all show zero prevalence. Results from
the ODE also predict zero prevalence and are omitted to increase clarity. When tracing out the
upper branch via simulation, only epidemics that did not become extinct have been considered
(unless all died out). For a large enough value of t, the lower branch will eventually move away
from the zero prevalence state. The parameter values are 〈k〉 = 10 (for the starting network and
on the lower branch), uSS = 2.0, aII = 0.06, g = 1.0 with all other rates set to zero. The upper and
lower branches were seeded with 50 and 5 infectives, respectively.

moderate correlations or correlations that can be captured by the ODE model.
Finally, in figure 9, the bistability regime is illustrated for both the simulation
and the ODE model. We note that the networks resulting from the coupled
dynamics on the upper branch have on average six nodes that become isolated.
As expected, the ODE cannot capture this but, we can take this into account
by decreasing population size from N = 100 to N = 94. This results in excellent
agreement between the two models. The plots in figure 9 have been obtained
via continuation method where the steady state obtained at a value t0 of the
transmission rate is used as the initial condition for a new set of simulations with
a smaller value of the transmission rate, i.e. t0 − dt. This approach has also been
used with the full set of ODEs with time-dependent average connectivity n(t).
The qualitative agreement is good and highlights that the pairwise model can
be used as an exploratory tool when mapping out full system behaviour. This
is especially useful where models with many parameters make this exploration
almost impossible via simulations alone.

6. Discussion

The paper set out to carry out a systematic analysis of a model where network
dynamics is coupled with a simple disease dynamics model. Network dynamics is
based on link activation and deletion that can depend on link type. A step-by-step
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approach has been taken where the network dynamics has been modelled and
studied in isolation, without disease dynamics, and then in the presence of node
labelling that was stationary in time. The key result is the analysis of the pairwise
ODE model and its comparison with the simulation where both network and
disease dynamics act concurrently. Different modelling approaches have been
proposed and discussed, and their performance relative to each other has been
investigated. The models studied have ranged from exact stochastic models based
on Kolmogorov equations and simple low-dimensional ODE models to simulation
often with good agreement between complex simulations and ODE models. We
have highlighted that approximate ODE models are desirable as they are more
tractable compared with simulation and can be used as a more rigorous tool
to investigate the full spectrum of behaviour, especially when faced with more
complicated models with a large number of parameters.

Pairwise models have been developed in the context of static networks with
applications in epidemiology and ecology (Matsuda et al. 1992; Keeling 1999;
Rand 1999). This approach has been generalized to dynamic networks coupled
with simple epidemics and has been shown to have the potential to be a useful
modelling tool that complements simulation models and aids analysis. However,
many open problems remain regarding the validity of these simple ODE models
when compared with full simulation. To date, there is no coherent framework
with theoretical results where, for example, the convergence, in some appropriate
limit, of a stochastic process to a deterministic model is formalized. This holds
even for the static network case where the need for such developments has been
highlighted (House & Keeling 2011). In our particular case, there are many
parameter regimes where agreement between the ODE model and simulation is
good. These include, for example, regimes where either of the two dynamics is fast
or slow compared with the other. This time-scale separation reflects that when
considered separately, the ODE model tends to perform better. Furthermore,
if the parameters are such that the system is dominated by nodes in either
susceptible or infected state, then the agreement is again good given that many
of the link activation and deletion processes are dormant. Hence, the dynamics of
the network is predominantly governed by the creation and deletion of a unique
link type, i.e. non-preferential link dynamics.

As previously highlighted, and also confirmed here, the interaction of the two
dynamical process can lead to networks that are either highly clustered, display
some specific structure or are fragmented in sub-networks dominated by S or
I nodes even with some being completely isolated. Obviously in such cases,
the current pairwise model will fail to approximate the simulation correctly but
alternatives models, more sophisticated pairwise or other type of models that keep
track of the number of links or even the type of neighbours a node has (Lindquist
et al. 2011) may prove to give a more satisfactory result. Such models could better
capture the correlations driven by preferential link dynamics, heterogeneity in
node degree or other node, pair of larger scale property, that cannot be captured
by the basic pairwise model.

The results of the paper also highlight the importance of coupling network and
disease dynamics. This is easy to motivate from a practical viewpoint and our
model illustrates that this is a worthwhile exercise with findings that complement
the body of knowledge focusing on dynamics on static networks. As demonstrated
in the paper, the network dynamics can be exploited as a control mechanism
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aimed at stopping or reducing the impact of an epidemic and there remains
much work to understand how the link-type-dependent cutting and creation as
well the relative time scale of the two processes impact on the type and nature of
observable system behaviour. The proposed network dynamic model is basic and,
while it sheds light on some interesting and relevant behaviour, it needs to be
adapted based on some empirical evidence of social interaction and perturbations
to it by adversities such as epidemics. While the applications of the modelling
framework was in terms of epidemic models, coupling network dynamics with
dynamical processes unfolding on the network remains a very current topic in
areas such as computational neuroscience (notably in developmental neuroscience,
e.g. Hagmann et al. (2010) and more generally the problem is recognized in
Bullmore & Sporns (2009)) and we foresee that this will lead to various network
dynamics and coupling mechanisms with important contributions in the future
on both the modelling and analysis front.
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