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In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS)
epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular,
we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at
random to susceptible nodes available within a given radius. By systematically manipulating this radius we
investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a
step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an
epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network
and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both
analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that
the rewiring radius and the network’s initial structure have a pronounced effect on the endemic equilibrium, with
increasingly large rewiring radiuses yielding smaller disease prevalence.
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I. INTRODUCTION

The spread of infectious diseases on social networks and
theoretical contact structures mimicking these has been the
subject of much research [1–4]. In general, most work in this
area is aimed at understanding the impact of different network
properties on how diseases invade and spread and how to best
control them. Topological properties of nodes and edges can
be exploited in order to minimize the impact of epidemics.
For example, it is well known that isolating or immunizing
highly connected nodes or cutting edges or links with high
betweenness centrality is far more efficient than selecting
nodes and edges at random [5,6]. When global information is
scarce, acquaintance immunization [7] provides an effective
way to significantly reduce the spread of an epidemic.
More recently, dynamic and time-evolving network models
motivated by real data or simple empirical observations [8–14]
have offered a different modeling perspective with important
implications for how and when epidemics can spread or can
be effectively controlled. It is widely accepted that during
an epidemic the risk of becoming infected leads to social
distancing with individuals either losing links or simply
rewiring [9,15–17]. Such action can in fact be seen as an
emerging control strategy. In simple dynamic network models,
contacts between susceptible and infectious individuals can
be broken, and new ones be established. This is usually
implemented by susceptible individuals breaking high-risk
contacts and rewiring to exclusively susceptible individuals
or in a random way, or through random link addition and
deletion [18]. It has been shown that this adaptive mechanism
has a strong impact on both epidemic dynamics and network
structure.
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Another major development is the consideration of spatial
or geometric networks [19], where nodes are embedded in
space. This is especially the case for real networks where
geographical or spatial location is key. For example, mobile
phone, power grid, social contacts and neuronal networks are
all embedded in space with location and proximity being a
key component to how contacts are realised. This feature
gives special properties to the network and allows one to
distinguish between nodes based on spatial proximity. For
example, Dybiec et al. [20] proposed a modified susceptible-
infected-recovered (SIR) model using a local control strategy
where nodes are distributed on a one-dimensional ring, two-
dimensional regular lattice, and scale-free network. While
infection could spread on the whole network, including
shortcuts, control could act only over a “control network”
composed of mainly local links but with neighborhoods of
varying size, e.g., including local neighbors one, two, or more
links away. They presented simulation results showing how
the effectiveness of the local control strategy depends on
neighborhood size, and they explored this relationship for a
variety of infection rates.

In order to make rewiring more realistic, it is possible
to combine dynamic or adaptive networks with a spatial
component, where nodes are given specific locations [21],
such that the rewiring may take these locations into account
when identifying candidate nodes for rewiring. For example,
Yu-Rong et al. [22] considered a network with a spatial
component, where the rewiring strategy was such that when
an SI link is cut, the S individual will reconnect, with some
probability p, to random individuals irrespective of distance,
and to close-by or neighboring individuals with probability
1 − p. It was found that a higher value of the rewiring rate
led to a lower final epidemic size whereas a smaller value of
probability p resulted in a slower epidemic spread.

In this study, we investigate an susceptible-infected-
susceptible (SIS) epidemic spreading on adaptive networks.
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Any susceptible node can avoid contact with infected nodes
by cutting its links to infectious nodes and by rewiring them to
other susceptible nodes. However, we make the assumption
that individuals may not be able to avoid connecting to
individuals who are in the same community (e.g., social circles
such as family, friends, or workplace acquaintances). That
is, while the network is rewired adaptively, the rewiring is
restricted to susceptibles who are in the same “local” (to be
defined later) area. The use of a square domain with periodic
boundaries gives rise to a natural distance between nodes and
this is used to determine the local area around nodes.

Since we anticipate that the size of local areas or neigh-
borhoods will affect the rewiring, we carry out systematic
numerical investigations of adaptive networks where rewiring
is locally constrained. We adopt a step-by-step approach
whereby we first study the impact of rewiring on the network
structure in the absence of an epidemic, then with nodes
assigned a disease status but without disease dynamics, and,
finally, running network and epidemic dynamics simultane-
ously. In the case of no labeling and no epidemic dynamics,
we provide both analytic and semianalytic formulas for the
value of clustering achieved in the network in relation to the
size of the local area.

The paper is structured as follows. In Sec. II, we describe
the construction of spatial networks to which constrained
rewiring is applied, as well as the algorithm by which edges for
rewiring are selected. We also present the impact of rewiring
on degree distribution and clustering when rewiring operates
in the absence of an epidemic (Secs. II A and II B, respectively)
and when the nodes are labeled (Sec. II C). Section III
describes the epidemic model with constrained rewiring, as
well as numerical simulations of both homogeneous and
heterogeneous networks. In Sec. IV we conclude the paper
with a discussion of our results and possible further extensions
of our work.

II. ADAPTIVE NETWORK MODEL WITH LOCALLY
CONSTRAINED REWIRING

In this section, the simplest adaptive network model
with constrained rewiring is presented. Node placement and
network construction are described by the following simple
rules:

(a) N nodes are placed uniformly at random on a square S =
[0,X] × [0,Y ], such that each node i will have coordinates 0 �
xi � X and 0 � yi � Y , respectively, and ∀ i = 1,2, . . . ,N .

(b) Local area of radius R: If the Euclidian distance between
nodes i and j is less than or equal to R, nodes i and j are said
to be in the same local area and can become connected during
the rewiring process.

All results in this paper are derived by considering S =
[0,

√
N ] × [0,

√
N ], and internodal distances are calculated

using periodic boundary conditions. With this choice, the
density of nodes is exactly one node per unit area. Moreover, if
the radius of the local area is R, then the circle, on average, will
hold n = πR2 nodes. Or if one wishes to control the expected
number of nodes in a local area, then the radius is given by
R = √

n/π . Obviously, if R �
√

2N/2, the effect of spatial
constraint is nonexistent as each node i has N − 1 potential
neighbors to connect to. In what follows we will use either n,

the expected number of nodes in a local area, or R, the radius
of that area, as the control parameter of the rewiring process.

A. Rewiring at random within local areas and
impact of the local area radius

We now investigate how changing the radius, which defines
the local area for rewiring, affects the network structure.
Here, in order to gain a better understanding of the rewiring
algorithm, we study the network dynamics alone, in the
absence of any dynamics of the nodes and without labeling
nodes. Starting from the original idea of cutting a link between
a susceptible node S and an infectious node I, and rewiring the
susceptible to another S node randomly chosen among the set
of all susceptible nodes [9], we consider two scenarios for
implementing locally constrained rewiring. Specifically, we
explore two different edge selection mechanisms:

(1) Link-based selection: a SI link is chosen at random
(with equal probability), after which, the susceptible node S in
the link is rewired to a randomly chosen available susceptible
node S.

(2) Node-based selection: a susceptible node S is chosen at
random and, if connected to an infectious node I, is rewired to
a randomly chosen available susceptible S.

Unlike the node-based selection mechanism, the link-based
selection mechanism favors highly connected nodes and there-
fore these two selection mechanisms have the potential to lead
to networks with different properties. Note that, in both cases,
once a prospective link or node has been identified, rewiring
happens according to the local constraint, that is, rewiring
happens only if at least one susceptible node S is available in
the local area. Otherwise, rewiring is not performed. The total
number of edges is kept constant throughout the simulations,
and rewiring is not allowed if it leads to self-connections or
multiple connections.

To begin to consider the impact of the network dynamics
and show how it depends on the choice of selection algorithm
and size of local area, we consider two different starting
conditions: (a) homogeneous and (b) heterogeneous Erdős-
Rényi networks with average connectivity 〈k〉 = 10. Then,
when R = √

2N/2 or n = N , the network will be in the
situation where 〈k〉 � n, whereas when R = √

6/π , we will
have 〈k〉 � n. In one simulation step, only two outcomes are
possible: the rewiring is successful (one link has been cut and a
new “local” link has been created) or the rewiring fails, as there
are no suitable nodes in the local area. The latter tends to be
more likely when the number of nodes in the local area is close
to, or smaller than, the average connectivity, as this means that
after a few successful steps, new links would lead to multiple
or repeat connections, which are not allowed. The simulations
or rewiring steps are performed until network characteristics
such as degree distribution and clustering have stabilized.

Figure 1 shows the average or expected degree distribution
at steady state for both link-based and node-based selection
methods. The good agreement between simulation and bino-
mial distribution, when R = √

2N/2, confirms that the degree
distribution has not changed for the random network, but has
changed significantly for the homogeneous network, with both
selection methods leading to a heterogeneous network.
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FIG. 1. (Color online) The average degree distribution at the end
of simulations starting from homogeneous (top) and heterogeneous
(bottom) networks compared with the binomial distribution X ∼
B[N − 1,〈k〉/(N − 1)] (black circles, corresponding to an Erdős-
Rényi random network with N nodes and connectivity 〈k〉). The
left and right panels correspond to link- and node-based selection,
respectively. The plots show the average of 100 simulations with
R = √

2N/2 (red solid line) and R = √
6/π (blue dashed line), with

N = 100 and 〈k〉 = 10.

Starting from homogeneous and heterogeneous networks
leads to different outcomes, with the difference most pro-
nounced at the peak of the degree distribution when R =√

6/π . Namely, the peak of the degree distribution when
using link-based selection is higher than that obtained when
using node-based selection, and the peak when starting
from heterogeneous networks is less than that starting from
homogeneous networks. These differences can be explained
as follows.

For small local areas, where the average number of nodes
is smaller than the average degree or connectivity, the rewiring
will not be able to rewire all original links such that the
final, stable distribution remains relatively close to the original
or starting distribution. Hence, starting with a homogeneous
network with distribution p(k) = δ(k − 〈k〉), i.e., p(〈k〉) = 1,
will lead to a network with a distribution that will maintain a
high peak around 〈k〉. The heterogeneous network has a much
lower peak to start with, namely, p(〈k〉) = (N − 1

〈k〉 )p〈k〉(1 −
p)N−1−〈k〉, where p = 〈k〉/(N − 1), and thus further limited
rewiring will flatten the distribution further.

A similar explanation holds for the difference in the peak
when the starting network is the same but the selection method
differs. This is a result of the selection algorithm, and we will
consider the case when the starting network is homogeneous.
Some nodes with connectivity higher than k will emerge
quickly and these will be favorably picked for rewiring when
the link-based algorithm is used. However, this will lead only
to conserving the nodes’ degree, and rewiring will lead to an
increase in the maximal degree in the network only if the target
of the rewiring is itself one of the already highly connected
nodes. This becomes very limiting and leads to little growth
in degree, and thus to limited flattening of the distribution or

decrease in its peak. This is exacerbated when the rewiring is
limited by fewer available nodes than the average connectivity.

The size of the local area has a significant effect on the
number of nodes in the area. If we consider small values of
R, such as R = √

6/π and 〈k〉 > n, then a typical node will
connect to almost all nodes within the local area during the
rewiring process. In other words, while the rewiring process is
happening, the small number of nodes in the area will become
well connected and will lead to the formation of triangles,
and thus increasing levels of clustering. In the extreme case
with only three nodes in the local area, a triangle will quickly
form. When the average connectivity is similar to the number
of nodes in a local area, the rewiring process will create a
significant number of closed loops of length 3, which will have
a significant impact on the spread of a disease. To quantify this
effect in a more rigorous way, we measure clustering in the
network for local areas of different sizes as well as its evolution
in time. Clustering can be simply calculated as the ratio of the
number of triangles to connected triples, open or closed. This
can be computed by simple operations on the adjacency matrix
of the network as follows :

C = Ntriangles

Ntriples
= tr(G3)

‖G2‖ − tr(G2)
,

where G = (gij )i,j=1,2,...,N ∈ {0,1}N2
and gij = 1 if there is a

connection between node i and node j and gij = 0 otherwise.
Figure 2 shows the evolution of clustering during rewiring

for a range of radii R, and with both selection methods, as
above. As expected, smaller values of R, but such that 〈k〉 � n

still holds, lead to higher levels of clustering. However, when
R is such that 〈k〉 � n, clustering decreases as rewiring
will be limited by the low number of potential targets for
rewiring in local areas. This means that many long-range
links from the original network will be conserved, and thus
clustering is pushed to smaller values. Both selection methods
produce similar results in both clustering and preferential
mixing for a variety of R values, with both homogeneous
and heterogeneous starting networks.

It is observed that across all values of radius R, given
enough time, clustering stabilizes. This begs the question of
how the rewiring process operates throughout the simulation,
especially for large R. In Fig. 3, we examine how the number
of successful rewiring events depends on the simulation step
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FIG. 2. (Color online) Evolution of clustering during rewiring,
starting from homogeneous (left) and heterogeneous (right) networks.
The plots show the average of 100 simulations with R = √

6/π ,√
10/π ,

√
20/π ,

√
30/π , and R = √

2N/2 [green (a), blue (b), black
(c), purple (d), and red (e) lines, respectively], where the solid and
dotted (�) lines correspond to link- and node-based selection, with
N = 100 and 〈k〉 = 10.
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FIG. 3. (Color online) Evolution of the rewiring process, starting
from homogeneous (left) and heterogeneous (right) networks with
node-based selection. The plots show the average of 100 simulations
with R = √

6/π ,
√

10/π ,
√

20/π ,
√

30/π , and R = √
2N/2 [green

(a), blue (b), black (c, o), purple (c, �), and red (c, �) lines,
respectively], with N = 100 and 〈k〉 = 10.

when using node-based selection for both homogeneous and
heterogeneous networks. As expected, with a small value of R,
the rewiring process evolves quickly to a stable equilibrium,
whereas, for a large value of R, it continues throughout the
simulation. Interestingly, for large values of R, even when there
are still prospective links or nodes to be rewired, clustering of
the network is no longer affected (see Figs. 2 and 3 where
R = √

20/π,
√

30/π ). Intuitively, this can be explained as
follows. Since there are many available target nodes to rewire
to in a local area, a node, with say k contacts, proceeds to
randomly connect to k nodes within its local area. If the local
area is not extremely large, and for relatively dense networks,
this process will lead to an initial increase in clustering. Since
the area holds more candidates for rewiring than the number
of neighbors a node has, link rewiring will continue and other
nodes from the same area will be chosen. However, this will
lead to no significant further increase in clustering, except
small movements around the equilibrium value.

B. Computing clustering

1. n � 〈k〉: Small areas but high degree

We aim to derive an analytical approximation for clustering
by concentrating on the case when, on average, the number of
nodes in a circle of radius R is less than the average degree
in the network. In addition, we consider the situation when
all possible links have been rewired. Due to having limited
options for rewiring locally, we can assume that at the end of
the rewiring process almost all local connections have been
realized. We will focus on a typical node and its neighbors
within distance R and beyond, noting that two nodes within a
circle of radius R are not necessarily at a distance of less than
R from each other.

Let us introduce some notation. Let B be the number of
nodes within a radius R from a given node, and not including
the node at the center. B itself is a random variable. Let k be the
degree of the node at the center of the circle (k is therefore also
a random variable). To compute the clustering of the central
node we seek to establish the number of links between the
neighbors of the node. We break this down into links between
neighbors who are within the circle, links between internal
and external neighbors, and finally links between nodes that
are exclusively outside the circle. Counting multiplicatively,

the total number of possible triangles is

B(B − 1) + 2B(k − B) + (k − B)(k − B − 1) = k(k − 1).

We now set out to find the probability of connections
existing between the three different types of edges. First, we
work out the probability of two interior nodes being connected.
This can be done by considering a circle of radius R and then
an arbitrary point within it. The probability that the second
node will be within distance R from the initial node will be
proportional to the overlap area Aoverlap between the original
circle and the circle of radius R centered around the first
random point. Hence, the probability that the distance between
the two random points within the circle is less then R is simply

P (d < R) = Aoverlap

πR2
.

To determine Aoverlap, we first work out the density function
for the distance of the first point from the center. However,
when placing nodes at random in a circle, the uniform random
number has to be scaled with the

√· function. Effectively,
a good or valid random choice for the distance from the
center is not a uniform random number in (0,1), X, times
R but

√
X(0,1)R. This means that the density function for the

distance from the center of a randomly and uniformly placed
node is ρ(r) = 2r

R2 . This integrates to 1 for r going from 0 to
R. Knowing the distance r between the two points, we average
the well-known area for the intersection of two circles of radii
R and with distance r between their centers, that is,

Aoverlap(r,R) = 2R2 cos−1

(
r

2R

)
− 1

2
r
√

4R2 − r2.

Hence, the probability that two nodes within a circle of radius
R are less than R apart is given by

q = 1

πR2

∫ R

0
Aoverlap(r,R)

2r

R2
dr, (1)

and the number of triangles that are forming between interior
nodes is B(B − 1)q.

We now focus on the probability of links existing be-
tween the remaining nonconnected interior-interior nodes
[of which there are B(B − 1)(1 − q)], as well as between
interior-exterior [i.e., 2B(k − B)] and exterior-exterior [i.e.,
(k − B)(k − B − 1)] nodes. In general, we can state that if the
distance between two nodes is less than R then at the end of
the simulation they will have formed a link. The probability
that the distance between two randomly placed nodes is less
than R is the ratio between the area of the circle or local area
with respect to the total area. Thus, with probability πR2

N
, two

nodes are less than R apart and are connected with probability
1. With probability 1 − πR2

N
, these nodes will be more than

R away and therefore will be connected by the long-range
links that remain at the end of the rewiring process. However,
the average number of such links is (k − B)N with short-range
links accounting for BN . Thus, assuming that long-range links
are distributed at random across all possible long-range pairs,
we get that the probability of such a link existing is

plr = (k − B)N

N (N − 1)
(
1 − πR2

N

) .
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Hence, a random pair of nodes forms a link with probability

πR2

N
+

(
1 − πR2

N

)
plr = k + 1

N − 1
− B + 1

N (N − 1)
∼ k + 1

N − 1
,

since B+1
N(N−1) is likely to be small. However, surprisingly, this

value is very close to what is the initial probability of a link
existing when the network is connected up according to the
Erdős Rényi model. In this case, the probability of a link
existing is k

N−1 which is also the measure of clustering for the
initial network since all links are placed at random and thus
where a node has two neighbors, the probability of them being
connected is C = k

N−1 . However, at the end of the rewiring
process we get that clustering should be well approximated by

CL = B(B − 1)q + plrB(B − 1)(1 − q)

k(k − 1)

+
(

k+1
N−1 − B+1

N(N−1)

)
[2B(k − B)]

k(k − 1)

+
(

k+1
N−1 − B+1

N(N−1)

)
[(k − B)(k − B − 1)]

k(k − 1)
. (2)

We expect that when clustering is high, the B(B − 1)q
term dominates. We can also suggest a simpler formula
for C, namely, one that assumes that almost all interior
neighbours of a central node will become connected and the
contribution from other pair types towards clustering is small.
On the one hand, this overestimates clustering when looking
at connections between interior nodes, as these could be apart
by more than distance R. On the other hand, it underestimates
clustering as some interior-exterior and exterior-exterior nodes
could still be connected. This formula gives

Ca = B(B − 1)

k(k − 1)
.

Both formulas above work on average or expected values.
As noted previously, k and B can be treated as random variables
with some distribution. An analytic or semianalytic expression
for these would make it possible to numerically evaluate our
two approximations and compare them to clustering measured
from simulations.

2. n � 〈k〉: Large areas but low degree

Let us use the same definition of B and k as in the previous
section, but here B > k. Our analysis will focus on a typical
node out of the k nodes in the area. Since the probability of
two nodes within a circle of radius R being connected is q

and there are B − 1 nodes in total available to form links,
clustering should be approximated by

CR = q
k − 1

B − 1
. (3)

This formula works on the assumption that the center node
forms triangles only within its local area since B > k.

Both Eqs. (2) and (3) are shown in Fig. 4. Here, we present
only the case of homogeneous networks with node-based
selection, due to the two rewiring methods giving very similar
clustering values; see Fig. 2. The left panel of Fig. 4 uses
average (B,k) values such that all center nodes have B nodes
within a radius R and have degree k. However, this is an
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FIG. 4. (Color online) Clustering at the end of simulations start-
ing from homogeneous networks with node-based selection. Simu-
lation results (red �) are compared with analytic formulas [Eq. (2)
(black dotted) and Eq. (3) (blue dashed)], with k = 〈k〉. In the left
panel we use the formulas with average (B,k) values. In the right
panel we use (B,k)’s joint distribution computed from simulations.
The plots show the average of 100 simulations with N = 100 and
〈k〉 = 10.

approximation since in reality B and k are random parameters
and have a joint distribution. When accounting for this
heterogeneity by computing the joint parameter distribution
from simulation, the agreement significantly improves as
shown in the right panel of Fig. 4. Here, we randomly choose
5% of N nodes to be center nodes and count the true values of
B and k to compute the clustering.

While the analytic formulas for the clustering values are
derived for the limiting cases of n � 〈k〉 and n � 〈k〉, a close
examination of Fig. 4 reveals that agreement with simulation
is maintained close to the n � 〈k〉 regime. Moreover, the same
figure shows that the maximum value of clustering is achieved
for n � 〈k〉. By using this value in the analytic formulas, i.e.,
B = n − 1 = 〈k〉 − 1, and by neglecting the small terms we
have

CL = q

(
1 − 2

〈k〉
)

and CR = q

(
1 + 1

〈k〉 − 2

)
,

which shows that clustering will be dominated by the
probability q that two nodes within a circle of radius R are
less than a distance R apart. The value of q is independent of
R and it is q ∼ 0.587, as confirmed by our figure. While CL

underestimates and CR overestimates clustering at n = 〈k〉,
it is worth noting that using n = 〈k〉 + 1 or B = 〈k〉 in both
formulas, i.e., Eqs. (2) and (3), we get

CL = CR = q.

Hence, we can conclude that clustering can be maximized if
the expected number of nodes in the local area is very close or
identical to the expected degree of a node. Such a setup will
ensure that all potential neighbors can be drawn from inside a
local area, and clustering will be dominated by the probability
q that two nodes within a circle of radius R are less than a
distance R apart.

For large n, n → N , the reasoning that led to working out
q breaks down, since for large R values almost all nodes are in
the same unique area. This effectively means that q → 1 and
thus CR → 〈k〉−1

N−2 � 〈k〉−1
N−1 (for large N ), which is the value of

clustering in a random network.
From Fig. 4, we note that networks with the same level

of clustering can be generated with both n � 〈k〉 and n �
〈k〉. This begs the interesting question of whether structural
differences exist in these networks. We examined a number of
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FIG. 5. (Color online) Distribution of distance between i and j

if g(i,j ) = 1 and distribution of path length at the end of simulations
starting from homogeneous networks with node-based selection. The
plots show the average of 100 simulations for n = 7 (top) and n = 18
(bottom) with N = 100 and 〈k〉 = 10.

network characteristics, including path length distribution and
distribution of true link lengths. Figure 5 shows the distribution
of distance for all links as well as the distribution of path
length, for n = 7 and n = 18. As expected, with a large value
of n, the rewiring will be able to rewire all links. Thus, the
final network has all its links with length less than or equal
to the value of R (see the distribution of distance in Fig. 5
when n = 18). The final networks show a slight difference
in mean path length, L(n = 7) ≈ 4.33 and L(n = 18) ≈ 4.26,
even though their distributions of distance are significantly
different. To further highlight the different network structures,
Fig. 6 shows the small-worldness index of each final network
as a function of n. This index is obtained by computing the
ratio of C/L divided by the ratio of Cr/Lr where Cr and Lr

are the clustering and mean path length respectively of the
equivalent randomized network.
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FIG. 6. The small-worldness index (C/L)/(Cr/Lr ) at the end of
simulations starting from homogeneous networks with node-based
selection. The plots show the average of 100 simulations with
N = 100 and 〈k〉 = 10.

3. Comparisons to random geometric networks

In this section, we focus on properties of networks after
rewiring has finished and in the particular case of n being
close to 〈k〉. Assuming that all links can be rewired locally,
all edges will have length of at most R. It is apparent that
this description is closely related to that of random geometric
graphs (RGGs) [23,24]. Hence, it is worth considering how
closely the two are related or whether these can be considered
equivalent for some appropriately chosen parameter values.

Let us give a brief introduction to RGGs. A two-
dimensional random geometric graph can be constructed by
placing N nodes at random on the unit square, and assuming
that each node is the center of a circle of radius d. Nodes whose
circles intersect or at least touch become connected [19,23].
Thus, the probability p that two randomly chosen nodes are
connected is equal to

p = πD2,

where D = 2d. The average degree of a RGG is 〈k〉 � pN ,
and its degree distribution is binomial,

P (k) =
(

N − 1

k

)
pk(1 − p)N−1−k, (4)

and well described by the Poisson distribution when N is large.
The clustering coefficient of a RGG is

CRGG = 2

D2

∫ D

0
ρ(x)xdx,

where ρ(x) is the overlap area of two circles of radius D with
distance x between their centers. Following [23], clustering is
calculated as follows:

CRGG = 2

D2

∫ D

0
x

[θ (x) − sin θ (x)]

π
dx = 1 − 3

√
3

4π
� 0.587,

(5)
where θ (x) = 2cos−1(x/2D).

Here, in the case of our dynamic networks, N nodes are
randomly placed on an area given by S = [0,

√
N ] × [0,

√
N ].

This is followed by a rewiring that allows connections only
to nodes that are at most a distance R away. Hence, d = R/2
and D = R. If we were to follow the RGG rules, then the
probability of two random nodes being connected would
be p = πR2√

N
√

N
. If these nodes were then to be connected

according to the RGG convention, ignoring the dynamic
network, the average degree would be 〈k〉 = p(N − 1) � pN .
Thus to achieve a desired average degree, as in our starting
network, one needs to set R according to

R =
√

〈k〉
π

,

which for our specific case of 〈k〉 = 10 gives R =
√

10
π

.
From the above conditions, we expect that the stabilized dy-

namic network, when R = √
10/π or n = 10, is equivalent to a

RGG network. We also note that in this case, when n is close to
〈k〉, the rewiring will almost surely be completed successfully,
i.e., all edges at the end of rewiring will be at most of length
R. Figure 7 shows the expected degree distribution at steady
state for both link-based and node-based selection methods. As
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FIG. 7. The average degree distribution at the end of simulations
starting from homogeneous (top, dashed line) and heterogeneous
(bottom, solid line) networks with N = 100, 〈k〉 = 10, and R =√

10/π , compared with Eq. (4) (�) where p = πR2/N . The left
and right panels correspond to link- and node-based selection,
respectively. The plots show the average of 100 simulations.

expected, we obtain excellent agreement between the degree
distribution of the simulated networks and binomial distribu-
tions, when p = πR2/N . This confirms that our final networks
lead to the same degree distribution as that of RGG networks.

In order to explore the agreement between our and random
geometric networks, we also consider the clustering value. In
Sec. II B 2, we have shown that when n = 〈k〉 then clustering
is equal to q. To find the value of q, we use the overlap area
between two circles of radius R and with distance r between
their centers. This is given by Aoverlap = 2R2 cos−1( r

2R
) −

1
2 r

√
4R2 − r2 or Aoverlap = R2(θ − sin θ ), where θ (r) =

2cos−1(r/2R). Substituting the latter into Eq. (1) yields

q = 1

πR2

∫ R

0
R2(θ − sin θ )

2r

R2
dr = 2

πR2

∫ R

0
r(θ − sin θ )dr.

(6)

This shows that the clustering values in the final rewired
and RGG networks are identical, i.e., Eq. (6) is equivalent to
Eq. (5). This is also confirmed from simulation results which
yield Cn=10 = 0.587 = CRGG. While this confirms our results,
we point out that RGGs appear only as a special “limit” of the
proposed dynamic network model, namely, when n = 〈k〉.

C. Rewiring within local areas with SI labeling

To get closer to the full model (i.e., coupled epidemic
dynamics and rewiring) and to gain more insights into the
properties of the adaptive network, we now consider the
scenario in which each node is assigned a disease status.
Using the analogy of simple epidemic models, such as the SIS
model, nodes are labeled at random as susceptible, S nodes,
with probability ps , and infected, I nodes, with probability
pi = 1 − ps . We consider the network when the rewiring
mechanism makes use of node labels, but without the full
epidemic dynamics. This means that while the numbers of S

and I are constant, the number of each type of link changes
depending on type; namely, the number of SI decreases, the
number of SS links increases and the number of II remains
constant, thus changing the structure of the network. Provided
that S0 = psN and I0 = (1 − ps)N , the initial link counts for
SS, II, and SI links are S2

0 〈k〉/2N , I 2
0 〈k〉/2N , and S0I0〈k〉/N ,

respectively, where each link is uniquely counted. When one
of the SI links is cut and a new SS link is formed, it is
obvious that the total number of SS links increases relative
to the (decreasing) number of SI links, and therefore, most S
nodes in the network will evolve higher degrees.

This adaptive rewiring rule can lead to the network dividing
into two subnetworks: one containing only S nodes and SS
connections, and the other I nodes with II connections. Of
course, this is not unique to the introduction of local rewiring
constraints, i.e., R <

√
2N/2. Further, it should be noted that

it is possible that not all SI links are cut. This can happen when
there is a very small number of S nodes compared to a large
number of I nodes or when the local neighborhood or radius is
very small. In this case, not all SI links can be cut since recon-
nection would lead to multiple links, which we do not allow.

To simplify the dynamics of the adaptive network, we start
with S0 = 80% of N and I0 = 20% of N , and we allocate node
labels at random. As previously, an SI link is chosen at random,
and the S node within this link reconnects to another S node
in its local area, provided that such a node exists. Otherwise,
the rewiring step is abandoned and a new SI link is selected.
The simulation or rewiring is complete when either all SI links
have been rewired or the remaining links cannot be rewired
due to a lack of available S nodes in the local areas.

D. Impact of rewiring on the degree distribution of the network

To explore the impact of the rewiring dynamics (whereby only
SS links can be formed) on network degree, we consider
changes in degree distribution when starting with either
homogeneous or heterogeneous networks.

1. Heterogeneous networks

When starting from a heterogeneous network at time
t = 0, the network has a degree distribution given by the
binomial distribution, namely, p(k) = (N − 1

k )pk(1 − p)N−1−k ,
where p = 〈k〉/(N − 1), and the average degree of both
susceptible and infected nodes is equal to 〈k〉. We assume that
the degree distribution of S and I nodes remain random
throughout the simulation, and is binomial. First, let us con-
sider the degree distribution of S nodes. We start by calculating
the average degree of S nodes at time t . Let us define �kS(t) as
the rate of change of the average degree of S nodes, and assume
that �kS(t) depends on the number of SI links that are being
cut at time t . Since the average degree of S nodes at the end of
the simulations (when all SI links have been cut) is given by
(1 + i0)〈k〉 [9], where i0 = I0/N , �kS(t) can be computed as

�kS(t) = [(1 + i0)〈k〉 − 〈k〉] [SI]cut(t)

[SI]0
= i0〈k〉 [SI]cut(t)

[SI]0
,

where [SI]0 is the initial number of SI links and [SI]cut(t) is
the total number of SI links that have been cut up to time t .
Then, as we know that all S nodes have degree 〈k〉 at t = 0,
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and the degree can only increase by �kS due to the rewiring
process, we can calculate the average degree of a S node as

〈kS〉(t) = 〈k〉 + �kS(t)

= 〈k〉 + i0〈k〉 [SI]cut(t)

[SI]0

=
[

1 + i0
[SI]cut(t)

[SI]0

]
〈k〉.

Therefore, the degree distribution of a susceptible node can
be written as

P (S = a)t =
(

N − 1

a

)
pa

S(1 − pS)N−1−a, (7)

where a = 0,1,2, . . . ,N − 1 and pS = 〈kS 〉(t)
N−1 .

We can use the same methodology to derive �kI (t),
the average degree, and the degree distribution of I nodes.
However, the degree of I nodes can only decrease by �kI and
using the average degree of I nodes, i0〈k〉, when all SI links
have been cut [9], we get

〈kI 〉(t) = 〈k〉 − �kI (t)

= 〈k〉 − [〈k〉 − i0〈k〉] [SI]cut(t)

[SI]0

= 〈k〉 − s0〈k〉 [SI]cut(t)

[SI]0

=
[

1 − s0
[SI]cut(t)

[SI]0

]
〈k〉.

Therefore, the degree distribution of an infected node can be
written as

P (I = a)t =
(

N − 1

a

)
pa

I (1 − pI )N−1−a, (8)

where a = 0,1,2, . . . ,N − 1 and pI = 〈kI 〉(t)
N−1 .

2. Homogeneous networks

We now focus on homogeneous networks for which the
degree distribution of the network at time t = 0 is p(k) = 1,
and the average degree of both susceptible and infected nodes
is equal to k. Since we apply a random rewiring process, we
assume that the network will evolve towards a random network
with a binomial distribution, for both S and I nodes. As before,
we assume that the average degree of S nodes increases by
�kS , and the average degree of I nodes decreases by �kI ,
which depends on how many SI links are cut. In the case of S
nodes, all S nodes start with exactly k links and their degree
will increase to k + 1,k + 2,k + 3, . . . ,k + S0 − 1. Similarly,
all I nodes start with k links and their degree will be decreased
to k − 1,k − 2,k − 3, . . . ,0. So we have

�kS(t) = i0k
[SI]cut(t)

[SI]0
,

and the degree distribution of a susceptible node can be
written as

P (S = a)t =
(

S0 − 1

a

)
pa

S(1 − pS)S0−1−a, (9)
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FIG. 8. (Color online) Average degree distribution of allw S (blue
solid line) and I (red dashed line) nodes at the end of simulations,
when starting from homogeneous (top) and heterogeneous (bottom)
networks with node-based selection. The plots correspond to the
average of 1000 simulations with N = 100, I0 = 20, S0 = N − I0,
and 〈k〉 = 10. In the left panel, R = √

2N/2. In the right panel,
R = √

6/π . The blue and red (�) markers correspond to Eqs. (9)
and (10), respectively. The blue and red (◦) markers correspond to
Eqs. (7) and (8), respectively. We note that our analytic derivation
needs the number of SI links that have been cut by the end of the
rewiring process. This is taken from the simulation.

where a = 0,1,2, . . . ,S0 − 1, 〈kS〉(0) = k, 〈kS〉(t) = �kS(t),
and pS = 〈kS 〉(t)

S0−1 .
In the case of I nodes, using the same approach as for

heterogeneous networks yields

〈kI 〉(t) = k − �kI (t) =
[

1 − s0
[SI]cut(t)

[SI]0

]
k,

and, therefore, the degree distribution of an infected node can
be written as

P (I = a)t =
(

k

a

)
pa

I (1 − pI )k−kI , a = 0,1,2, . . . ,k, (10)

where pI = 〈kI 〉(t)
k

.
Starting with the no-constraint scenario, R = √

2N/2,
Fig. 8 (left panel) confirms that the network has split into two
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FIG. 9. (Color online) Evolution of clustering during rewiring,
starting from homogeneous (left) and heterogeneous (right) networks.
The plots correspond to the average of 1000 simulations with
N = 100, I0 = 20, S0 = N − I0, and 〈k〉 = 10. Data for R values
of

√
6/π ,

√
10/π ,

√
20/π ,

√
30/π , and

√
2N/2 are shown in green

(a), blue (b), black (c), purple (d), and red (e), respectively.
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FIG. 10. (Color online) Final values of clustering when starting

from homogeneous (left) and heterogeneous (right) networks. The
plots correspond to the average of 1000 simulations with N = 100,
and 〈k〉 = 10. Data are shown for I0 = 20 (black dotted line), I0 = 50
(blue dashed line), and I0 = 80 (red solid line) with S0 = N − I0.

disconnected networks, where the mean degrees of susceptible
and infected nodes at the end of the simulations are given by
〈kS〉 = (1 + i0)〈k〉 and 〈kI 〉 = i0〈k〉 and s0 + i0 = 1. This is
true when starting from either homogeneous or heterogeneous
networks. As expected, the degree of S nodes can only increase,
while the degree of I nodes strictly decreases. Starting with a
homogeneous network, there is no S node with a degree less
than 〈k〉, and the maximum degree of I nodes is at most 〈k〉 be-
cause all nodes have the same initial degree k. For both homo-
geneous and heterogeneous networks, there are disconnected I
nodes at the end of the simulation, but, as discussed previously,
this may result from the fact that 〈k〉 is not very high.

For small local areas, e.g., R = √
6/π , where the average

number of nodes in a local area is smaller than the average
degree, the rewiring is restricted by the limited number of
available S nodes. Therefore, the network evolves quickly to
a stable equilibrium. This is clearly shown in Fig. 9 in which
the evolution of clustering for R = √

6/π stops (due to all
rewiring being complete) before that of other (larger) radii R.

These results are not solely dependent on the spatial
constraint, but also on the number of initial SI links. Figure 10
shows the clustering at the end of the simulations for a range
of radii R and I0 values. Starting with either homogeneous or
heterogeneous networks produces similar results in clustering
for a variety of R and I0 values. As expected, the maximum
clustering values for all sets of parameters n and I0 are not
higher than the maximum clustering value for networks with
no node labeling, obtained previously (see Fig. 4). A small
number of initial S nodes leads to a small number of successful
rewiring events (see Fig. 10 where I0 = 80). This means that
a larger value of R is needed in order to find available S nodes
before cutting SI links, and therefore, we find that clustering
increases as the value of R grows larger.

III. SIS MODELS WITH CONSTRAINED REWIRING

In the previous section, we showed that the spatially
constrained rewiring plays an essential role in determining
network structure in the absence of any node dynamics. In
this section, we extend this work by combining the dynamics
of the network with the dynamics on the network in the form
of the simple SIS model. The simulations are carried out on
both homogeneous and heterogeneous networks, with a fixed
size of N nodes and average degree of 〈k〉 links per node. The
epidemic dynamics is specified in terms of infection and

recovery events. The rate of transmission across an SI link
is denoted by τ . Infected individuals recover independently
of each other at rate γ . The network dynamics is specified
in terms of rewiring events which affect SI links. Here, we
make the assumption that the rewiring of a SI link depends
on the number of susceptible nodes available for rewiring in
the local neighborhood of the S node that wishes to break its
link to an I node and rewire to a susceptible one. It is natural
to assume that the rewiring rate is proportional to the number
of available S nodes that can accept new connections. For
all SI links, this is achieved by using a rewiring rate equal
to hw, where h is the number of available susceptible nodes
within S’s local area. We also assume that all processes are
independent Poisson processes.

Simulations rely on synchronous updating with a small
time step �t , which guarantees that at most one event happens
per iteration. Only three different types of event are possible
during one time step �t : (a) infection of a susceptible S node
can occur with probability 1 − exp(−kτ�t), where k is the
number of I neighbors, (b) an infectious I node can recover
with probability 1 − exp(−γ�t), and (c) a SI link can be
rewired with probability 1 − exp(−hw�t), as long as h > 0.
This guarantees that rewiring happens only if viable candidates
for rewiring exist and that the number of links in the network
is constant throughout the simulation.

Given that the main focus of our study is the role of the
spatially constrained rewiring, we will investigate the impact
of the R (or n) values on whether epidemics die out and/or the
endemic state becomes established. Specifically, we use the
following definition to characterize the impact of the expected
number of nodes in a local area or size of local area:

Definition 1. n∗ is the critical value of the expected number
of nodes in a circlelike local area such that any greater value
of n leads to disease extinction before a time T , or the end of
the simulation, whichever comes first.

The time evolution of infection on adaptive networks with
constrained rewiring is shown in Fig. 11. Here, all simulations
use the following parameter values: N = 100, 〈k〉 = 10, γ =
1, and final simulation time T = 100. Simulations are started
with infectious nodes chosen at random. The controlling effect
of the local area radius R or expected number of nodes in a local
area n is clear to see. As expected, with a small value of n, the
network dynamics does not play a significant role in the control
of epidemic spread for either homogeneous or heterogeneous
networks. The small value of n affects the network dynamics in
that the rewiring process can happen only briefly at the outset
of the simulation and then stops while the epidemic dynamics
continues throughout the simulation.

Larger values of n, however, create ideal conditions for
rewiring and this can continue throughout the simulation,
resulting in breaking many SI links. This scenario leads to a
slowing down of the spread of the epidemic and a reduced
infection prevalence. This is confirmed by Fig. 11, which
shows small levels of infection prevalence for n = 15 and n =
20. The same figure also shows smaller and smaller endemic
levels when the rewiring radius passes through the critical
expected number n∗, namely, n∗ = 26 for homogeneous
networks and n∗ = 29 for heterogeneous networks.

To further understand the relationship between the critical
value n∗ and the disease parameters, we systematically varied
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FIG. 11. (Color online) Infection prevalence (I/N ) starting from
homogeneous (left) and heterogeneous (right) networks. The plots
correspond the average of 200 simulations with N = 100, I0 = 20,
S0 = N − I0, 〈k〉 = 10, γ = 1, τ = 0.25, and w = 0.2. Data are
shown for n values of 5 (green, a), 10 (blue, b), 15 (black, c), 20
(purple, d), critical value n∗ = 26 for homogeneous network and
n = 27 (red, e, and pink, f, left panel), and critical value n∗ = 29 and
n = 30 (red, e, and pink, f, right panel).

the infectious and rewiring rates (with fixed recovery rate) and
recorded the corresponding critical n∗ value. Figure 12 shows
the resulting surface for both homogeneous and heterogeneous
networks, where τ varies from 0.15 to 3.5 in steps of 0.05 and
w varies from 0.05 to 0.35 in steps of 0.05.

Increasing values of n increase the rewiring rate hw, since
h will be higher due to more targets for the rewiring being
available. This in turn leads to an active rewiring process which
results in an overall decrease in the endemic equilibrium or in
the extinction of the epidemic.

It is found that when n is large, the starting configuration
of the network affects the endemic equilibrium in so far
as starting with a homogeneous network leads to a smaller
epidemic, at a given n, than when starting with a heterogeneous
network. Typically, the critical n∗ is higher for heterogeneous
networks, meaning that rewiring needs to be less constrained
in order to curtail the epidemic. In general, for all n values, the
epidemic will spread faster on heterogenous networks early
on in the epidemic, when the link rewiring is still limited.
However, as the networks are rewired, this effect is weakened
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FIG. 13. Final value of clustering starting from homogeneous
(left) and heterogeneous (right) networks with N = 100 and 〈k〉 = 10.
The dashed line shows the clustering in a network without any
dynamics of the nodes and without node labeling. The dotted
line denotes the clustering when the full model, coupled epidemic
dynamics and rewiring, is considered, with I0 = 20, S0 = N − I0,
γ = 1, τ = 0.25, and w = 0.2.

as the homogenous network will become more heterogenous
and will become more similar to the networks started with
heterogeneous degree distributions. Nevertheless, the critical
threshold differs between homogeneous and heterogeneous
networks, which may reflect a buildup of structural correlations
or differences which may differentially affect the endemic
prevalence.

In Fig. 13, we present the final clustering value for a range
of radii R for both the full model and the model with no
epidemic or labeling. The simulation results show that the
impact of changing the radius on network structure is similar
in both cases. Specifically, high values of n, but with 〈k〉 � n

(the region to the left of the vertical line), result in higher levels
of clustering, whereas when n is such that 〈k〉 � n (see the
region to the right of the vertical line), clustering decreases,
irrespective of which network is used. It is worth noting that the
analysis of the dynamic network model alone, without labeling
or epidemic, gives a clear insight into how the structure of the
network changes. Observations from this analysis still hold in
the full model, but as expected, the clustering of networks in
the full model is less than in the network-only model since
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labeling reduces the number of nodes that can be used when
rewiring. Higher clustering values in the full model are due
to the epidemics dying out quickly with no further rewiring,
and thus with the network displaying a clustering value that is
close to the values observed in the starting network. For the
network-only model or for full-blown epidemics, however, the
network will be fully randomized.

IV. DISCUSSION

The present study explored the effect of spatially con-
strained rewiring on an SIS epidemic unfolding on an adaptive
network. Specifically, the dynamics of the network was
achieved by breaking links and reconnecting to nodes within
a local area. A step-by-step approach was taken in which the
network dynamics was studied first in the absence of disease
dynamics, then with node labeling but no dynamics, and finally
with both network and node dynamics. Two different starting
networks were used and analyzed. In all models, a range of
radii R, giving circular neighborhoods, within which to rewire,
was considered and shown to provide the means to control
epidemic outbreaks. Spatially limited rewiring provides a more
realistic mechanism than choosing partners to rewire to from
the entire population. It is highly likely that in most situations,
rewiring will be limited to a small subpopulation or set of
individuals.

Our study provided a detailed analysis of the impact of
constrained rewiring on the structure of the network. In
particular, we were able to give analytic and semianalytic
results for degree distribution and clustering. These showed
excellent agreement with simulations, and we have revealed
that it is possible to generate networks with the same mean

path length and the same clustering but significantly different
distributions of real link lengths. This comes in support to the
findings of [25] that networks with the same clustering can
have substantially different higher-order network structure.
This needs further investigation, possibly using more complex
node dynamics to reveal how subtle differences in the network
structure may impact the outcome of dynamical processes
supported by the network.

Further results provided analytical formulas for the degree
distributions of susceptible and infected nodes which again
showed good agreement with simulation results. These also
confirmed that starting from a heterogeneous network, and
when R is equal to

√
2N/2 or in the absence of spatial

constraints for rewiring, the average degrees of S and I nodes
are (1 + i0)〈k〉 and i0〈k〉, respectively, which is in line with [9].

Finally, we have shown that even constrained rewiring
can serve as a potent control measure. We highlighted that
the expected number n in a typical local area is a key
parameter which influences the network dynamics and can
determine whether disease dies out or becomes endemic.
Extensions to the methodology presented in this paper include
considering other forms of constrained rewiring, e.g., network
models where locality is not just defined in terms of spatial
distance but possibly some more abstract or general metric,
and understanding how this impacts network structure and
processes, other than epidemics, taking place on the network.
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