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Abstract

This paper presents our approach towards realizing a robot which can bootstrap itself towards higher complexity through embodied
interaction dynamics with the environment including other agents. First, the elements of interaction dynamics are extracted from conceptual
analysis of embodied interaction and its emergence, especially of behavioral imitation. Then three case studies are made, presenting our
neural architecture and the robotic experiments on some of the important elements discussed above: self exploration and entrainment,
emergent coordination, and categorizing self behavior. Finally, we propose that integrating all these elements will be an important step
towards realizing the bootstrapping agent envisaged above.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Behavior is attributed by an observer to the dynamics of a
coupled agent–environment system. The dynamics cannot
be statically decomposed so that each component corre-
sponds to a physical constituent clipped out from the
agent–environment system (Beer, 1997). The nervous
system is no exception. If we clip it out of the agent’s
body and observe its activity patterns by giving a static set
of test stimuli, there is no way we can relate such observa-
tion to the natural behavior of the agent. This is because the
(cyclic) causal relationship (i.e. dynamics) between the
stimuli and the neural activity (and its output) is broken.
The tight coupling between the neural system and the
body–environment system is called embodiment.

Early approaches with the interactionist robotics
discipline, such as the behavior based approach (Brooks,
1990), successfully realized insect-like robot behaviors
(e.g. locomotion and navigation). However, their limitation
is now widely recognized; it is extremely difficult to scale
up the systems to handle complex tasks or to make them
adaptive enough to quickly create/acquire novel behavior to
meet variations in the situation.

The above difficulty mainly arises from the fixed and
decomposed realization of the low level behavior, as in
insects. This makes it difficult to achieve higher level

behavior without destroying the underlying dynamics as
the newly introduced dynamics gets more and more
complex and intertwined with others.

Many attempts have been made to extend or modify the
behavior based architecture to make it more adaptive and
capable of complex tasks. However, their success was still
mainly around locomotion and navigation level behavior.
Embodied and interactionist approach towards human
level intelligence, pioneered by Brooks (1997), may require
a new set of disciplines.

Humans are extremely flexible and continuously learn
new skills and concepts. Even newborns are found to have
rather powerful adaptivity and learning ability (Meltzoff
and Moore, 1997). What we need is an interactionist frame-
work unifying the abilities for robust stable behavior, quick
‘on-the-fly’ adaptation to novel situations, bootstrapping
learning by exploring for novel dynamics and creating
higher structures which support it.

This paper presents our current approach towards
designing an adaptive agent with a neural architecture
which has the above discussed properties. The architecture
must meet seemingly contradicting requirements; it must
be adaptive to quick changes in the dynamics, but it
must not drastically destroy the pre-existing behavioral
capabilities, and it should coordinate and maintain the
integrity of the whole set of interactions, while exploring
and creating new global structures to acquire a higher level
integrity.* Corresponding author. E-mail:fkuniyosh, berthouzg@etl.go.jp
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In our current approach to the above issues, we focus on a
particular class of interaction dynamics, i.e. adaptive
imitation of physical behavior. As discussed in the next
section, imitation is a perfectly suitable class of behavior
which contains all the above issues without losing clarity
or becoming too general and arbitrary in problem
formulation.

Building an ‘architecture of an imitating robot’ per se is
not our goal. Rather, our approach is to analyze the concept
of imitation and focus on important interaction dynamics
issues behind it, expecting that they apply to more general
cases of adaptive interaction.

In this paper, we investigate the above discussed issues
through three case studies. Case Study I is about self
exploration and entrainment for a single interaction
dynamics. There we describe our neural architecture for
spatiotemporal information processing along with the
basic experimental framework, which is currently under
our investigation towards integration of exploration, quick
adaptation and persistence in a uniform framework. Case
Study II is on-line adaptation and emergent coordination
of distributed motion controllers, experimented on a real
robotic head system. This shows that coordination can
emerge from interaction through embodiment without any
explicit neural coordinator. Then the issue of categorization
of such coordination patterns is discussed in Case Study III,
with the presentation of our neural architecture (similar to
the one in Case Study I) which learns the categorization of
self behavior patterns. This is a step towards autonomous
creation of higher level structure and bootstrap learning
while maintaining the pre-existing dynamics. Then we sum-
marize the conceptual elements of learning of embodied
interaction dynamics in the discussions section. All the
work in the above case studies assume a particular robotic
setup, a binocular active vision head, which is described
below.

1.1. ESCHeR: a binocular robotic head system

ESCHeR (Etl Stereo Compact Head for Robot Vision)
(Kuniyoshi et al., 1996) is the platform for our experiments
(simulated in Case Studies I and III, and a real experiment
carried out for Case Study II). It is a four-DOF (degrees of
freedom) binocular active vision mechanism: as shown in
Fig. 1, it has two CCD cameras which rotate independently
(‘vergence’) in a common horizontal plane which can be
tilted, and the whole platform can rotate around the vertical
axis (‘pan’). All joints are driven by DC servo motors
equipped with rotary encoders. The mechanism partially
mimics the eye mobility of human vision system. ESCheR
is provided with a high performance gaze mobility (close to
humans), which is sufficient for tracking a moving object
(‘smooth pursuit’) or to quickly change the focus of
attention (‘saccade’).

The lowest level control (such as achieving a commanded
velocity) of the motors is done at 500 Hz cycles by a servo
controller, a dual Transputer (IMS T805) system, which
communicates motion commands and proprioceptive data
with higher level controllers via 20 Mbps serial communi-
cation channels. Real time image processing is implemented
using a DataCube MaxVideo system, a pipeline architecture
which does fast preprocessing, a Shamrode Multi-DSP sys-
tem which does high speed floating point signal processing,
and a KIWIVision system, a distributed transputer system
(9 CPUs) which does post processing and communication
with the servo controller. They are connected via MaxBus
image data bus, and controlled by a MVME167 Motorola
68040 based CPU board running LynxOS, a real time
UNIX. The learning programs presented in Case Study II
were implemented in part (which requires real time opera-
tion) on the servo controller CPUs, and the rest (which does
not need strict real time operation) on a workstation con-
nected with the above system via Ethernet. Currently we

Fig. 1. ESCHeR: ETL Stereo Compact Head for Robot Vision.
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have real time implementation of integrated motion detec-
tion and binocular fixation processes based on optical flow
and an extended zero disparity filter (Rougeaux and
Kuniyoshi, 1997).

The most significant part of ESCHeR is its ‘foveated wide
angle’ lenses (Kuniyoshi et al., 1995). They simulate human
visual system’s compromise between a wide but low resolu-
tion field of view for peripheral detection and a tiny high
resolution fovea1 for precise observation. Our lens seam-
lessly combines the above two extreme characteristics in a
single special optics which implements a nonlinear
projection curve (Fig. 2). It has a 1208 field of view and a
maximum magnification of 7.7 in the fovea versus the
periphery.

The projection curve is a combination of three parts: (1)
the fovea (with incident angles between 08 and 2.58 from
optical axis) adopts a standard projection, (2) the periphery
(from 208 to 608) adopts a spherical projection, and (3) the
intermediate range (2.58 to 208) adopts a log-of-spherical
projection. The log component can be combined with a
polar transformation, which has many useful characteristics
(Sandini and Tagliaco, 1980). It enhances the lock-on effect
in stereo fixation, simplifies the analysis of optical flow and
introduces image invariance to rotation and scaling (a
powerful characteristics for 2D identification).

The above system imposes a particular embodiment to
our system which is similar to human vision system to
some degree: the foveated lens introduces nontrivial motor
image mapping. Moreover, it imposes a non-uniform weight
function to the perceptual stimuli by enhancing the foveal
view. The redundancy in motor degrees of freedom (i.e. the
vergence and neck pan rotation) introduces a nontrivial
control problem which requires appropriate dynamic
coordination of the motors.

2. Imitation as adaptive interaction dynamics

The class of behavior we are currently exploring with the
ESCHeR system is spontaneous and imitative head
swinging accompanied by gradual improvement in visual
tracking/saccading.

Imagine a two-month-old baby lying on the bed. One
commonly observed behavior is it spontaneously and
repetitively swings its head. When it is calmly alert, if an
adult comes and swings one’s head sideways in front of the
baby, it watches it first, then after the adult stops, the baby
starts to swing its head (Piaget, 1962). This way the baby
gets involved in agent interaction, and boosted up in the
development of its unified sensory-motor and social
interactions.

2.1. Why imitation research?

In the interactionist endeavour to understand and create
human level intelligence, imitation is a very important and
appropriate phenomenon for investigation. It is no doubt a
complete form of embodied agent–environment interaction.
Particularly, it is an interaction with another agent acting in
the shared environment, which introduces the interactive
emergence and cultural scaffolding (Hendriks-Jansen,
1996), or cultural learning (Tomasello et al., 1993) aspect.
This is crucial in understanding human level intelligence,
including emergence of symbols, sense of self, communica-
tion, understanding intentions, cooperation, etc (Meltzoff
and Moore, 1995).

Naive conception of imitation is behaviorally deined:
‘Doing a similar thing’. So it is often quite straightforward
to decide whether an agent is imitating the other or not. In a
stricter cognitivist analysis, such as in Tomasello et al.
(1993), definition of imitation must account for internal
cognitive process of the agent, as whether it was goal direc-
ted or not, whether the imitator ‘understands’ the ‘intention’
of the modeler, or whether the imitated action was novel and

Fig. 2. Characteristics of the foveated wide angle lens equipped on ESCHeR. The optical characteristics (left top), the projection curve equations (left bottom),
and the projecting curve (right).

1 The fovea is the rodless part of the human retina. It covers about 0.58 (in
diameter) of the average 1608 of entire field of view.
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delayed. However, we think it is more appropriate to have a
broader view; that it is more beneficial to treat those
different ‘kinds’ of imitation in a uniform framework. One
reason is that the same neural architecture shows quite
different behaviors depending on the situation it is placed
in, according to the interactionist framework.

A more careful speculation about what ‘similar’ means
reveals an important twist that this observational definition
of imitation holds because of embodiment and social
grounding of all the involved agents, i.e. the modeler, the
imitator, and the observer. And each agent often plays all
three roles simultaneously, e.g. in mutual imitation, which
has the property of interactive emergence. Imitation is a
unique interaction dynamics which bridges the internal
observer and the external observer so that they share a com-
mon meaning, i.e. the structure of ‘similarity’. Here, an
internal observer is an observer who is participating in the
observed dynamics by the very act of doing the observation.
An external observer means an observer who is independent
from the observed dynamics.

Although it is often easy to define clearly, imitation is
quite open ended. In contrast to an arbitrary task learning,
there is no need for an externally provided specific goal for
each case. The target behavior can be anything. Therefore,
an account for imitation ability can have a great generality
but not too vague as it is already constrained to be ‘doing a
similar thing’.

Moreover, imitation covers many levels of cognitive
abilities, ranging from direct motion matching to symbolic
or intention level matching, as pointed out by Piaget (1962),
Meltzoff and Moore (1997) and Kuniyoshi (1994). There-
fore, an investigation exclusively focused on imitation
ability can traverse all the different levels of cognitive
abilities in the context of interaction dynamics.

2.2. What are the issues in imitation?

There are several works in robotic imitation to date, each
dealing with a specific class of actions; block manipulation
(Kuniyoshi and Inoue, 1993; Kuniyoshi et al., 1994), mobile
robot navigation (Demiris and Hayes, 1996; Dautenhahn,
1995), dynamic arm motion in akendamaplay (Miyamoto
et al., 1996), and head motion (Berthouze et al., 1996;
Demiris et al., 1997).

For a fixed pair of sensory and motor modalities, and for a
fixed class of actions and a fixed situation, constructing a
behavioral imitation system is the matter of selective atten-
tion and classical adaptation (i.e. adaptation to a fixed or
very slowly changing external conditions) at best. Both are
only with regard to fixed criteria, such as choosing which
features to match based on predefined rules and achieving
explicitly specified action results in the presence of bodily
and environmental difference.

As discussed before, we believe that the importance of
imitation research is not in realizing a specific behavioral
imitation system, but in getting insights about general

mechanisms of adaptive interaction dynamics. Therefore,
we avoid a direct approach to build any specific imitation
ability for its sake. Rather, we support either (or both) of the
following approaches:

1. assume general mechanisms/principles for adaptive
embodied interaction. Then show that imitation function-
ality is already there; and/or

2. assume a mechanism for imitation, which includes
learning of novel imitative behavior. Then explore its
role and interactions with other mechanisms in the
general adaptive behavior (Mataric, 1994).

The work presented in this paper is on the line of
approach 1. The above approaches do not exclude that
there may be innate mechanisms dedicated for a specific
class of imitation abilities (Meltzoff and Moore, 1997). It
may be the case that such functionality appears as the most
basic behavior of a general adaptive interaction dynamics
situated in appropriate conditions. Even if it is not the case
and there are such innate special-purpose mechanisms, they
can never act independently of other interaction dynamics.
It is important to reveal how they interact with ech other.

2.3. Piagetian view of imitation

J. Piaget (1945) claimed that the imitation ability of
humans is not innate, but is acquired through various
developmental stages from pure reflexive behaviors to sym-
bolic tasks. This development is started just after the birth
and is completed within about 18 months. These stages are
summarized as follows:

1. use of reflexes: the basic mechanisms built in innate
reflexive behaviors serve as a basis for development of
imitation. They include: circular response, reinforcement
of continuous reactions, reactions to stimuli given by
other agents;

2. sporadic imitation: when a known stimulus pattern is
given by others, it is occasionally imitated involuntarily.
This process is driven by the mechanisms of assimilaton
and adaptation. And occurs only when the corresponding
pattern is currently active within the imitator;

3. organized imitation of directly perceived known
patterns: voluntary imitation of known stimulus reaction
patterns. The pair must be comparable within one
sensory modality. Novel patterns are ignored;

4. imitation of known patterns which are not directly per-
ceived: acquires a class of imitation in which the target
action and self action cannot be directly compared within
a single perceptual modality, e.g. imitating someone
scratching his/her nose. Implies multisensor fusion and
the use of body image. No structural recognition;

5. organized imitation of novel patterns: acquires an ability
to imitate novel actions by combining known actions.
Begins to use means–ends adjustments; and

6. symbolic imitation and delayed imitation: generalized
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imitation, e.g. open/shut a mouth while trying to open a
match box. Explained by internalized imitation. Also,
begins to reproduce previously perceived actions after
long time intervals.

Piaget’s essential thesis was that imitation is composed of
a set of simple mechanisms. These mechanisms interact
with each other, and the environment, to produce a predict-
able stagewise progression.

The major Piagetian mechanisms underlying imitation
are summarized as follows (Bakker and Kuniyoshi, 1996):

1. exploration: the child acquires novel sensory-motor
patterns experienced during the use of reflexes. These
patterns persist within the child as schema;

2. assimilation: the child maps a perceptual stimulus to
the closest sensory-motor pattern (schema) it has
experienced before. Since a schema is a unified sensory-
motor pattern, this results in generating behavior as a
selective response. If the child has a small repertoire of
schema, a stimulus might be assimilated to one that
seems quite different to an observer;

3. accommodation: adaptation of the activated schema
towards the external events or objects. In effect, the
generated motion is adjusted;

4. circular reactions: in a very early stage, the result of a
reflexive behavior acting as a triggering stimulus for the
same behavior. A typical example is repetitive empty
sucking (i.e. when a stimulus is given on its lips, a
baby starts sucking; even after the stimulus is removed
promptly, this behavior persists without anything to suck
in; the sucking motion itself generates a stimulus which
releases the sucking reflex). Later, it has a tendency to
maintain interested perceptual event by repeatedly
invoking the associated motion and even adjusting
the generated motion. An observer may attribute a
motivation to it; and

5. index system: a mechanism for correspondence between
self and other’s body, and between locations in the space
around self.

2.4. Renovated view of imitation

Piagetian stage theory of development has been refuted
by many findings about infant competence which appear
much earlier than or irrelevant from the assumed stages
(e.g. Thelen and Smith, 1994). A drastic example is imita-
tion of facial and manual gestures by neonates (Meltzoff and
Moore, 1977).

It is clear that the distinct, rigid and orderly Piagetian
stages do not hold, and his static decomposition of com-
petence into elements is not appropriate. However, his
essential claim that novel structures emerge from inter-
twining of interaction dynamics still remains a plausible
hypothesis. But the modern view should be more dynamic.

It has been found that even neonates’ imitation is not a

fixed action pattern. Many observations confirmed that there
is adaptivity and even goal directed correction to match the
target behavior.

It is quite reasonable to assume that babies have innate
‘hard-wired’ mechanisms for imitating a specific set of ges-
tures, namely facial imitation; they have quite high evolu-
tionary value. However, the fact that the neonates have
abilities to imitate quite unusual facial imitation (e.g. ton-
gue-protrusion-to-the-side), and that similar adaptive imita-
tion abilities have been observed for other modalities, such
as various manual gestures, suggests that such abilities are
supported by somewhat general mechanism.

As a candidate for such a mechanism, Meltzoff and
Moore (1997) propose an architecture called AIM, which
explains the adaptive intermodal matching process. It com-
pares the endstates of ‘organ relationship’ (the endpoint
bodily configuration) extracted from exteroceptive and pro-
prioceptive/somatosensory information, and if there is a
non-overlap, it is translated into a corrective motion by
looking up the directory mapping organ relationship states
to coordinated actions. This process is repeated as long as
the non-overlap is detected. The mapping directory is cre-
ated through ‘body-babbling’ partly done during the fetus
period. This theory has much in common with the essence of
Piagetian mechanisms, i.e. the integration of assimilation,
accommodation and schemata acquired through explora-
tion.

Our current working hypothesis is that static decomposi-
tion of the imitation ability into distinct elements, as in both
Piaget’s and Meltzoff’s models, may not be appropriate.
Particularly when we design an agent architecture, this
may lead to a typical conceptual error of assigning each
such functional element to an independent module (as
pointed out by Brooks, 1991; Pfeifer and Scheier, 1996b).
The apparent function may be decomposed into elements by
the observer. However, the underlying process and mechan-
isms may be more uniform.

Currently we are developing a model of imitation process
by reinterpreting the above discussed elements in terms of
dynamical systems and emergent structures. Following is
the current organization of our hypothetical model:

1. entrainment dynamics: assimilation, accommodation,
circular reactions (Piagetian) and matching and correc-
tion (Meltzoff) can be partly captured by the notion of
entrainment dynamics. Assume a simple attractor
dynamics; perception and motion are now inseparable,
and thus assimilation and accommodation are two flip
sides of the same coin. Together they have a natural
tendency to approach toward one of the potential attrac-
tors. Circular reactions and resulting repetitive actions
are the most typical behavior of such a system. Point
attractor dynamics is a standard concept in neural
model of memory functions (Hopfield, 1982), which
exactly does a kind of assimilation. Use of a single
limit cycle attractor has been experimented in robot
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motion control (Taga et al., 1991; Rizzi and Koditschek,
1993). An important issue would be allowing many dis-
tinct attractors in a closed-loop embodied interaction
dynamics (as contrasted with the pure internal dynamics
in case of memory models) and enabling it to migrate
from one to another;

2. spontaneous dynamics and spatiotemporal patterns: in
Piaget’s stage theory, the initial schemata are created
through exploration by reflexes. Then they are used for
dealing with novel sensory-motor patterns. Our view is
(1) not to discriminate the two stages but treat them as a
mixture, and (2) not entirely resort to reflexes but take
into account the spontaneous dynamics, i.e. ‘body-
babbling’, in Meltzoff’s term. Exploration may be
interpreted as a combination of spontaneous dynamics
and spatiotemporal pattern learning. An example of
spontaneous dynamics can be spontaneous firing of
neuronal cells driving the intrinsic dynamics of the
body (Thelen and Smith, 1994). The effects of reflexive
and learned dynamics are important in enriching while
constraining the spontaneous behavior, preventing it
from degenerating to trivial patterns or diverging into
randomness;

3. emergent coordination and quick adaptation: coordina-
tion and cross-modality can be attributed to the emer-
gence of ordered structure from many intertwined
interaction dynamics, combined with a neural mechan-
ism which quickly adapts to and stabilizes the emergent
structure of dynamics. Our current hypothesis is that
coordination emerges from interaction between many
sensory-motor processes through embodiment and in
the context of existing behavior patterns such as reflexes
(see Case Study II). This coordination may be transient
and not stable, but a spatiotemporal association network
may be able to quickly adapt to this coordination pattern
and start to drive the system, thereby stabilizing the
pattern;

4. sense of self as spatiotemporal patterns: the index system
and sense of self may be attributed to the above created
novel spatiotemporal pattern (which at the same time
drives the system). The pattern is basically about self
in terms of its embodied interaction; and

5. attentional dynamics: real actions are never exactly the
same. The similarity can only be defined if we focus on
some important features. Assuming the assimilation by
entrainment dynamics as discussed above, attention may
in part be just an attribution by an external observer to
the dynamics of the system. However, it is very likely
that there is an explicit correspondent to attention in the
internal neural mechanism. For example, the lateral inhi-
bition mechanism in our spatiotemporal net (Case Study
I) gives rise to a dynamic activation pattern which moves
around the layer. This may constitute an internal
dynamics which affects the embodied interaction
dynamics by selectively enforcing particular dynamics,
which then affects the attentional dynamics.

3. Case Study I: self exploration and entrainment

This case study takes up the issue of self exploration and
emergence of a quasistable embodied interaction dynamics.
It is conceptually related to the exploration and circular
reaction discussed earlier.

First, we introduce a temporal coding neural net model,
and show a simple experimental setup (simulation based)
for a closed-loop robotic experiment. We chose this neural
net model because we believe that it has the potential to
integrate all the elements of imitation discussed in the pre-
vious section, e.g. exploration, entrainment, quick ‘on-line’
adaptation, emergent coordination, spatiotemporal pattern
categorization, and attentional dynamics.

Then we present an experimental result which may be
interpreted as an example of self exploratory behavior
reaching a quasistable state by self entrainment. This is an
ongoing work and we present only preliminary results.

3.1. The neural model

In conventional robotics application of neural networks,
static cell models have been used. In order to deal with
temporal patterns, recurrent connections or time delay ele-
ments have been commonly used. So far most applications
used separate training phase which is disconnected from the
interaction dynamics.

A dynamic cell model with a temporal learning rule can
handle spatiotemporal patterns and the learning is
embedded in the operation of the network itself. This is a
suitable property for quick on-line adaptation. We adopted
SAM model (Shigematsu et al., 1996) with its temporal
learning rule. This model will be used also in Case Study III.

3.1.1. SAM model
SAM stands for ‘Spike Accumulation and delta-

Modulation’. It consists of three parts:

1. leaky integration of the input pulses:

Ui(t) ¼
∑

jWij (t):Xj(t) þa:Vi(t ¹ 1) (1)

wherej is the index of each synapse of theith cell, Vi(t) is
the internal potential of theith cell at instant t (see
descrption below) andXj(t) is the activation of thejth
input cell;
2. binary thresholding for pulses generation:

Yi(t) ¼ g[Ui(t) ¹ T] (2)

whereg[z] ¼ 1 if z. ¼ 0; g[z] ¼ 0 otherwise;T is the firing
threshold andYi(t) is the generated pulse; and
3. subtraction of constant from internal potential at spike

firing:

Vi(t) ¼ Ui(t) ¹ p:Yi(t) (3)

wherep is a constant that controls the loss of internal poten-
tial after spike firing.
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Fig. 3 is an illustration of a cell’s response under various
configurations. In the left chronogram (from time 0 to time
80), the delay (from 1 to 3 time units in this case) in
response to a stimulus can be adjusted by tuning the firing
thresholdT. After firing, sharp drops in internal potential
can be noted. It results in a cell firing only once even after
mutliple excitations, i.e. slow dynamics. Such property is
obtained with a high value ofp (subtraction constant at spike
firing). In the right part of the chronogram, the opposite
setting is used: small loss of potential after spike firing
threshold enables the cell to generate train of spike firing
after even a single stimulation.

3.1.2. Temporal learning rule
At each time step, the weightsWij (t) are updated accord-

ing to the temporal learning rule introduced by Shigematsu
et al. (1996).

The temporal learning rule (detailed below) is a revised
Hebbian rule with synaptic history. The classical Hebbian
Rule reinforces connections if responses of both input and
output cells are simultaneously active, independently of the
history of the input signals, as formulated by Eq. (4),

DWij ¼ Cij :Xj(t):Yi(t) (4)

The temporal learning rule (1) strengthens connections
when an input pulse train is an intense burst signal or a
one shot signal stimulated simultaneously with another
input signal, and (2) weakens them when the input signal
has a very low frequency or is out of phase with other input
signals.

Mathematically, the synaptic history is an accumulated
value of the input signal received by theith cell, from thejth
cell, at a synaptic site of the dendritic portion of theith cell.2

It is computed by:

Hij (t) ¼ Xj(t) þ q:Hij (t ¹ 1) (5)

whereq is a decay coefficient (0, q , 1). After one input
pulse, this input history will decrease exponentially to zero.

When theith cell is fired, a new connection efficacy (from
each synapsej) is calculated according to the following
equations:

If Hij (t) $ H1 then

DWij ¼ c1:(Wmax¹ Wij ):Yi(t)

If Hij (t) , H1 andHij (t) . H2 then

DWij ¼ c2:(Wmin ¹ Wij ):Yi(t)

wherec1, c2 are parameters fixing the learning speed,Wmax

andWmin are respectively maximum and minimum values of
the connection efficacy andH1 andH2 are two thresholds,
respectively, set for enhancement and depression. When the
after-effect of an input signal is nearly zero and the history is
smaller thanH2, the efficacy is not changed, i.e. the memory
in the efficacy is not erased by noncorrelated signals. This
learning calculation is applied to firing cells only.

3.2. The input/output interface

3.2.1. Delta–sigma modulation
As an interface between the perceptual inputs to the

spiking neuron net, we use the delta–sigma modulation.
This transforms continuous signals into pulse trains, which
can be handled by the SAM neurons. We follow the proce-
dure reported by Panter (1965). Briefly stated, the trains of
pulses are generated so as to minimize the difference
between the temporal integration of the generated pulses
and the input signal, as illustrated in Fig. 4.

3.2.2. Adaptive output filter
The interface between the spike trains and the motor

system is a IIR low pass filter. Since the range of output

Fig. 3. SAM model behavior under various settings.

2 Shigematsu et al. (1996) relates it to an after-effect such as an
intra-cellular calcium ion concentration that can be observed in biological
systems.
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value can change greatly, we attached a long time constant
filter in parallel with the above filter and compare the
outputs to generate normalized output.

3.3. Experimental system

The experimental system (Fig. 4) consists of two main
parts: the simulated mechanical system (right) and the
neural system (left).

The mechanical system is a simulation of a simplified
version of ESCHeR. It is a one-DOF eye, controlled in
rotational position. The target-to-image projection follows
the ESCHeR’s foveated projection curve. The eye interacts
with an independent target. The image position of the target
is limited within the field of view (608 from the center).
When the target goes beyond this limit, its image position
is encoded as 608 off the center of the fovea.

Both proprioceptive (joint rotation angle) and extero-
ceptive (target position in the field of view) are modulated
through delta–sigma modulation into two pulse trains. The
unit time of the modulation is currently set to 10 ms.

The neural architecture consists of two layers. The input
layer receives the sensorimotor patterns (the motion of the
target image on retina and the proprioceptive data) encoded
as pulse trains. They are generated by the interaction
between the eye and the target.

The input layer is fully connected to the second layer.

The second layer consists of 12 ‘spiking neurons’. The
temporal learning rule is applied to them at each time
step. Each cell spontaneously generates spikes occasionally.
Currently a spontaneous spike is generated with probability
of 0.2.

All cells of the second layer are laterally connected by a
Mexican-hat-shaped inhibition function (Fig. 5). In effect,
each cell has excitatory connections to its close neighbors
(two on both sides of each cell, in the current experiment),
and inhibitory connections to further cells. This connection
is the source of various internal dynamics such as selective
activation, coupled oscillators, etc.

Output connections are made to two output nodes
from the intermediate layer in a interleaved manner
(some connections are omitted in Fig. 4 to avoid over-
loading the drawing). The connections have uniform
weights. At each time step, the population activitiesA(t)
(spatial integration of the spikes) of the two sets of cells
are fed to each low pass filter and to generate an antagonistic
pair of commands (one in the left direction and the other in
the right direction). The commands are fed to the motor
system.

The initial connection efficacies in the neural system
are randomly distributed within an interval of [0.4:0.6].
During learning, the weights are limited to the range of
[¹1.0:2.0]. The lateral inhibition connection weights are
fixed.

Fig. 4. The experimental system.
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3.4. Experiment

The external target stimulus was fixed throughout the first
experiment. Initially, the stimulus is aligned with the optical
axis of the camera such that there is no neural activaton due
to the presence of this stimulus (because the input to the
network basically encodes the motion of the target image).

The neural network is uniform and symmetric, and no
initial bias was imposed on the synaptic connection weights;
their initial values are random.

The resulting behavior is shown in Fig. 6. The behavior
(motor response to retinal motion) in the initial period (up to
1 s, or 100 time steps) looks somewhat random, whereas the
behavior in the final period (after 1.5 min) clearly shows an
almost regular repetitive pattern. An observer may attribute
‘circular reaction’ behavior to this pattern.

In the initial period (Fig. 6), small motor commands are
emitted. Although there is no external stimulus, the cells in
the intermediate layer spontaneously fire. This spontaneous
firing is stochastically distributed over time and space but its
population activity integrated over time (via the output
filter) occasionally creates ocular motion.

If the network is disembodied, the uncorrelated spon-
taneous firing only acts as a small noise to the network
activity, and the system may stay in a stable but trivial
state, the null activation (on average) state. However,
because we have an embodied system, exteroceptive
information becomes non-null due to the occasional motor
output. Moreover, due to the foveal vision, the retina is
strongly sensitive to small motion in the fovea. These lead
to self exploratory motions as an emergent dynamics.

During exploratory motion, the network constantly learns
about correlation in space (between the image position and

the proprioception) and time. This immediately affects the
motor output, which affects the image motion through the
ocular motion and image projection process. And the net-
work experiences a novel pattern. This is the cause for the
constant variation of the overall behavior.

Fig. 6 (bottom row) shows the connection weight maps
from the initial (left, random) and the final (right) period.
The adaptation of the connection weight distribution has
the following circular causality: (1) the learning changes
the connection weight distribution; (2) the connection
weight distribution changes the spatiotemporal input
patterns; and (3) the input patterns affect learning process
(of course).

Thus, the connection weights acts as a kind of a selective
input filter for the learning algorithm. And the learning
changes this filter’s characteristics. This is one example of
the attentional dynamics discussed in Section 2. In this
sense, the connection weight distribution is acting as an
internal observer discussed in Section 2.1.

After about 1.5 min the emerging dynamics reaches a
quasistable state (Fig. 6). The average frequency of the
oscillation may derive from the time delay constants
throughout the interaction loop. Thus the apparent behavior
may be somewhat trivial.

However, the interesting point is that this quasistable
state did not explicitly exist initially. It was explored by
the emergent dynamics discussed above, and then the
system got entrained there. Moreover, the network was uni-
form and symmetric with random initial weights. It had no a
priori constrains or a mechanism in the neural network to
bias the evolution of the dynamics.

Another interesting point is that the final behavior is not
completely stable. We can observe small fluctuations

Fig. 5. Lateral inhibition among cells in the intermediate layer.
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throughout the period. The system is not in a ‘dead’ stable
state. This means two things: (1) the dynamics is
actually entrained in this particular pattern because the
perturbation did not make it stray away from it; and (2)
the system is still exploring around the current entrainment
dynamics.

4. Case Study II: on-line adaptation and emergence of
coordination

So far we have seen an example element for self explora-
tion and entrainment to a single self interaction dynamics
(circular reaction).

In this section, we introduce an example for the emergent
coordination issue (Berthouze and Kuniyoshi, 1998). This
experiment was done on a real ESCHeR system.

4.1. Coordination of redundant DOFs: emergent VOR

The problem investigated in this example is the
redundancy of mobility between overlapping rotational
degrees of freedom (DOFs) (see Section 1.1) under the

effect of the nontrivial nonlinear visual oculomotor control
due to the nonlinear projection of the lens.3

In biological systems, this is solved by the prewired but
adaptive (Itoh, 1984) VOR (vestibulo-ocular reflex), which
stabilizes the retinal image during a neck movement by
generating a compensatory eye movement. For a target at
infinite distance, it is achieved by causing the motion of the
eyes to be equal and opposite to the motion of the head. It
can be seen as a transformation from head velocity to eye
velocity (Jordan, 1990). When the target is not at infinite
distance, a real time adaptation is achieved, for which
Kawato (1990), Kawato and Gomi (1992) and Gomi and
Kawato (1992) proposed and verified a computational
model called Feedback Error Learning (FEL).

In the present experiment (Berthouze and Kuniyoshi,
1998) in this section, we have investigated the following
point: is it possible that the coordination of redundant
DOF motion emerges from a set of distributed controllers,

Fig. 6. Experiment with a static target. Top row: time series of target position in the environment (external stimulus), target position on the retina(image
position), and the motor output. The horizontal axes denote the time steps in each period (one step is 10 ms). The target position in the environment is fixed to
its origin, so it is constantly zero. The image position and the motor output always have an exact relationship (reversed and through the projection curve),
because the target is stationary. Left plot is from the initial period (0–10 s) and the right plot is from the final period (90–100 s). Bottom row: connection
weights at the initial (left) and the final (right) period. The vertical axis denotes connection weight value, the right horizontal axis denotes cell numbers in the
intermediate layer, and the left axis denotes two input neurons (number 1 is image exteroception, number 2 is motor proprioception).

3 In terms of control theory, the visuomotor control on ESCHeR is
relevant to the control of a four-DOF nonlinear redundant manipulator: it
has a nonlinear image-to-joint Jacobian because of the optics’ nonlinearities
and it has redundancy in horizontal rotations of vergence and pan.
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without any internal neural connections for explicit coordi-
nation, by interacting with the world through its body? This
is different from the above biological model because the
biological model has such internal connections. Our experi-
ment is not meant as a model for the biological mechanism.
Rather, we used this particular setup to explore the idea of
emergent coordination through embodiment.

4.2. The experimental system

Fig. 7 shows our experimental architecture (Berthouze
and Kuniyoshi, 1998). We used the real ESCHeR system
as the experimental platform. The motion control system is
a collection of independent FEL based adaptive controllers,
each connected to one motor joint and receiving common
image data (target position) input.

Each adaptive controller independently implements the
FEL model with the following organization:

1. a reflexive component: a conventional feedback con-
troller with a very low gain which models a very rough
innate knowledge about the coupling of the actuator with
the environment. The tuning of these controllers (the
value of their gain ranging from 13 10¹4 and
33 10¹4 rad/s in our implementation) results from a
tradeoff between (1) the convergence of each controller
(the linear controller guides the learning of the adaptive
component of each controller) and (2) the overall
stability of the architecture (higher gain values result in
higher sensitivity to delays);

2. an adaptive component: a three-layer feed-forward
neural network which issues motor commands based
on the perceptual inputs. Both input and output layers

are linear and dedicated to normalization. The hidden
layer uses nonlinear activation functions (arctangent
sigmoids). Synaptic modification is achieved using a
back-propagation with momentum (Rumelhart et al.,
1986). While any Newton-like method (such as in
multilayer perceptron, Cerebellar Model Articulator
Controller or Radial Basis Function) would be accept-
able, the use of back-propagation made a real time
implementation possible (reduced computational load).
The weight decay technique (Chow and Teeter, 1994) is
used to prevent a degeneration of the synaptic weights in
order to promote a continuous adaptation; and

3. component integration: the motor commands issued by
both components are summed and fed to the output (one
joint motor). The motor command issued by the reflexive
component is backpropagated through the adaptive net-
work to modify its connection weights. Thus, reflexive
motor command serves as an error signal for the learning
of the adaptive component; the network learns to mini-
mize the interventions of the reflexive component. This
is the FEL model (Kawato and Gomi, 1992; Gomi and
Kawato, 1992).

The reason behind choosing FEL is that it is a self con-
sistent ‘on-line’ method, which can learn very efficiently
during the normal operation of the system; it does not
require a separate off-line ‘training’ phase [as in the related
approach by Jordan (1992)] or any external reinforcements.
Another reason is its use of a ‘reflexive’ component; it needs
to implement only quite a rough qualitative (and linear)
model of the target system, but nevertheless plays a crucial
role in assuring the convergence of the learning. This gives
us important insights about the role of innate reflexes in
shaping the emergent dynamics and learning (Pfeifer,
1995).

The important point in our experiment is that the
FEL method is used only for individual joint control
and not for the global coordination. Actually, for our
purpose, it does not have to be the FEL model, as long
as each component is an adaptive and predictive
controller.

4.3. Experiment

The visual stimulus is given in the form of a swinging
pendulum. Fig. 8 shows the motor behavior of the two DOFs
(the vergence and the pan) during learning.

Before the system engages in the interaction with the
environment, there is no a priori knowledge on how each
controller relates to another. They interact with each other
through the sensorimotor loop between actuators and
perceptual apparatus.

Applying unconstrained motor learning techniques to
nonlinear redundant manipulator is generally avoided
because the risk of getting trapped in stable but inconsistent
minima increases with the dimension of the learning space.

Fig. 7. Overview of the architecture of the experimental system. ESCHeR
system is used as a real robotic testbed. It has four DOFs; the eye vergence
joint and the neck pan joint are redundant. Moreover, the foveated lens
introduces nonlinear, nontrivial image-to-motion mapping. The distributed
FEL (Feedback Error Learning) controllers independently learn the sensor-
imotor loop between ESCHeR and the environment. The control system has
no internal connections between the modules for explicit coordination.
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In our experiment, we adopted an analog of a biological
notion of ‘freezing of degrees of freedom’, i.e. in some
motor behavior during early developmental periods, the
motor DOFs are reduced as if they are frozen: at first,
only the vergences are controlled, until a stable control is
learned (qualitative estimation). Then the control of the
redundant joint (pan joint) is enabled.

As shown by Fig. 8, when the redundancy is introduced at
12.5 s the system becomes unstable and exhibits strong
vibrations. After this transient unstable period (about
15 s), a stable coordination (conjugate vergence and pan
motion) has emerged. In effect, the system acquired a
good target tracking performance as well as saccading at
speed comparable to humans. For other results and further
details, refer to Berthouze and Kuniyoshi (1998).

The above experiment suggests that coordinated behavior
can emerge from a set of distributed adaptive controllers
which are independently interacting with the environment
through the shared body. Because the body imposes con-
sistent constraints on the interaction, the coordination can be
achieved even when there is no explicit internal connections
among the controllers. Each adaptive controller has crude
innate knowledge (reflex) which adds a useful constraint for
stabilizing and guiding the unsupervised learning.

As clarified earlier, our experiment is not meant as a
model for the biological mechanism. However, it suggests
an interesting possibility: the neural connections for

coordination, such as VOR, may be automatically created
by the following step: (1) let the distributed controlllers take
over and wait for the emergence of coordination as an
embodied dynamics structure (as in the above experiment);
(2) then assume a neural mechanism which ‘senses’ this
dynamics structure, which creates appropriate explicit con-
nections to stabilize the coordination. A first step towards
this hypothesis would be the mechanism which can ‘sense’
the coordination pattern, which will be investigated in the
next section.

5. Case Study III: categorization of interaction dynamics

In this section, we investigate the issue of a neural
mechanism for observing and categorizing the self inter-
action dynamics, based on our recent work (Berthouze
et al., 1998). As discussed in the previous section, this
issue is a step towards building a neural mechanism which
‘senses’ the emergent higher-order dynamics structure (an
example given in the previous section) and then creates an
internal structure (activation patterns, connections, etc.)
which directly participates in it (i.e. stabilizes, actively con-
trols, remembers, combines, etc.). Since the interaction
dynamics has a spatiotemporal pattern, we naturally
adopted the SAM model (Section 3.1) to carry out our
first experiment presented below.

Fig. 8. Learning to deal with redundancy. Motor commands for the pan and the vergence joints from each corresponding controller are plotted for the period of
10–35 s in the experiment. The visual stimulus is given by a light at the end of a swinging pendulum. The pan control is enabled with delay, at 12.5 s. High
frequency vibrations are observed until a VOR-like control law is learned.
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In the emergent coordination experiment in the previous
section, it was observed that when we made experiments
over long learning periods, rapidly changing interaction
patterns sometimes lead to an overall reconfiguration
(chaotic-like dynamics) of the control network. This is
due to the continuous fast adaptation process. Although
such reset could be perceived as an interesting property (it
contributes to the exploration of new sensorimotor spaces
by the same principles discussed in Section 3), it eventually
endangers the integrity of the system over its interaction
with the environment.

It is thus desirable that only stable sensorimotor con-
figurations emerge from the robot’s environmental
interaction.4

The hypothesis investigated in this section is that if it is
possible to have the system categorize5 its sensorimotor
couplings during explorative behaviors, then appropriate
use of this categorization could guide the adaptive inter-
action between the controllers, in a similar way as the con-
ventional feedback controller guides the adaptive
component in FEL. Conceptually, this is a higher-order

replication of the reflex versus adaptivity paradigm on
which our work in the previous section was based. Naturally,
such categorization must not be explicitly designed but should
emerge from the system’s interaction with the environment. In
the following sections, we present the dynamical system
approach that we undertook to address this issue.

5.1. The architecture for dynamics categorization

As shown in Fig. 9, our architecture is an extension of the
one presented in Section 3. It consists of two main
components:

1. sensorimotor layer (left, SM layer): the flow of sensori-
motor patterns, as generated by both the exteroceptive
and proprioceptive sensors (in this paper, two cameras,
two signals each) and the camera drive motor encoders,
six joints), is transformed in trains of pulses through the
delta–sigma modulation described in Section 3.2.1; and

2. associative layers (right, layer 1–2): from one to two
layers were used in the experiments reported in this
paper. Layers of increasing index model higher-order
association. The number of layers reflect a qualitative
estimation of the complexity of the sensorimotor
couplings present in the system.

5.2. Experiments

Explorative behaviors are modeled as a stochastic
distribution of several visuomotor behaviors, each of them
involving various sensorimotor couplings:

Fig. 9. Spatiotemporal associative memory: data from exteroceptive/proprioceptive sensors are modulated into pulse train byd–j modulation. Each layer is
fully connected to the next one (from left to right) with initially random weights. Lateral connections exist within both layer 1 and layer 2. The highlighted
subsystem (cell A, cell B, cell C) can be assimilated to a coupled oscillator and confers to the overall architecture very high dynamic properties.

4 In must be understood here that the stability discussed here is not related
to stabilizing the dynamics of the system in its environment but rather
stabilizing the internal configuration of the system so that it can interact
with its environment without loss of its integrity.

5 In this paper, we will define categorization in a way very similar to
Thelen and Smith (1994), also mentioned by Pfeifer and Scheier (1996a):
global functions of categorization are memory, learning and performance
which arise dynamically from reentrant mapping of motor activity along
with sensory information from many modalities… Both signals are com-
pletely coupled and act together to form the global maps that are the basis of
further development… (p. 160).
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1. random head motion: head and eye joints are randomly
actuated, visual stimuli are random as well. This atypical
visuomotor behavior is included so that the sensitivity of
the architecture to uncorrelated sensorimotor patterns
can be evaluated;

2. head motion: head joints (pan and tilt) are actuated with-
out intervention of the VOR reflex described below, i.e.
eyes are not coordinated. The interest of this behavior is
twofold: (1) the eyes being mounted on a common tilt, tilt
actuation generates similar perceptual patterns in each
eye; and (2) horizontal neck motion will generate optical
flow patterns compatible to horizontal eye motions;

3. eye motion: only eye joints (vergences) are activated.
Optical flow patterns should be similar to the flow pat-
terns generated by the above behavior. Correlation of
both behaviors would ground the understanding of the
redundancy between the joints as well as knowledge
about body structure;

4. vestibulo-ocular reflex: as in animal VOR, this reflex
stabilizes the retinal images during a neck movement
by compensatory eye movements. For a target at infinite
distance (approximation made in this experiment), it is
achieved by causing the motion of the eyes to be equal
and opposite to the motion of the head. It can be seen as a
continuous transformation from head velocity to eye
velocity; and

5. nystagmus reflex: when the eyes reach an extreme posi-
tion (i.e. an object of attention reaches the periphery of
the field of view with an outward direction), they are
rapidly flicked back to a new starting position. Unlike
VOR, it is a one-shot simultaneously coordinated control
of all joints.

The above listed visuomotor behaviors drive the ocular
system, generating sensorimotor patterns which are
observed by the neural architecture through exteroceptive/
propriorceptive data. The neural network is initialized as
indicated in Table 1. Because layer 2 must learn higher-
order couplings, it is tuned to have a slow dynamics;p is

set high so that internal potential drops sharply after firing.
The lateral inhibition curve is set so as to activate con-
nections with cells located at most three cells apart. Further
cells are inhibited according to the inhibition function
shown in Fig. 5. A typical experiment consists of up to
10,000 behavior switching (those switching are controlled
externally). Fig. 10 displays the result of the spike firing
monitor we developed for this experiment. The upper part
of the monitor displays the activity of the cells [visual input
(cells 0–3), motor command (cells 4–9), layer 1 (cell
10–24)] over about 500 time units (an average 100
switching of behaviors).

At each time unit, the value of the highest connection
efficacy over the whole network is calculated and serves
as an index of the learning stability. After stabilization,
each input is intensively fired (burst firing) in order to
measure the state of the network and the pathways
associated with that burst firing are recorded.

As shown in the lower display of Fig. 10, well-defined
clusters appear. Each of them correspond to a spatio-
temporal correlation between this sensorimotor component
and one/many of the other components. A different view on
this categorization is provided by Fig. 11 where the distri-
bution of peak connection efficacies between input layer and
layer 1 is projected on a 2D plane. With this representation,
back-projecting the clusters on the input layer makes the
reading of existing first-order correlations between inputs
straightforward.

In Fig. 12, we analyze the operating factors (i.e. accumu-
lated potential, internal potential and synaptic history) of a
cell that belongs to one of the clusters shown above. This
analysis consists of alternative sequences of uncorrelated
and (temporally or spatially) correlated excitations. In
Fig. 12, we distinguish two areas (Area 1 and Area 2) of
particular interest: in Area 1, the absence of cell firing
indicates a good robustness to uncorrelated inputs. Mean-
while, high sensitivity and stability to correlated inputs is
observed in Area 2. After two consecutive correlated
excitations, the cell generates a pulse train. Uncorrelated

Table 1
Initialization of the neural architecture for a typical experiment

Input layer Layer 1 Layer 2

n 4 þ 6 15 20 Number of cells at each level

a 0.5 0.5 0.5 Decay constant for internal potential
q 0.6 0.6 0.6 Decay constant for synaptic history
p 0.6 0.6 0.9 Subtraction constant (strong loss of int. potential at spike firing)
T 0.4 0.4 0.5 Firing threshold
Wij 0.35 0.07 Connection efficiency initialization (slow dynamics in layer 2)

H1 0.8 1.6 Threshold for connection efficacy enhancement
H2 0.3 0.2 Threshold for connection efficacy depression
c1 0.04 0.04 Learning speed for connection enhancement
c2 0.01 0.01 Learning speed for connection depression
Wm a x 2.0 2.0 Maximum connection efficacy
Wm i n ¹1.0 ¹1.0 Minimum connection efficacy
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excitations input during the pulse train, while not directly
affecting the cell firing, result in a sharp drop of accumulated
potential which eventually stops the train pulse.

6. Discussions and future directions

In Section 2, we have proposed the elements of embodied
interaction dynamics based on the speculations about
imitation abilities. Those are: entrainment dynamics,
spontaneous dynamics and spatiotemporal patterns, emer-
gent coordination and quick adaptation, sense of self as
spatiotemporal patterns, and attentional dynamics.

Through the three case studies, we have presented basic
models, experiments, and interpretations which are related
to the above elements. They are not complete, definitive

results, as our research program is in its early stage. How-
ever, they provide us with some insights and indicate a
plausible direction of research towards scaling up our
understanding of adaptive interactive systems.

Case Study I was on self exploration and self entrainment.
The experiment suggested that it can start from a spon-
taneous dynamics (e.g. spontaneous spiking of neurons, in
our model) through the intrinsic embodied dynamics. And
the dynamics emerges through a process in which the sys-
tem adapts to the dynamics and thereby changing the
dynamics itself, to which the system adapts, until it reaches
a quasistable dynamics (e.g. which partly relies on the
intrinsic dynamics, in our case).

The important point is the following: if we introduce a
mechanism which adapts to the dynamics while partici-
pating in it, and if both the adaptation and the dynamics

Fig. 10. Diagram of the spiking pattern of each cell during a typical experiment. Horizontal axis denotes time. Each row corresponds to a cell. Upper display
shows the spiking pattern during learning. Lower display shows the result of a connectivity test by supplying burst inputs to each of the input cells (c0–c9).

Fig. 11. Emergence of clusters in the first intermediate layer. Right-hand axis corresponds to the input layer (sensorimotor pattern), while left-hand axis
corresponds to cells in layer 1.
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itself have similar time scales, then the overall behavior
becomes nontrivial and emergent. Because as the network
learns, it results in changes of the whole dynamics, which in
turn is learned by the network. In such cases, the network
may be acting as an internal observer.

We proposed a ‘filter hypothesis’ which attributes the
notion of internal observer to the adaptive connection weights
in our spiking neural net model: the connection weights acts as
a kind of a selective input filter for the learning algorithm, and
the learning changes this filter’s characteristics, so they move
on. One aspect of this ‘attentional dynamics’ may appear as
the steep peaks running around on the intermediate layer (with
lateral inhibition) of ournetwork.

The experimental result given in this case study is very
preliminary. It needs much further investigation. Especially,
due to the simplified simulation of the physical body and the
lack of any built-in reflexes, it is difficult to interpret the
meaning of the apparent behavior. Experiments with much
more complex body, innate mechanisms and the realistic
environment are strongly urged.

Case Study II gave an example in which the coordination
of a redundant sensorimotor system can emerge from a
group of interacting adaptive controllers. They have
no explicit internal connections to each other. By
interacting through the shared body and the environment,
the coordination has emerged.

The neural model used in this experiment is different
from the other two case studies. However, we believe that
it can be replaced by the spiking neural net model with the
temporal learning rule, as it has the essential required
property such as on-line adaptation. A concrete model
remains an open research issue.

The above case studies revealed another key issue: quick
on-line adaptation to emergent spatiotemporal patterns and
creating a higher structure (neural pathways) which
explicitly participates in the corresponding dynamics. This
is important as the emergent dynamics in exploration or
coordination is often transient. And with such a mechanism,
the problem of scaling up the system without destroying
existing dynamics may be solved.

Case Study III was a first step towards an emergent cate-
gorization of acquired coordinated behavior, which will lead
to categorical (selective and prototypical, or entrainment)
responses to novel sensorimotor patterns. The current
experiment was done for a set of different a priori behavior
patterns which are externally switched from one to another.
The network created clusters corresponding to the under-
lying behavior types by observing the sensorimotor patterns.
This experiment shows that the network has some potential
to categorize the interaction dynamics. Of course, in the
future study, the external switching must be avoided, and
true emergent patterns must be dealt with.

Fig. 12. High sensitivity of cluster member to correlated excitation. For interpretation of areas 1 and 2, see text.
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The above architecture should be extended so that as soon
as the network categorizes a dynamics, it participates in it.
Then the bootstrapping cycle will be complete. Actually,
Case Study I showed that the same network can actually
control the body.

We envisage an integration of all the elements examined
in the above case studies; it will have quick on-line
adaptivity embedded in embodied interaction dynamics,
emergent coordination patterns acquired through embodied
interactions among the adaptive components, and boot-
strapping ability which creates higher-order neural activities
that participate in the emergent dynamics, all in a unified
architecture. With this architecture, the agent can grow
more and more complex while maintaining its integrity,
the higher-order patterns are stabilized and ‘remembered’
(becomes a persistent dynamics). When the system per-
ceives another agent’s behavior, it quickly correlates the
perceived spatiotemporal pattern with the remembered
sensorimotor patterns in a supramodal (Meltzoff and
Moore, 1997) manner, generating a complex sensorimotor
pattern which is ‘similar’ to the observed behavior.

This way, we may be able to achieve a unity of embodied
dynamics and various imitation abilities (Gaussier et al.,
1994), not in a separate stages or components, but as inter-
twining dynamical processes. And by imitation, the agent
can participate in rich interagent interaction, which will
be essential for true achievement of communication,
cooperation, and mutual understanding.
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