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� Networks of equal clustering may show significantly different higher-order structures.
� We present an efficient motif counting algorithm.
� Novel order-four transitive-type metrics permit more accurate network description.
� We conjecture on the correct motif counting cardinality for use in transitive ratios.
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a b s t r a c t

Clustering is typically measured by the ratio of triangles to all triples regardless of whether open or closed.
Generating clustered networks, and how clustering affects dynamics on networks, is reasonably well
understood for certain classes of networks (Volz et al., 2011; Karrer and Newman, 2010), e.g. networks
composed of lines and non-overlapping triangles. In this paper we show that it is possible to generate
networks which, despite having the same degree distribution and equal clustering, exhibit different higher-
order structure, specifically, overlapping triangles and other order-four (a closed network motif composed of
four nodes) structures. To distinguish and quantify these additional structural features, we develop a new
network metric capable of measuring order-four structure which, when used alongside traditional network
metrics, allows us to more accurately describe a network's topology. Three network generation algorithms are
considered: a modified configuration model and two rewiring algorithms. By generating homogeneous
networks with equal clustering we study and quantify their structural differences, and using SIS (Susceptible-
Infected-Susceptible) and SIR (Susceptible-Infected-Recovered) dynamics we investigate computationally
how differences in higher-order structure impact on epidemic threshold, final epidemic or prevalence levels
and time evolution of epidemics. Our results suggest that characterising and measuring higher-order network
structure is needed to advance our understanding of the impact of network topology on dynamics unfolding
on the networks.

& 2014 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Network modelling is an essential tool in characterising a wide
range of phenomena: infectious diseases, brain activity, chemical reac-
tions, social interactions, the internet, etc. Any system that involves
interactions of its constituent components may be modelled as a
network. The versatility of networks as a modelling paradigm may be
further augmented by running dynamical processes on the network
such as epidemics or neuronal activity. A network's structure can have

a dramatic effect on the processes that run on the network which is
currently parameterised by low-order structure alongside the degree
distribution. As we shall see, with epidemiological processes the
presence of higher-order structure affects how a disease spreads
through a network, and the effect of such structures on neuronal
dynamics is known to be significant (Sporns et al., 2005; Honey et al.,
2009; Gallos et al., 2012; Lynall et al., 2010; Kaiser and Hilgetag, 2010).
In this paper we aim to go beyond open and closed triples and give a
more comprehensive description of networks in terms of higher-order
structure frequency (specifically order-four structures) and their dis-
tribution around nodes. In particular, we will examine existing
clustered network generating algorithms with respect to their ability,
or otherwise, to control higher-order network structure which
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sometimes may be regarded as a by-product of generating low-order
structure that can preclude a correct interpretation of the impact of
clustering. The paper is structured as follows. We first introduce and
describe a set of clustered network generating algorithms. We follow
with a presentation of the network metrics (including a description of
the motif identifying/counting algorithm) that we propose to quantify
similarities and differences between the generated networks. We then
analyse and discuss the impact of higher-order structural differences,
at identical degree distribution and equal clustering, on SIS and SIR
epidemics. Finally, we discuss how our motif-counting results and
newly proposed measure for higher-order structures could be used
to parameterise pairwise-like models with closure at the level of
quadruples.

2. Material and methods

2.1. Network construction

A significant part of network research relies on networks with
arbitrary degree distributions built using the configuration model.
This algorithm generates networks where nodes mix at random and
where the probability that two nodes are connected is simply
proportional to the product of their degree. Such networks coupled
with stochastic node dynamics such as SIS, SIR or neural dynamics
are amenable to developing macroscopic low-dimensional ODE
models that are in excellent agreement with values obtained from
stochastic simulations. By construction, these networks are loop-less
in the limit of large network size. Whilst such networks can be
considered in many cases as realistic or plausible models of some
real-world networks, there are many instances where networks
have a high degree of structure that typically involves clusters of
well connected nodes. Classic examples come from household
models used in epidemiology (Ball and Lyne, 2001), and networks
of social interactions in general. Motivated by this, there are a series
of theoretical or synthetic network models that can be tuned to
display increased levels of clustering (Volz et al., 2011; Karrer and
Newman, 2010; Newman, 2009; Read and Keeling, 2003; Eames,
2008; Bansal et al., 2009), where clustering denotes the ratio of
closed loops of length three with respect to all possible open triples,
irrespective of whether they are closed or not.

The classic algorithms to generate networks with tunable cluster-
ing include (a) the spatial algorithm proposed by Read and Keeling
(2003), (b) an iterative method proposed by Eames (2008), (c) a
configuration model that includes clustering (Karrer and Newman,
2010) and (d) the Big-V rewiring algorithm (Bansal et al., 2009; House
and Keeling). In a recent study, Green and Kiss (2010) showed that
even under identical degree distributions and equal levels of cluster-
ing, networks built based on different algorithms can display a
markedly different ‘higher-order structure’. Whilst their analysis
identified large scale structural differences amongst networks with
identical degree distribution and clustering, it did not consider
extending the concept of clustering involving three nodes to higher-
order structures with four or more nodes. The concept of motifs is not

new (Sporns et al., 2005; Karrer and Newman, 2010; Volz et al., 2011;
Keeling, 1999a; House and Keeling, 2011) and understanding network
structure through higher-order motifs is going to provide a level of
detail which cannot be articulated by open or connected triples alone.
Below we provide a brief description of the clustered network
construction algorithms used in this paper.

2.1.1. Big-V rewiring
The ‘Big-V’ is an iterative rewiring algorithm that can introduce

clustering into any given network and is commonly used by network
scientists (Bansal et al., 2009; House and Keeling; Green and Kiss,
2010). At each iterative step, a chain of 5 distinct nodes (u–v–w–x–y)
is selected at random and a clone network is generated where the
links (u–v) and (x–y) are broken and the edges (u–y) and ðv–xÞ are
created. This leads to a single chain of 5 nodes being broken into a
triangle and a disconnected pair, see Fig. 1. Local clustering for each
node in the chain, as well as all of its neighbours, is computed in both
the original and cloned networks and the new configuration is kept
only if the level of clustering has increased.

2.1.2. Motif decomposition rewiring
MD (Motif Decomposition) is an iterative rewiring algorithm

that starts with a collection of complete sub-networks that are
disconnected from one another and rewires edges randomly to
reduce the clustering from its maximal value of 1 to the desired
level. The following steps are performed:

i. Initialise a network that is composed of m complete motifs
each with n members so that N¼nm and 〈k〉¼ n�1.

ii. Categorize every edge as ‘local’.
iii. For the first step only, select at random two local edges, cut

them, and swap the stubs to form new edges. Mark the pair of
new edges as global.

iv. Select a local and a global edge, cut them, and swap the stubs
to form new edges. Mark the pair of new edges as global.

v. Check the global clustering, if the desired level has not been
achieved repeat step (iv).

Fig. 2 illustrates this process being performed on a complete motif
with 4 members. It should be noted that this method may work with
a heterogeneous degree distribution in which case the network would
need to be initialised with motifs of kþ1 nodes for each different
degree k. MD has the significant advantage that it is computationally
cheap and that, in the limit of large networks, network properties can
be calculated analytically (see Appendix A.1).

2.1.3. CCM (Clustered Configuration Model)
It is possible to modify the configuration model (Miller, 2009; Volz,

2008) so that it constructs networks using specified motifs. Karrer and
Newman (2010) and Volz et al. (2011) have shown how to build
networks using a configuration model that includes triangle motifs.
This idea may be easily extended to allow for larger and more exotic

Fig. 1. A single Big-V rewiring. (a) Identify a chain of 5 nodes with 4 edges and (b) if edges ðu–vÞ or ðx–yÞ are already part of a triangle the cuts will not be made, otherwise
rewiring is performed, and (c) independent of the outcome of (b) the algorithm will proceed to find a new chain.
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motifs to be included in the networks' construction. Rather than just
lines, the number of lines and corners of motifs that originate from a
node can be varied. In any given motif a node can be considered as a
corner and the number of stubs originating from this node that join it
to the motif defines its corner type, essential in describing corners of
asymmetric structures. To generate a network using this method, the
following steps are performed:

1. allocate to a node a number of stubs following a given degree
distribution,

2. multinomially determine the configuration of corners and
single stubs,

3. create lists for each corner type where a node that is allocated κ
corners of a certain type will appear κ times in the correspond-
ing corner list,

4. draw corners at random and without replacement from the
appropriate lists and connect with other corners to form motifs,

5. repeat until all lists are empty.

Fig. 3 illustrates corner allocation for an example node. Due to the
nature of the configuration model self loops and double loops may
be formed. The expected total number of such occurrences is
constant depending only on degree; the ratio of self and double

loops to network size becomes negligibly small in the limit of large
networks (Newman, 2010).

In this paper homogeneous CCM networks are used with
clustering of ϕ¼0.2 and ϕ¼0.4. The stub configurations to
generate such networks are as follows:

1. ϕ¼0.2: with probability p1¼0.5 the quintuple of stubs is main-
tained as independent links, and with probability p3 ¼ 1�p1 the
quintuple is arranged into one complete square corner and one
triangle corner,

2. ϕ¼0.4: every node is allocated one complete square corner
and one triangle corner,

3. ϕ¼0.8: as this algorithm does not allow overlaps between
motifs, this value of clustering cannot be achieved.

Table 1 shows the expected motif allocation per node. The config-
uration model allows us to analytically determine some of the
network structural properties, more specifically the PGF (Probability
Generating Function) of the degree/motif distribution.

The CCM algorithm for this work was configured as follows. First,
initialise each node with five stubs. Then let p1 denote the probability
that the five stubs form lines, p2 two triangles and one line, p3 one
complete square and one triangle and p4 two empty squares and one
line. The probabilities are chosen such that∑ipi ¼ 1. Let xi denote the
dummy variables of the PGF that corresponds to corner types: x1
(simple stubs), x2 (triangles), x3 (complete squares), x4 (empty
squares). The PGF of the networks degree/corner distribution may
now be written as

Ψ ðx1; x2; x3; x4Þ ¼ x51p1þx1x22p2þx2x3p3þx1x24p4; ð1Þ

and the original stub distribution may be recovered by substituting
each xi with x1

n where n is the corner-stub cardinality:

ψ ðx1Þ ¼ x51p1þx1ðx21Þ2p2þx21x
3
1p3þx1ðx21Þ2p4 ð2Þ

¼ x51ðp1þp2þp3þp4Þ ¼ x51: ð3Þ

ψ 0ð1Þ yields the expected degree, and Nψ″ð1Þ yields the number of
paths of length two in the network (counted both ways, the path
ðA–B–CÞ may also be counted ðC–B–AÞ) (Volz et al., 2011). The

Fig. 2. MD hyper-node configurations. The different hypernode configurations of a
homogeneous graph with k¼3 as edges are decomposed from local to global.

Fig. 3. Corner/edge allocation. A node is initially allocated a quintuple of stubs. With probability p1 ; p2; p3 and p4 the node will be part of a number of different structures as
shown above. In this work homogeneous networks with 〈k〉¼ 5 have been used. If a different degree or degree distribution is required then the configuration of motifs will
need to be adjusted accordingly.

Table 1
The expected number of lines, triangles and complete squares per node for each
level of clustering used.

ϕ Lines Triangles Complete squares

0.2 2.5 0.5 0.5
0.4 0 1 1
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number of unique triangles in the network can be determined by Ψ

½n� ¼N
Ψ x2 ð1;1;1;1Þ

3
þ4 �Ψ x3 ð1;1;1;1Þ

4

� �
; ð4Þ

since each square is quadruply counted and contains four separate
triangles. Clustering is measured as the ratio of three times the
number of triangles to all closed and unclosed triples:

ϕglobal ¼
3N

Ψ x2 ð1;1;1;1Þ
3

þΨ x3 ð1;1;1;1Þ
� �

Nψ 00ð1Þ ð5Þ

¼Ψ x2 ð1;1;1;1Þþ3Ψ x3 ð1;1;1;1Þ
ψ 00ð1Þ ð6Þ

¼ p2þ2p3
5

ð7Þ

For the two types of CCM networks used in this study:
p1 ¼ 0:5; p3 ¼ 0:5 yield ϕ¼0.2 and p3 ¼ 1 yields ϕ¼0.4 (see
Table 2).

2.2. Network metrics: third and higher-order network structure

Here we give a succinct summary of the classic and newly
proposed network metrics that will be used to compare and
contrast the networks resulting from the different algorithms.
Although the novelty of the paper is around order-four structure,
we will first consider classic (or third-order) network measures,
such as clustering in the global sense as well as distribution of
clustering at the node level, nodal betweenness centrality, and
connected component analysis via percolation. We then augment
the classic network descriptions with an analysis of the distribu-
tion of motifs of order higher than closed and open triples both
globally and on a per node basis. A network of N individuals is
represented with an adjacency matrix, AAf0;1gN2

. A pair of
individuals (i,j) share a connection if Ai;j ¼ 1. The networks are
undirected, A¼ AT , and self loops are not allowed Ai;i ¼ 0; 8 iAN.

1. Clustering: clustering may be defined in two ways (Watts and
Strogatz, 1998): local (node level) and global (network level).
The local clustering of a node n, of degree nk, is the ratio of
connections between neighbours of n and potential connec-
tions of neighbours of n. Let N denote the sub-adjacency
matrix of the neighbourhood of n then

ϕlocal ¼
∑i;jN i;j=2

nkðnk�1Þ=2: ð8Þ

Global clustering is defined as the ratio of the total number of
closed triples to the total number of connected structures with
3 nodes. This may be computed from the adjacency matrix as
(Keeling, 1999b)

ϕglobal ¼
traceðA3Þ

JA2 J�traceðA2Þ
; ð9Þ

where JA2 J denotes the sum of all elements of A2. Manipulat-
ing the adjacency matrix in this way yields multiplicative
counts. An alternative method to obtain the equivalent counts
is as follows:

½∨þn� ¼ ∑
i;j;k;ia jak

ai;jaj;k; ð10Þ

yielding all connected structures of 3 nodes (closed and
unclosed), similarly

½n� ¼ ∑
i;j;k;ia jak

ai;jai;kaj;k; ð11Þ

yielding six times the number of unique triangles. A more
complete description of this approach is provided in
Appendix A.3, along with a conjecture of a possible mapping
between unique and multiplicative counts.

2. Nodal betweenness centrality: Nodal betweenness centrality
measures how often a node appears in the set of shortest
paths (which we shall denote s), geodesics, of the network
(Freeman, 1977). Nodes with high betweenness centrality will
more frequently appear in shortest paths than low ranked
nodes. The betweenness centrality of a node n can be
computed by

BbcðnÞ ¼
∑ia jansi;jðnÞ

jsi;jj
; ð12Þ

where si;jðnÞ denotes the number of shortest paths from i to j
that contain node n. The removal of nodes with high between-
ness centrality can significantly affect the flow of dynamical
processes on the network (Newman, 2010).

3. Connected component analysis: CCs (connected components) are
sets of nodes where any node may be reached from any other
node that is a member of the set. CCs are used to describe the
macroscopic structure of a network, as opposed to clustering
which describes the local structure of the network. Highly
clustered networks contain many components that are weakly
connected to, or disconnected from, one another. It has pre-
viously been shown (Green and Kiss, 2010) that the GCC (Giant
Connected Component – the component that spans almost all of
the networks) of highly clustered networks are sensitive to edge
removal such that removing even a low proportion of edges can
be enough to isolate parts of the network. To perform the
analysis, we generate a list of all edges in a network, cycle
through each edge in the list and remove it with probability pr,
compute the size and frequency of all components remaining,
and plot the cumulative distribution of component size.

4. Motif frequency and distribution: Clustering (local or global)
essentially measures the occurrence of triangles in a network.
It does not distinguish two separate triangles from two triangles
that share an edge, neither can it describe loops of order-four or
larger. From the perspective of characterising higher-order struc-
ture it is a very coarse measurement. In this paper all closed
structures of order-four i.e. empty squares, diagonal squares, and
complete squares motifs are considered at both network and
node levels. It is possible to define new clustering type metrics
using structures larger than triangles. Proceeding in away similar
to classic (third-order) clustering and limiting ourselves to
4-node structures connected in a loop, it is possible to define
four new structural measurements: the ratio of unclosed quad-
ruples ð1�ϕ1

4Þ, ‘empty’ squares ðϕ2
4Þ, squares with a single

diagonal ðϕ3
4Þ, and complete squares ðϕ4

4Þ to all connected
structures of 4 nodes. We present our results in two formats:
(i) global ratios of unique order-four structure counts to all unique
paths counts, closed and unclosed, (ii) the probability distribution
of finding x structures of a certain type associated with a given
node. These measurements alongside clustering will provide a
higher resolution analysis of network architecture. A brief synop-
sis of how to compute non-trivial paths of length lþ1 is as follows
(see Appendix A.2 for the full pseudo-code, all path lengths refer
to the number of edges and Að�; �Þ is the adjacency matrix):
(a) Consider a path P of length l, and identify a head H(P) (1st

node of the path) and a tail T(P) (the last node).
(b) For each neighbour n of T(P), if (i) AðHðPÞ;nÞ ¼ 1, (ii) it has

not already been counted as a closed path, and (iii) its
reverse has not been counted as a closed path then count a
closed path of length lþ1.

(c) For each neighbour n of T(P), if (i) AðHðPÞ;nÞ ¼ 0, (ii) it has
not already been counted as an open path, and (iii) its
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reverse has not been counted as an open path then count
an open path of length lþ1.

(d) For all closed paths of length lþ1 remove circular and
reverse circular permutations.

(e) Categorize each closed path by its completeness, i.e., the
number (if any) of diagonals in a square.

2.3. Dynamics on networks

To establish the overall impact of higher-order network structure,
simulations of various dynamics are performed on the generated
networks. First, we use the Markovian SIR (susceptible-infected-
recovered) model with a per-contact infection rate τ and recovery
rate γ. All simulations are performed using the Gillespie (1976)
algorithm. To assess the impact of loops and cycles, we also simulate
the SIS epidemic which is more likely to highlight differences in the
cycle/motif composition. We shall see that structural differences
between networks with the same degree distribution and clustering
manifest in epidemiological differences with regard to dynamics on
the networks. Previous work (House, 2010) used Kirkwood's super-
position approximation to predict the effect of order-four structure on
epidemic dynamics. Homogeneous, structured networks composed of
N nodes connected in a single GCC were considered and their
corresponding system of tuple-wise ODEs was derived. The equations
corresponding to motifs of order one, two and three were exact;
however, equations that correspond to order-four motifs were closed
using order-three terms such that it was only in the limit limN-1 that
equations became exact. For SIS dynamics it was conjectured that the
presence of empty square structures reduces the endemic state for all
levels ofϕ (varying onlyϕ and the prevalence of empty squares whilst
keeping all other parameters constant), that complete squares may
increase or decrease the endemic state and that diagonal squares had
very little effect on the endemic state. In the following we make
comparisons between networks that use different distributions of
order-four motifs. We expect that networks with markedly different
order-four motif distributions produce different epidemiological
behaviour.

3. Results

Using the various construction algorithms, we give an overarching
analysis of structural differences between networks with the same
degree distribution and same levels of classic clustering. All networks
used are homogeneous with 〈k〉¼ 5, allowing for the formation of
structures/loops whilst keeping the complexity to a manageable
level. We carry out our analysis on a range of clustering values
(i.e. ϕ ¼ 0.2, 0.4, 0.8) to measure and evaluate the extent to which
clustering can emerge from, or determine, different configurations of
order-four structures.

1. Overall feature and structure of the network: Gephi (Bastian
et al., 2009) was used to visualize sample networks generated
by the proposed algorithms, see Fig. 4. In these figures nodes
are colour coded according to their degree of clustering, with
un-clustered nodes coloured with nuances closer to the red
end of the spectrum, and more highly clustered nodes
coloured with shades closer to the blue end of the spectrum.
The figure clearly illustrates that the CCM algorithm gives rise
to networks with an extremely homogeneous structure, whilst
the rewiring algorithms (i.e. Big-V and MD) construct net-
works with more heterogeneity in clustering at the node level.
It is also evident that this difference translates into a more
modular structure for the rewired networks. The CCM

networks stand out as being structurally different from the
networks generated by the other algorithms; as well as being
homogeneous in degree, they are also homogeneous in
structure.

2. Distribution of clustering and centrality: The almost homoge-
neous distribution of the local clustering (see Fig. 5) and
betweenness centrality (see Fig. 6) of the CCM networks is
expected since by construction every node has the same local
structure. For ϕ¼0.2 we know that each node has a quintuple
of stubs with probability p1 or a complete square and a
triangle with probability p2 ¼ 1�p1. When ϕ¼0.4 every node
is a member of one triangle and one complete square.
The Big-V algorithm introduces clustering in a more hetero-
geneous manner, with half of the nodes having clustering in
the range 0:3rϕr0:5. The MD algorithm provides the largest
spread of clustering with half of the nodes having clustering in
the range 0:2rϕr0:6. The box-plot (Fig. 5) of local clustering
shows the tendency of the MD algorithm to leave motifs
unchanged. These complete motifs must be compensated with
other parts of the network being decomposed into a much
more random graph-type structure. The MD algorithm relies
on random edge swapping to decompose the network into a
more random structure. This will tend to result in at least a
few leftover fully connected motifs which are only destroyed
at very low levels of clustering. Hence, when the frequency of
such motifs is still large but the overall, desired, clustering is
moderate, the connected parts of the network have to be left
weakly clustered.
The plot of betweenness centrality (Fig. 6) illustrates this
description in a more subtle way. Nodes embedded in a motif
will have a low betweenness centrality whilst those that act as
bridges between structures and the rest of the network will be
more highly ranked. We observe that the betweenness cen-
trality plot shows a slightly higher spread for MD networks.
The removal of nodes (with a high betweenness centrality
rank) is more likely to have a bigger impact on dynamics
flowing on the network constructed by the MD algorithm.

3. Connected component analysis: For a well connected network
with low clustering, low values of pr leave the macroscopic
structure of the networks unchanged (see Fig. 7) i.e. the entire
network is contained within a single GCC. Networks with low
clustering are resilient to the removal of a relatively small
number of edges. For example, the GCC still spans a large
proportion of the network when 30% of the edges have been
removed. This behaviour has been previously noted (Green
and Kiss, 2010).
The size of the GCC decreases with increasing clustering across
all network-generating algorithms (reading column-wise
down Fig. 7). This behaviour is expected since in any network
where 〈k〉5N, higher clustering is only achievable through
many completely isolated components (recall the initialisation
of MD networks where ϕ¼1 and the network is composed of
m separate motifs). This behaviour is further reflected in the
step behaviour of the plots when ϕ¼0.8 (bottom row Fig. 7).
Reading row-wise across Fig. 7, for ϕ¼0.4, the GCCs of CCM
networks are the most robust to edges being removed. We
know the networks to be highly homogeneous such that no
particular edge is structurally more important than another.
MD networks are extremely sensitive to edges being removed;
pr¼0.3 has a pronounced impact revealing a strong depen-
dency on components of size 6 or fewer. The MD algorithm
tends to preserve some complete motifs, as well as to leave
some motifs weakly connected to the GCC at this level of
clustering. The Big-V algorithm generates networks with a
relatively well connected GCC but still exhibits a mild sensi-
tivity to the removal of edges.
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4. Motif statistics for all network types: Table 2 shows that third-
order clustering conveys little information about order-four
motifs. The proportion of closed quadruples to all connected
structures of 4 nodes increases with clustering, and for high
levels of clustering there is a strong dependence on complete
squares. However, the algorithms' lack of control of order-four
structure is apparent at moderate levels of clustering (ϕ¼0.2,
0.4) where there is no consistent presence of closed order-four
structures across networks of equal clustering. The difference
in ϕ1

4 is due to triangles which do not share an edge; indeed
these triangles are not measured by this metric. The distribu-
tion of triangles is important at higher levels of clustering

where they often share edges or overlap to form order-four
structures.
Reading column-wise down Fig. 8, we see a more particular
dependence on squares with diagonals as clustering increases.
For ϕ¼0.4 there is the greatest heterogeneity in the distribu-
tion of diagonal squares. When ϕ¼0.8 we observe that
diagonals can only appear in certain combinations about a
node, following an almost tri-modal distribution. Again read-
ing column-wise down, for complete squares we see a general
trend of increasing complete square prevalence with increased
clustering. Nodes may have a count of ten complete squares
associated with them when they are members of a complete,

Fig. 4. Example networks. Homogeneous networks with all parameters held equal, N¼400, 〈k〉¼ 5 and ϕ¼0.4. The nodes are coloured so those at the red end of the
spectrum have low local clustering, and those at the blue end of the spectrum have high local clustering. (For interpretation of the references to colour in this figure caption,
the reader is referred to the web version of this paper.)

Fig. 5. Distribution of local clustering. Boxplots of local clustering measured from 20 homogeneous networks, N¼1998, 〈k〉¼ 5. The size of the network was chosen to be
divisible by 6 due to the MD algorithm starting with disjointed fully connected hexagons. Local clustering is a measure of interconnectivity between neighbours of a given
node. CCM shows an extremely tight distribution of clustering for ϕ¼0.4, as we would expect given that each node is allocated the same number and type of structure. MD
provides the largest variance in local clustering.

Fig. 6. Distribution of betweenness centrality. Box-plots of nodal betweenness centrality measured from 20 homogeneous networks, N¼1998, 〈k〉¼ 5. Betweenness
centrality ranks nodes on how often they appear in paths between other nodes. As clustering is tuned higher, the CCM and Big-V rewiring algorithms isolate fully connected
clustered components of 〈k〉þ1 nodes away from the GCC. At this level of clustering highly connected sets of nodes are still weakly attached to the GCC, yielding the large
number of outliers observed in the plot, and hence, a high spread of betweenness centrality values.
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and isolated, six-node structure. At all levels of clustering the
probability of finding an empty square associated with a node
is rare. This is because, despite being a structure of order-four,
squares do not contribute to clustering.
Finally, Fig. 8 also reveals that networks generated by the Big-
V algorithm contain empty square motifs with very low
frequency. The algorithm searches for unclosed triples con-
tained within strings of five nodes and closes them. Only
motifs that may be constructed out of triangles can be
expected in Big-V networks in any significant quantity. The
MD algorithm also generates few empty square motifs and the
CCM algorithm will only include them by specification.

3.1. Dynamics on the networks: evaluation and comparison

To investigate the effect of high order structure we consider the
two classic (e.g. SIS and SIR) epidemic dynamics on networks.
Starting with the simplest structure, and as expected, for triangles
it is observed that when an initially infected individual infects a
second, the two infected nodes then compete for the same remain-
ing susceptible. For empty squares and longer loops the effect is
similar but less dramatic. Fig. 9 shows that the initial epidemic
spread is slower for networks which exhibit loops. By opening a

closed motif whilst preserving degree, two new individuals must be
added so the effect of competition is inversely proportional to the
motif size. Connectivity within the motif may also negate the effect
of competition.

When simulating epidemics on networks with ϕ¼0.2, the CCM
networks show a slower spread of infection (Fig. 10). At this level of
clustering the CCM algorithm breaks a quintuple of stubs into all
lines with p¼1/2, or a complete square corner and a triangle corner
with p¼1/2. Thus, the CCM networks exhibit areas of high clustering
in which the disease will spread more slowly than in areas of low
clustering. At ϕ¼0.2 the CCM networks exhibit a slower spread of
infection for both SIS and SIR epidemics. Reading row-wise from left
to right it is clear that higher levels of clustering slows the epidemic,
see the difference between ϕ¼0.2 and ϕ¼0.4, with a less dramatic
effect for SIS epidemics. Tuning clustering to an even higher level
leads to the network breaking down into many disjointed compo-
nents, such that connectivity within these is excellent. This means
that the initial spread could be very fast, but this is quickly curtailed
by limited or no connectivity between the highly connected
components.

The rewiring algorithms tend to produce networks that contain
clustered motifs that are poorly connected to the rest of the
networks. Nodes with high betweenness centrality are important
in SIR-type processes, which when recovered significantly hinder
the propagation of the epidemic. Both of the rewiring algorithms

Fig. 7. Edge percolation plots. Frequency of component sizes as edges are removed from the network with probability pr. Results are taken from homogeneous networks
with 〈k〉¼ 5 and N¼1998. CCM networks are not represented when ϕ¼0.8. The top, middle and bottom rows represent clustering of ϕ¼0.2, ϕ¼0.4 and ϕ¼0.8 respectively.
Each line represents a different value of pr, varying from 0.3 to 0.8 in increments of 0.1. In each figure, pr increases in a clockwise direction. The sudden jumps are a result of a
strong dependency on a motif of certain size in the description of the network. As pr40:5 the networks are decomposed into many disjoint components.
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produce nodes with high betweenness centrality when compared
to the CCM algorithm. It has previously been noted that the MD
networks are particularly dependent on isolated motifs; this is
reflected in a markedly smaller final epidemic size for both SIS and
SIR dynamics at moderate levels of clustering. The CCM and Big-V
networks have a more consistent connectivity throughout the
network yielding a slightly greater final size (see Fig. 11).

Using such simple dynamics with few states and simple transmis-
sion processes, the subtlety in the differences is somewhat expected.
Nevertheless we foresee that other more complex dynamics, such as
neuronal dynamics or modified voter model, where transitions may

depend on membership within certain motifs and transitions do not
simply scale linearly with the state of the neighbouring nodes (e.g.
saturating activation for interacting neurons), will lead to more
marked differences.

4. Discussion

The development of models that capture epidemic or other
dynamics on networks is guided, to a great extent, by the structure
of the network. Hence, models have initially sought to account for
the impact of degree distribution, or heterogeneity in contact. This
was closely followed by models capturing preferential mixing,
where nodes of similar degrees can be either more likely (assorta-
tive mixing) or less likely (disassortative mixing) to be connected.
The next stages of model development considered all the above, or
at least accounting for their effect, but looked at clustering, the
propensity that neighbours of a node are likely to be also neigh-
bours of each other. In this area, progress is still being made and
there are many new developments to follow.

Many network models operate on and use synthetic networks
designed to be able to control and tune properties such as degree
distribution, mixing, clustering and so forth. However, as shown in
this paper, controlling certain lower order (node, contact, neigh-
bourhood) properties can and will have an effect on higher-order
structure and this can be significant and cannot be disregarded.
For example, at high values of clustering generated based on
the spatial algorithm (Read and Keeling, 2003), the networks

Fig. 8. Order-four motif distribution. The per-node distribution of the number of unique counts of order-four motifs, for all previously used networks. See Appendix A.2
which details how motifs are counted.

Table 2
For each level of clustering the table has been sorted in ascending ϕ then ascending
ϕ1
4, where ϕ1

4 gives the proportion of all closed quadruples. The above table is
computed using unique counts.

Netw. model/ϕ ϕ1
4 ϕ2

4□ ϕ3
4 ϕ4

4⊠

CCM, 0.2 0.0053 0.0007 0.0001 0.0045
Big-V, 0.2 0.0117 0.0004 0.0104 0.0009
MD, 0.2 0.0239 0.0057 0.0149 0.0034

CCM, 0.4 0.0169 0.0003 0.0002 0.0164
Big-V, 0.4 0.0570 0.0010 0.0400 0.0160
MD, 0.4 0.0731 0.0083 0.0444 0.0204

Big-V, 0.8 0.3150 0.0013 0.0900 0.2237
MD, 0.8 0.3405 0.0044 0.1062 0.2299
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become more assortatively mixed. Such effects are to be expected
since the network is a coherent structure which reacts to each
perturbation, such as rewiring or other means of tuning proper-
ties. In general, we expect that Big-V rewiring will be the most
random way to introduce clustering without model-specific arte-
facts. However, this comes at what is occasionally prohibitive
computational cost. CCM is computationally cheap, and analyti-
cally tractable, but is a long way from randomly introduced
clustering. In this context, MD can be viewed as a computationally
cheap and (given sufficient effort) analytically tractable alternative
to Big-V that produces very similar network phenomenology.

In this study, we highlighted that synthetic algorithms that
generate networks with tunable clustering do lead to different
higher-order structures, such that networks with the same degree

distribution and level of clustering can yield different dynamics on
the networks. In order to evaluate differences in higher-order
structures we have extended the concept of clustering and
proposed some measures to evaluate and quantify the frequency
of structures composed of four nodes.

Themeasures we have proposed are ratios of the uniquely counted,
closed motifs of order-four to the unique count of all connected
structures of four nodes. This is conceptually convenient but these
values may not be suitable for use in low-dimensional ODE approx-
imations, such as the pairwise model. Global clustering is not defined
using purely unique counts (see Appendix A.3) and yields a different
value when the unique counts are used. In Appendix A.3, we
hypothesise the correct counts of motifs and paths for use in
clustering-type ratios. Whilst counting uniquely significantly reduces

Fig. 9. Random vs square comparison. 20 homogeneous networks were generated with N¼1998, 〈k〉¼ 5 and ϕ¼0.0018. The plots correspond to averaging Gillespie
simulations on each of the networks with parameters τ¼γ¼1, and 5 initially infectious nodes. The networks marked ‘square’ were constructed by allowing two squares to be
formed out of the 5 stubs allocated to each node, compared against a random network. Plots show comparisons between the prevalence of infection for SIS and SIR dynamics.

Fig. 10. SIR and SIS dynamics. 20 homogeneous networks were generated with N¼1998, and 〈k〉¼ 5, and the results show the average of 100 Gillespie epidemics on each
network realisation. The epidemics were run with parameters τ¼ γ ¼ 1, and were seeded with 5 infectious nodes. The top and bottom rows show the prevalence levels for a
SIR and SIS epidemics, respectively..
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computational complexity, it has the slight disadvantage that it does
not provide the multiplicative type of counting used in pairwise
models. In the Appendix, we conjecture that this can be easily
overcome by simply multiplying unique counts with the cardinality
of the automorphism group corresponding to the motif.

It has been demonstrated that care needs to be taken when trying
to extend modelling to clustered networks. Whilst models for simple
clustered networks composed of exclusively non-overlapping triangles
and edges have been developed, it is going to be more challenging to
extend to networks with more complex structures and motifs. Motifs
such as a square with a diagonal or a fully connected square may fulfil
some function depending on the area of application (e.g. genetic
regulatory networks, cortical networks), and thus measuring and
quantifying this correctly is crucial for further model development.
Many natural extensions for this work exist which include considera-
tions around higher-order structure, algorithm efficiency in measuring
these and development of synthetic network models that allow robust
and transparent control of not only lower, but also higher-order
structures.
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Appendix A

A.1. Motif decomposition, analysis

It is possible to write down the dynamics for the MD process
(Section 2.1.2) in the limit of large networks by decomposing

motifs into hyper nodes (considering each motif at a higher level
as a node) and considering the links between them. We now
consider the process being performed in a homogeneous network
with 〈k〉¼ 3 initialised with disjoint, complete square motifs
following Fig. 2. By identifying a hyper-node with n edges as Qn,
it is possible to write equations for the normalised count of each
hyper-node:

d
dt
Q5 ¼ �6λQ5; ð13Þ

d
dt
Q4 ¼ 6λQ5�5λQ4; ð14Þ

d
dt
Q3 ¼ λQ4�4λQ3; ð15Þ

d
dt
Q2 ¼ 4λQ3�3λQ2; ð16Þ

d
dt
Q1 ¼ 8λQ4þ16λQ3þ9λQ2: ð17Þ

These equations can be solved for initial condition
Q ð0Þ ¼ ð0;0;0;0;1=4Þ and evolve towards Q ð1Þ ¼ ð1;0;0;0;0Þ. The
re-wiring rate λ is just included for clarity and can be set to 1 with
no loss of generality. The process stops at a time tn when the
desired level of clustering has been achieved

1
6
∑
i
T iQ iðtnÞ ¼ϕ; ð18Þ

where Ti denotes the number of triangles associated with each
hyper-node type. The above equation may be solved for tn, and
inserted into Eqs. (1)–(5) to obtain a prediction for motif structure.
Such hyper-graph counting can be done for any n but quickly
becomes too tedious. It is also possible to use the quantities in
Table 1 to derive epidemic final sizes and other attributes. Reading

Fig. 11. Plots of final epidemic size (top row) and endemic equilibrium (bottom row) for values of τ increasing from τ¼0.1 to τ¼3 in increments of 0.15. Twenty networks
were generated, ten Gillespie simulations were performed for each value of τ. The networks were homogeneous with 〈k〉¼ 5 and N¼1998.
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Fig. 2 along side Eqs. (13)–(17) it should be noted that for hyper-
node Q4 there is only one possible way it can decompose to Q3,
namely, through the deletion of its diagonal edge. Considering
Eq. (17), any one of the Q4's four square edges may be deleted
resulting in a single Q2 and Q1 hyper-node, any one of the Q3's four
edges may be deleted resulting in four Q1 hyper-nodes and any
one of the Q2's three edges may be deleted resulting in three Q1

hyper-nodes (Table 3).

A.2. Motif counting algorithm

Below we introduce some notation in order to describe
correctly and un-ambiguously the counting algorithm.

Path A path P is an ordered tuple ði;…; jÞ
Pn the nth node of path P
Hn the head operator such that HnðPÞ returns the n first nodes

of the path P
Tn the tail operator such that TnðPÞ returns the n last nodes of

the path P
R the reverse operator such that Rðði;…; k;…; jÞÞ ¼ ðj;…; k;…; iÞ

CP(P) the set of circular permutations of path P
RCP
(P)

the set of all reverse circular permutations of path P (NB:
RCPðPÞaCPðPÞ)

A the adjacency matrix, A¼ AT and with TrðAÞ ¼ 0
f�g a set
PLl the set of non-trivial paths of length l (l¼number of edges)

Algorithm 1. Pseudo code for the motif counting algorithm.

/n The following process is applied iteratively to determine non-
trivial paths (open paths or closed paths) of length lþ1 given
non-trivial (non-loop) paths of length l. The description below
is not specific to a single length but assumes lZ2. Data The
uniquely counted set of paths of length2 is: PL2 ¼ fði; j; kÞg :
A½i; k� � A½k; j�40 and j4 i.

initialization;
LLlþ1 ¼ |; /n Closed paths of length lþ1
PLlþ1 ¼ |; /n Open paths of length lþ1
for All paths P in PLl do

for All nodes n: A½T1ðPÞ;n�40 & =2T1ðPÞ do
nP ¼ ðP;nÞ; /n new path

if n¼H1ðLÞ & nP=2LLlþ1 & RðnPÞ=2LLlþ1 then
LLlþ1’nP;
end
if naH1ðLÞ & nP=2LLlþ1 & RðnPÞ=2LLlþ1 then

PLlþ1’nP;
end
/n These exclude symmetric paths but not circular

permutations.
end
if PnAfCPðLLlþ1Þ;CPðPLlþ1Þg then

fLLlþ1g ¼ fLLlþ1g\Pn;
fPLlþ1g ¼ fLLlþ1g\Pn;

end
/n Removes circular permutations.

end
for All paths PACLLlþ1 do
if PnACLLlþ2 & Pn =2CRPðCLLlþ1Þ then

LLlþ1’P;
end

end
for All paths PACPLlþ1 do
if PnACPLlþ2 & Pn =2CRPðCPLlþ1Þ then

PLlþ1’P;
end

end
/n Removes reverse circular permutations.

A.3. Motif counting: unique vs multiplicative

In this paper all order-four clustering-type ratios use unique
counts. Ratios based on unique counts will give different values to
ratios based on multiplicative counts. As an example of multi-
plicative counting, classic clustering is defined as

ϕ¼ 6� ½n�
½nþ∨� ; ð19Þ

where ½n� denotes the number of triangles, and ½nþ∨� the number
of closed and unclosed length three paths (doubly counted) in the
network. If unique counts are used then we have ϕunique ¼ϕ=3.

We have computed the unique order-four counts in order to
improve the computational performance of our algorithm.
However, if we wish to normalise or scale-up the unique
counts to correspond to the multiplicative equivalent, correct
multiplying factors need to be determined. This appears to be
the number of automorphisms associated with each motif type
or path length: a triangle has six and a path of length three has
two automorphisms.

Let A¼ ðai;jÞ; i; jAf1;…Ng; be the adjacency matrix of an undir-
ected network with no self loops i.e. A¼ AT and Ai;i ¼ 0 for any
i¼ 1;2;…;N. It is possible to obtain the multiplicative counts from
the adjacency matrix A. Summing over all nodes

½�� ¼ ∑
N

i;j ¼ 1;ia j
ai;j: ð20Þ

This counts twice the number of real or uniquely counted edges in
the network. It is possible to count more complex paths as well

½∨þn� ¼ ∑
N

i;j;k ¼ 1;ia jak
ai;jaj;k; ð21Þ

yielding all connected structures of 3 nodes (closed and unclosed),
similarly

½n� ¼ ∑
N

i;j;k ¼ 1;ia jak
ai;jai;kaj;k; ð22Þ

yielding six times the number of unique triangles. It is also
possible to count six different closed triples contained within a
triangle: for each node we count clockwise and counter-clockwise
about the triangle. This by-directional counting is important so
that the method is consistent when considering directed net-
works. Following the same counting methodology it is possible to
count order-four structures:

½ � ¼ ∑
N

i;j;k;l ¼ 1ia jaka l
aijajkakl: ð23Þ

Table 3
Table of hyper nodes indexed by i with the number of nodes involved ni, the
number of local links li, the number of global stubs si, and the number of triangles
Ti (counted in both directions from each node). Q2 denotes triangles that each
triangle contains 6 local links (within motif links, counted twice) and 3 global links
(links that connect the hyper-node to the rest of the network).

Q1 Q2 Q3 Q4 Q5

ni 1 3 4 4 4
li 0 6 8 10 12
si 3 3 4 2 0
Ti 0 6 0 12 24
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In this form we see that it is possible to compute the individual
counts using the following identities:

½⊠� ¼ ∑
N

i;j;k;l ¼ 1;ia jaka l
aijaikailajkajlakl; ð24Þ

½ � ¼ ∑
N

i;j;k;l ¼ 1;ia jaka l
aijaikð1�ailÞajkajlakl; ð25Þ

½&� ¼ ∑
N

i;j;k;l ¼ 1;ia jaka l
aijaikð1�ailÞð1�ajkÞajlakl: ð26Þ

Counting this way a single ½⊠� is counted 24 times, ½ � is counted
4 times and ½&� is counted 8 times, equal to the number of
automorphisms associated with each motif type. By listing the
different combinations of fi; j; k; lg that satisfy (for diagonal
squares)

aijaikð1�ailÞajkajlakl ¼ 1; ð27Þ

such that ia jaka l it is possible to gain insight into the
cardinality of this count. Consider a diagonal square as orientated
in the notation labelled starting at the top left node in a clock
wise direction: i, j, k and l. By listing the combinations in this way
(Table 4) all automorphisms associated with a diagonal square –

the identity, the orbit between j and l, the orbit between i and k
and finally the permutation that includes both orbits – have been
listed.

Currently, based on our intuition and numerical tests, we
conjecture that this is the correct way to scale-up from unique
to multiplicative motif counts. This method of counting is thor-
ough but not practical for networks of reasonable size since it has
complexity OðNnÞ for order-n structures.

References

Ball, F., Lyne, O.D., 2001. Stochastic multi-type SIR epidemics among a population
partitioned into households. Adv. Appl. Probab. 33 (1), 99–123.

Bansal, S., Khandelwal, S., Meyers, L., 2009. Exploring biological network structure
with clustered random networks. BMC Bioinf. 10 (1), 405.

Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: An Open Source Software for
Exploring and Manipulating Networks.

Eames, K.T., 2008. Modelling disease spread through random and regular contacts
in clustered populations. Theoretical population biology 73 (1), 104–111.

Freeman, L.C., 1977. A set of measures of centrality based on betweenness.
Sociometry, 35–41

Gallos, L.K., Makse, H.A., Sigman, M., 2012. A small world of weak ties provides
optimal global integration of self-similar modules in functional brain networks.
Proc. Natl. Acad. Sci. 109 (8), 2825–2830.

Gillespie, D.T., 1976. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys. 22 (4), 403–434.

Green, D.M., Kiss, I.Z., 2010. Large-scale properties of clustered networks: Implica-
tions for disease dynamics. Journal of Biological Dynamics 4 (5), 431–445.

Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.-P., Meuli, R., Hagmann, P.,
2009. Predicting human resting-state functional connectivity from structural
connectivity. Proc. Natl. Acad. Sci. 106 (6), 2035–2040.

House, T.A., 2010. Generalised network clustering and its dynamical implications.
Adv. Complex Syst. 13 (3), 281–291.

House, T., Keeling, M.J., The impact of contact tracing in clustered populations. PLoS
Comput. Biol. 6(3), p. e1000721.

House, T., Keeling, M.J., 2011. Insights from unifying modern approximations to
infections on networks. Journal of the Royal Society Interface 8 (54), 67–73.

Kaiser, M., Hilgetag, C.C., 2010. Optimal hierarchical modular topologies for producing
limited sustained activation of neural networks. Front. Neuroinf. 4, 2010.

Karrer, B., Newman, M.E.J., 2010. Random graphs containing arbitrary distributions
of subgraphs. Phys. Rev. E 82, 066118.

Keeling, M.J., 1999a. The effects of local spatial structure on epidemiological
invasions. Proceedings of the Royal Society of London. Series B: Biological
Sciences 266 (1421), 859–867.

Keeling, M.J., 1999b. The effects of local spatial structure on epidemiological
invasions. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266 (1421), 859–867.

Lynall, M.E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U.,
Bullmore, E., 2010. Functional connectivity and brain networks in schizophre-
nia. J. Neurosci. 30 (28), 9477–9487.

Miller, J.C., 2009. Spread of infectious disease through clustered populations. J. R.
Soc. Interface

Newman, M.E., 2009. Random graphs with clustering. Phys. Rev. Lett. 103 (5),
058701.

Newman, M., 2010. Networks: an introduction. Oxford University Press, New York.
Read, J.M., Keeling, M.J., 2003. Disease evolution on networks: the role of contact

structure. Proceedings of the Royal Society of London. Series B: Biological
Sciences 270 (1516), 699–708.

Sporns, O., Tononi, G., Kötter, R., 2005. The human connectome: a structural
description of the human brain. PLoS Comput. Biol. 1 (4), e42.

Volz, E., 2008. SIR dynamics in random networks with heterogeneous connectivity.
J. Math. Biol. 56 (3), 293–310.

Volz, E.M., Miller, J.C., Galvani, A., Ancel Meyers, L., 2011. Effects of heterogeneous
and clustered contact patterns on infectious disease dynamics. PLoS Comput.
Biol. 7 (6), e1002042.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks.
nature 393 (6684), 440–442.

Table 4
Combinations of i, j, k and l that satisfy (27).

i j k l

1 2 3 4
1 3 2 4
4 2 3 1
4 3 2 1

M. Ritchie et al. / Journal of Theoretical Biology 348 (2014) 21–3232

http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref1
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref1
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref2
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref2
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref4
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref4
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref5
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref5
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref6
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref6
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref6
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref7
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref7
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref8
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref8
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref9
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref9
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref9
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref10
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref10
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref12
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref12
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref13
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref13
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref14
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref14
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref15
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref15
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref15
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref16
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref16
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref18
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref18
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref18
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref19
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref19
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref20
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref20
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref21
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref22
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref22
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref22
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref23
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref23
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref24
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref24
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref25
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref25
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref25
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref26
http://refhub.elsevier.com/S0022-5193(14)00042-3/sbref26

	Higher-order structure and epidemic dynamics in clustered networks
	Introduction
	Material and methods
	Network construction
	Big-V rewiring
	Motif decomposition rewiring
	CCM (Clustered Configuration Model)

	Network metrics: third and higher-order network structure
	Dynamics on networks

	Results
	Dynamics on the networks: evaluation and comparison

	Discussion
	Acknowledgements
	Motif decomposition, analysis
	Motif counting algorithm
	Motif counting: unique vs multiplicative

	References




