
Journal of Mathematical Neuroscience (2013) 3:5
DOI 10.1186/2190-8567-3-5

R E S E A R C H Open Access

Identification of Criticality in Neuronal
Avalanches: I. A Theoretical Investigation
of the Non-driven Case

Timothy J. Taylor · Caroline Hartley · Péter
L. Simon · Istvan Z. Kiss · Luc Berthouze
Received: 31 October 2012 / Accepted: 8 April 2013 / Published online: 23 April 2013
© 2013 T.J. Taylor et al.; licensee Springer. This is an Open Access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Abstract In this paper, we study a simple model of a purely excitatory neural net-
work that, by construction, operates at a critical point. This model allows us to con-
sider various markers of criticality and illustrate how they should perform in a finite-
size system. By calculating the exact distribution of avalanche sizes, we are able to
show that, over a limited range of avalanche sizes which we precisely identify, the
distribution has scale free properties but is not a power law. This suggests that it
would be inappropriate to dismiss a system as not being critical purely based on an
inability to rigorously fit a power law distribution as has been recently advocated. In
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assessing whether a system, especially a finite-size one, is critical it is thus important
to consider other possible markers. We illustrate one of these by showing the diver-
gence of susceptibility as the critical point of the system is approached. Finally, we
provide evidence that power laws may underlie other observables of the system that
may be more amenable to robust experimental assessment.

1 Introduction

A number of in vitro and in vivo studies [1–4] have shown neuronal avalanches—
cascades of neuronal firing—that may exhibit power law statistics in the relationship
between avalanche size and occurrence. This has been used as prima facie evidence
that the brain may be operating near, or at, criticality [5, 6]. In turn, these results have
generated considerable interest because a brain at or near criticality would have max-
imum dynamic range [7–10] enabling it to optimally react and adapt to the dynamics
of the surrounding environment [5, 11] whilst maintaining balanced neuronal activity
[12–14]. Neuropathological states (e.g., epileptic seizures) could then be conceptu-
alised as a breakdown of, or deviation from, the critical state; see [15], for example.
Furthermore, these findings have led to the notion that the brain may self-organise to
a critical state [16], i.e., its dynamics would be driven toward the critical regime by
some intrinsic mechanism and not be dependent on external tuning. In support of this
view, Levina and colleagues [17] showed analytically and numerically that activity-
dependent depressive synapses could lead to parameter-independent criticality.

The interpretation that neuronal activity is poised at a critical state appears to be
mostly phenomenological whereby an analogy has been developed between the prop-
agation of spikes in a neuronal network and models of percolation dynamics [18] or
branching processes [19, 20]. Remarkable qualitative similarities between the sta-
tistical properties of neuronal activity and the above models have given credence to
this analogy, however, the question remains as to whether it is justified. Indeed, var-
ious key assumptions underlying percolation dynamics and branching processes are
typically violated in the neuroscience domain. For example, full sampling, which is
required in order to assess self-organised criticality, is unattainable even in the most
simple in vitro scenario and yet it has been shown that sub-sampling can have pro-
found effects on the distribution of the resulting observations [21]. On a related note,
and more generally, the formal definition of a critical system as one operating at, or
near, a second-order (continuous) phase transition is problematic since the concept
of phase transition applies to systems with infinite degrees of freedom [22]. Many
neuroscience authors address this by appealing to the concept of finite size scaling
and many published reports implicitly assume that distributions are power law with
truncation to account for the so-called finite size effect. Typically, such reports adopt
an approach whereby (a) scale invariance is assessed through finite size scaling anal-
ysis, confirming that upon rescaling the event size, the curves collapse to a power law
with truncation at system size (but see below regarding the definition of system size);
(b) the parameters of statistical models are estimated, typically over a range of event
size values that are rarely justified; and (c) the best model is determined by model
selection, in which power law and exponentially truncated power law are compared
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to alternatives such as exponential, lognormal and gamma distributions; see [23] for
a typical example. Whilst greater rigour in the statistical treatment of the assessment
of the presence of power laws has been attained following Clauset and colleagues’
influential paper [24], what seems to be lacking is a rigorous treatment as to why a
power law should be assumed to begin with. Although this question is particularly
pertinent to the neurosciences, it should be noted that similar questions remain open
in the field of percolation theory (e.g., [25, 26]), namely: (i) how does the critical
transition behaviour emerge from the behaviour of large finite systems and what are
the features of the transition? (ii) what is the location of the scaling window in which
to determine the critical parameters?

This paper specifically seeks to address the following questions:

1. Assuming that the whole brain, or indeed a region of interest defined by where data
can be obtained, is operating at criticality, can we reasonably expect power law
statistics in neural data coming from a very small (possibly sub-sampled) subset
of the system? If not, what would be the expected distribution? Sornette [27] states
that the Gamma distribution is “found in critical phenomena in the presence of a
finite size effect or at a finite distance from the critical point.” Jensen [28] claims
that finite-size systems often show an exponential cut-off below the system size.
However, we are not aware of any study in which the distribution of event sizes in
a finite-size system set to operate at a critical regime has been investigated.

2. In a finite-size system, is it reasonable/possible to perform a robust statistical as-
sessment of power law statistics? Even the application of a rigorous model selec-
tion approach will lead to different results depending on the choice of the range of
event sizes and the number of samples being considered [29]. The issue of range
selection is of particular interest. Whilst the notion of system size is clear in mod-
els of criticality such as the Abelian sandpile where (i) there is full sampling, (ii)
the number of sites is finite, and (iii) there is dissipation at the edges, system size is
much less obvious where re-entrant connections exist, making it possible, in prin-
ciple, for avalanches to be of infinite size. Here, the counting measure which leads
to the definition of an avalanche is important. Counting the number of neurones in-
volved in an avalanche will lead to a clearly defined system size, whereas counting
the total number of activations—the de facto standard, e.g., [12, 17, 30]—will not.
Furthermore, it should also be noted that the presence of re-entrant connections
invalidates the standard theory of branching processes [20], and makes a rigorous
determination of the branching parameter σ problematic if not impossible, e.g., in
the presence of avalanches merging.

3. Are there other markers of criticality that may be more amenable to characteri-
sation and that should be considered instead of, or in addition to, the statistics of
event sizes? The need for such markers in neuroscience has been recognised (see
[29] for example) and a number of studies have investigated long-range temporal
correlations (power-law decay of the autocorrelation function) in amplitude fluc-
tuations [31] and in inter-burst intervals [32, 33]. However, a theoretical account
of how those may relate to one another is lacking (although see the recent work in
[34]). Other markers of criticality (or markers of transitions) have been associated
with critical physical systems, e.g., divergence of susceptibility and slowing of the
recovery from perturbations near the critical point [27], however, we are not aware
of any theoretical or empirical study investigating them in a neuroscience context.
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One way to address these questions more rigorously is to use simplified, but there-
fore more tractable conceptual models (e.g., [35]). In this paper, we use a model of
a purely excitatory neuronal system with simple stochastic neuronal dynamics that
can be tuned to operate at, or near, a second-order phase transition (specifically, a
transcritical bifurcation). The simplicity of the model allows us to analytically calcu-
late the exact distribution of avalanche sizes, which we confirm through simulations
of the system’s dynamics. We study our model at the critical point and compare our
exact distribution to the explicit but approximate solution proposed by Kessler [36]
in an analogous problem of modelling disease dynamics. We confirm that Kessler’s
approximate solution converges to our exact result. Importantly, we show that, in the
proposed finite-size system, this distribution is not a power law, thus highlighting
the necessity of considering other markers of criticality. We thus analyse two poten-
tial markers of criticality: (i) the divergence of susceptibility that arises in the model
as we approach the critical point, (ii) the slowing down of the recovery time from
small disturbances as the system approaches the critical point. Finally, we speculate
on a sufficient but not necessary condition under which our exact distribution could
converge to a true power law in the limit of the system size.

2 The Stochastic Model

We start from the stochastic model of Benayoun et al. [12], which we simplify to the
most trivial of models. A fully connected network of N neurones is considered with
purely excitatory connections (as opposed to the excitatory and inhibitory networks
considered in [12]). Within the network, neurones are considered to be either quies-
cent (Q) or active (A). Taking a small time step dt and allowing dt → 0 the transition
probabilities between the two states are then given by:

P(Q → A, in time dt) = f
(
si(t)

)
dt,

P (A → Q, in time dt) = α dt,

where si(t) = ∑
j

wij

N
aj (t) + hi is the input to the neurone. Here, f is an activation

function, hi is an optional external input, wij is the connection strength from neurone
i to neurone j , and aj (t) = 1 if neurone j is active at time t and zero otherwise. α is
the de-activation rate and, therefore, controls the refractory period of the neurone.

To allow tractability, we further make the following simplifications:

1. We assume that all synaptic weightings are equal (wij = w).
2. We assume there is no external input. The driven case will be explored theoreti-

cally and empirically in a companion manuscript.
3. We assume the linear identity activation function f (x) = x. Although it is more

common to use sigmoid activation functions, we note that the identity function
can just be thought of as a suitably scaled tanh function over the desired range.

As the network is fully connected, we can write the following mean field equation
for active neurones:

dA

dt
= wA

N
Q − αA = wA

N
(N − A) − αA,
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Fig. 1 Activity in the different regimes. Plot of the solution to the ODE for N = 800 and three different
regimes where R0 was set to 0.5 (blue), 1.0 (green) and 2.0 (red). Initially we activated 25 % of the
network

where we have appealed to the fact that the system is closed, and thus A + Q = N .
This ODE is analogous to the much studied [37] susceptible → infectious → sus-
ceptible (SIS) model used in mathematical epidemiology and we can appeal to some
of the known results in studying its behaviour. Primarily, we can use simple stability
analysis. The non-zero steady state is given by A∗ = N(1−α/w). Setting g(A) = dA

dt
,

this equilibrium point is stable if g′(A∗) < 0. Thus,

g′(A) = (w − α) − 2w
A

N
⇒ g′(A∗) = (w − α) − 2w

N(1 − α/w)

N
= α − w.

Borrowing from epidemiology, we define the threshold R0 = w
α

. If R0 > 1, we see
that g′(A∗) = α − w < 0 and the non-zero steady state is stable. Figure 1 illustrates
the differing behaviour of the solution to the above ODE for R0 < 1 (sub-critical),
R0 = 1 (critical), and R0 > 1 (super-critical).

2.1 Firing Neurones and Avalanches

Instead of focussing on the average activity level across the network, we will instead
look at the size distribution of firing neurones following one firing event. To do this,
we begin with a fully quiescent network and initially activate just one neurone. We
then record the total number of neurones that fire (the number of quiescent to active
transitions) until the network returns to the fully quiescent state. We use this process
of sequential activation as our definition of an avalanche and our main interest is
the distribution of the avalanche sizes. Unfortunately, the simple ODE approach will
not provide us with this distribution. To calculate this distribution, we use the semi-
analytic approach described in the following section.

2.2 Tree Approach to the Avalanche Distribution

We begin by defining qi as the probability the next transition is a recovery (from A to
Q) given i active neurones (i > 0). The probability the next transition is an activation
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Fig. 2 First six levels of the probability tree. Red numbers are the number of active neurones, black values
are the probability of transitions between levels and sub levels

is then 1 − qi and we have:

qi = αN

w(N − i) + αN
= N

R0(N − i) + N
,

1 − qi = w(N − i)

w(N − i) + αN
= R0(N − i)

R0(N − i) + N
.

In order to calculate the avalanche size distribution, we adopt a recursive approach.
We begin by considering the process unfolding in a tree-like manner with 1 initially
active neurone. The tree can be divided into levels based on the number of transitions
that have occurred and how the process is unfolding. Let level j contain the possible
number of active neurones after j transitions. The recursive tree approach relates the
probability of transition between levels to the final avalanche size. Figure 2 illustrates
the initial levels of this process.

To continue we define pi
j as the probability of having i active neurones on level

j with i = 0,1,2, . . . ,N and j ∈ N0. Assuming initially only one active neurone, we
immediately see that p1

0 = 1, p2
1 = 1 − q1 and p0

1 = q1. To proceed, we will consider
the probability of having a particular number of active neurones on an arbitrary level.
First, we note the following relation between levels:

pi
j =

⎧⎪⎪⎨
⎪⎪⎩

p2
j−1q2, if i = 1,

pi−1
j−1(1 − qi−1) + pi+1

j−1qi+1, for 1 < i < N,

pN−1
j−1 (1 − qN−1), if i = N.
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We now define:

p(l) =
⎛
⎜⎝

p1
l
...

pN
l

⎞
⎟⎠ .

We can now write p(l + 1) = A · p(l) where matrix A is given by the following
tridiagonal matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c1
. . .

. . .
. . .

. . .
. . .

. . .

bi 0 ci

. . .
. . .

. . .

. . .
. . .

. . .

bN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with bi = (1 − qi−1) and ci = qi+1.
On the j th level of the tree, the probability of only 1 neurone being active is given

by p1
j . As on level 0, we began with only a single active neurone then for j odd, p1

j is
always equal to zero. For j even, say j = 2k, then as we began with only one active
neurone on level 0, to have only one active neurone on level j means that k firings
must have occurred. We can then calculate the probability of zero active neurones
after k firings as q1p

1
2k ; this is thus the probability, P(k + 1), of having an avalanche

of size k + 1 (or size k if we were not to include the initial active neurone). Setting
e = (1,0,0, . . . ,0)T and noting that p1

2k = eT A2ke we have P(k + 1) = q1e
T A2ke.

To calculate the distribution, we implemented this recursive method of calculation
in the MATLAB® environment. Whilst this result is exact, and will be referred to as
such henceforth, it can only be calculated numerically via recursion and cannot be
given in the form of a closed expression.

2.3 Simulations of Neuronal Avalanches

In order to check the validity of our method, we performed simulations of the firing
neurones using the Gillespie algorithm [38]. Due to the network being fully connected
the algorithm is relatively straightforward:

• As earlier, let A be the number of active neurones in the network (Q the number
of quiescent). Given that an individual neurone becomes quiescent at rate α then
the total rate of (Active → Quiescent) transitions is given by raq = Aα. Similarly,
the total rate of (Quiescent → Active) transitions is given by rqa = f (si)Q =
f (si)(N − A).

• Let r = raq + rqa and generate a timestep dt from an exponential distribution of
rate r .
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Fig. 3 Avalanche distributions. Results from the simulations of the avalanche distributions for the subcrit-
ical (R0 < 1, blue), critical (R0 = 1, green) and supercritical (R0 > 1, red) regimes for a network of size
N = 800. For each regime 2,000,000,000 avalanches were simulated. The corresponding exact solutions
are shown in black

• Generate a random number n between 0 and 1. If n <
raq

r
an active neurone turns

quiescent, otherwise a quiescent neurone is activated (fires). This event is said to
occur at time t + dt and the network is updated accordingly.

2.4 Exact Solution Compared to Simulation

Values of the threshold, R0, were chosen less than, equal to and finally above 1.
We will refer to these regimes as subcritical, critical, and supercritical, respectively.
Figure 3 illustrates the, as expected, good agreement between the simulations and the
exact result for the three different regimes of R0.

2.5 Comparing the Exact Solution to a Closed Form Approximation

In [36], Kessler proposed a closed solution to the analogous susceptible-infected-
susceptible (SIS) problem where he was interested in the number of infections (in-
cluding reinfections) occurring over the course of an epidemic. For small avalanche
sizes where the number of infectives is negligible compared to the network size, the
transition probabilities can be approximated as

qi = N

R0(N − i) + N
≈ 1

R0 + 1
,

1 − qi = R0(N − i)

R0(N − i) + N
≈ R0

R0 + 1
.

In the critical regime R0 = 1, the problem reduces to calculating the distribution of
first passage times of a random walk with equal transition probabilities. Thus, for
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Fig. 4 Closed solution versus exact. Plot of the closed solution (red solid line) versus the exact solution
(black dots) for a network of size N = 800 operating in the critical regime

avalanche sizes in the range, 1 � n � √
N , Kessler [36] gave the following distribu-

tion based on Stirling’s approximation:

P(n) = 1

22n−1

[(
2n − 2

n − 1

)
−

(
2n − 2

n

)]
≈ 1√

4πn3
. (1)

We note however that the range over which the distribution can be shown to be a
power law is rather limited and for small networks will not hold. Using the theory of
random walks and a Fokker–Planck approximation, Kessler also derived the follow-
ing closed solution to the probability distribution of infections in the critical regime
(R0 = 1) for larger sizes:

P(n) = 1√
4πN3

exp(n/2N) sinh−3/2(n/N) (n 
 1). (2)

Figure 4 plots this approximation against our exact solution for a network of size N =
800. To more formally assess the convergence of the approximate solution to that of
our exact solution, we considered the probabilities of avalanches from size N/10
to 20N and measured the difference between the distributions using two different
metrics. Letting Pe(n) be the exact probability of an avalanche of size n and Pk(n)

be the Kessler approximation to this, we first considered the standard mean square
error given by

Error(N) = 1

R

20N∑
n=N/10

(
Pe(n) − Pk(n)

)2 where R = 20N − N/10 + 1.

Secondly, we considered a more stringent measure of the error by looking at the
supremum of difference between the same range of avalanches

Error(N) = sup
n

∣∣Pe(n) − Pk(n)
∣∣.
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Fig. 5 Convergence of closed solution to exact. a Here the mean square error is given by the blue line and
O(N2) and O(N3) convergence represented by the black and red lines respectively. b Here the supremum
error is given by the blue line and O(N4) and O(N5) convergence represented by the black and red lines
respectively

Figure 5 illustrates the two errors for increasing network size and both show how the
proposed closed solution is indeed converging to that of the exact.

3 Scale-Free Behaviour in the R0 = 1 Regime

Whilst Eq. (1) gives a power law, this equation only holds over a limited range. Equa-
tion (2), in turn, is neither a power law nor a truncated power law. Here, we assess the
range over which the distribution of sizes can be said to exhibit scale-free behaviour.
For a rigorous assessment of this range, we employ a subset of the model selection
approach described by Clauset and colleagues [24]. Specifically, we consider 100,000
of the simulated avalanches described earlier, and fit a truncated power law distribu-
tion of the form P(x) = Cx−α to avalanches up to size xmax = 9

10N (the choice of
this upper bound will be justified in the following section) by using the maximum
likelihood method (here C is a normalising constant to keep the sum of the distribu-
tion between [xmin, xmax] equal to 1). We do this by finding values of α and xmin that
maximise the probability of obtaining our simulated avalanches given the fitted dis-
tribution. Next, we randomly generate 1,000 data sets from the fitted distribution and
compute the difference between these synthetic data sets and the fitted form (using
the Kolmogorov–Smirnov statistic). Similarly, we compute the difference between
our simulations and the fitted power law. The p-value is then calculated as the pro-
portion of synthetic data sets that are further away from the theoretical distributions
than our simulations. As per [24], the hypothesis (that the data comes from a power
law) is rejected if the p-value is less than 0.1. Note that in the model selection ap-
proach, should the hypothesis not be rejected, then one should test alternative models
and use an information criterion to identify the best model. However, our focus here
is purely on assessing whether our distribution can be said to behave like a power law
distribution (we know it is not actually a power law) and therefore alternative models
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Fig. 6 Fitted distributions. Out of 100,000 of the observed avalanches we fit the 98,833 whose size was
less than 9

10 N . a The fitted probability distribution function (black line) fitted over the simulated avalanche
distribution (blue dots). b The fitted cumulative distribution function (black line) fitted over the simulated
avalanche distribution (red dots)

were not tested. With 100,000 avalanches, we obtained a p-value of 0.382 leading us
not to reject the hypothesis that the distribution was power law (see Fig. 6). Since the
distribution is not a power law, we would expect that upon considering a larger num-
ber of avalanches, this hypothesis should be rejected [23]. Indeed, using data from
1,000,000 avalanches yielded a p-value of 0, i.e., the truncated power law is not an
appropriate model for the distribution.

The fact that the truncated power law was a plausible fit for the fewer number of
avalanches (note that 100,000 is of the same order of magnitude as the number of
avalanches typically reported in in vitro or in vivo studies of neuronal avalanches)
is indicative of the partial scale-free behaviour the model exhibits. The appeal of the
concept of critical brain is that the critical regime is the one in which long-range
correlations keep the system poised between too highly correlated states of no be-
havioural value and too weakly correlated states that prevent information flow [39].
Thus, the actual nature of the distribution of the avalanche size matters less than
any indication of the presence of long range correlations. In other words, neuronal
avalanches need not precisely follow a power law, they just need to exhibit similar
behaviour. It is important to appreciate this distinction. As the exact solution to the
distribution of avalanche sizes is known, we can then compare it visually with a fit of
a truncated power law over avalanche sizes from 1

10N to 9
10N . This is done in Fig. 7,

which confirms that over a limited range of sizes the distribution is well approximated
by a power law.

4 Origin of the Distribution’s Truncation

The fact that we have an exact form for the distribution allows us to make further
important observations about some of its characteristics. Here, we explore the origin
of the distribution’s truncation. Let λ1, λ2, . . . , λN be the eigenvalues of A with the
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Fig. 7 Power law fit of the exact solution. Main: plot of the truncated power law (red line) fitted over
the entire range of the exact distribution (black dots). Inset: Fitted power law and exact distribution in the
range [ 1

10 N, 9
10 N ]

corresponding eigenvectors u1, u2, . . . , uN . The initial condition can then be given
as p(0) = c1u1 + c2u2 + · · · + cNuN . As the matrix A is similar to a symmetric
tridiagonal matrix with real entries (consider the diagonal similarity transformation
matrix D, with D1 = 1 and Dj = √

(bj bj−1 · · ·b2)/(cj−1cj−2 · · · c1)), we know that
its eigenvalues are real.

Using the property Auj = λjuj we then obtain p(k) = c1λ
k
1u1 + c2λ

k
2u2 + · · · +

cNλk
NuN . This calculation leads to the probability of an avalanche being of size n

being:

P(n) = q1

N∑
i=1

diλ
2n
i , (3)

where q1 is the probability that the next transition is a recovery (from A to Q) given
1 active neurone (as defined earlier), λi are the eigenvalues of the transition matrix
A and di are specified by the eigenvectors of the transition matrix and the initial
conditions. We note that the earlier equation, p(0) = c1u1 + c1u1 + · · · + cNuN , can
be solved to obtain ci . Using this, we can then calculate di as the first entry of the
vector ciui . Equation (3), which is exact, thus demonstrates that the distribution of
avalanche sizes is a linear combination of exponentials.

The structure of A (namely the all zero diagonal) means that if u = (u1, u2, . . . ,

uN−1, uN) is an eigenvector with corresponding eigenvalue λu, then v = (u1,−u2,

. . . , (−1)NuN−1, (−1)N+1uN) is an independent eigenvector with corresponding
eigenvalue −λu (here, and in all that follows, we are assuming N is even; for N

odd there is an additional zero eigenvalue). Setting Ñ = N
2 and ei = di + dN−i+1

allows us to rewrite Eq. (3) as

P(n) = q1

Ñ∑
i=1

eiλ
2n
i . (4)
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Fig. 8 Exponential cutoff. Exact avalanche distribution (black dots), plotted against a distribution assum-
ing only the leading eigenvalue is non-zero (blue dots). Avalanches greater than the system size, N = 800,
appear after the dashed line

Assuming the lead eigenvalue is denoted by λ1, then for all i, λi < λ1 and we have

P(n)

q1e1λ
2n
1

=
Ñ∑

i=1

eiλ
2n
i

e1λ
2n
1

= e1

e1

(
λ1

λ1

)2n

+ e2

e1

(
λ2

λ1

)2n

+ · · · + e
Ñ

e1

(
λ

Ñ

λ1

)2n

.

Taking the limit as n increases, we find

lim
n→∞

P(n)

q1e1λ
2n
1

= 1.

Hence, P(n) ∼ q1e1λ
2n
1 and for larger avalanche sizes we have the leading eigen-

value dominating thus giving the exponential cutoff observed. We illustrate this con-
vergence in Fig. 8 where we plot the exact avalanche distribution, P(n), against
q1e1λ

2n
1 . This figure also illustrates that the leading eigenvalue begins to dominate

for avalanches just over the system size. It is for this reason that we chose an upper
bound of 9N

10 when fitting a power law to the distribution of avalanche sizes in the
previous section.

Such a distribution as (4) could converge to a true power law under two important
conditions:

1. the eigenvalues are well approximated by a geometric distribution, i.e., they are in
the form λi = Ke−(μ/2)i ,

2. the constants, ei , are well approximated by ei = Liq ,
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where K , μ, L, and q can be inferred via a numerical fitting procedure. In such a
scenario, Eq. (4) can be rewritten to give

P(n) = C

Ñ∑
i=1

iq
(
eμn

)−i
, (5)

where C is a given constant. In the limit of an infinite network size, we then have

P(n) = C

∞∑
i=1

iq
(
eμn

)−i
. (6)

While P(n) can be found based on standard mathematical arguments, we have cho-
sen to use results derived in the context of the Z-transform. The standard results for
integer values of q give

∞∑
i=1

iqz−i = (−1)qDq

(
z

z − 1

)
, (7)

where D is an operator such that D(f (z)) = z
d(f (z))

dz
. For a fixed integer value of q ,

an approximation for P(n) can be obtained by simply applying the operator as many
times as necessary and then substituting z = eμn. For q = 1, for example, P(n) ∝

eμn

(eμn−1)2 which for small values of μ is well approximated by 1
μ2

1
n2 .

These results only hold for integer values of q so an alternative approach is to
approximate the sum for P(n) in terms of an integral. Taking into account the special
form for the eigenvalues and constants, P(n) can be approximated as follows:

P(n) = C

∞∑
i=1

iq
(
eμn

)−i � C

∫ ∞

0
xqe−μnx dx. (8)

The latter integral can be interpreted as a Laplace transform of xq , and thus yields

P(n) � C
Γ (q + 1)

μq+1

1

nq+1
. (9)

It is worth noting that this result is consistent with that obtained for integer values
of q .

For a simple empirical verification of this conjecture, we determined the values
of K , μ, L, and q in the above conditions through numerical fitting of the first 23
eigenvalues and e constants of the exact distribution for a network of size N = 800
(see Fig. 9(a), (b)) and compared the resulting probability distribution with the exact
distribution. Whilst the lesser valued eigenvalues and larger e values were not fitted
well, Fig. 9(c) shows there is still remarkable agreement between both curves over
a broad range of values, including the range [ 1

10N, 9
10N ] over which a power law

like behaviour was established earlier (see Fig. 7). This result clearly illustrates the
dominance of the larger eigenvalues and, given that the fitted distribution converges
to a power law, gives support to the conjecture that the exact distribution would do so
in the limit of an infinite network.
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Fig. 9 Possible origin of the power law for large systems. a Actual distribution of eigenvalues λi (black
crosses) along with fitted distribution (blue dots). b Actual distribution of constants ei (black crosses)
along with fitted distribution (blue dots). c Exact distribution of avalanche sizes (black crosses) along with
distribution resulting from fitted distributions of λi and ei (blue dots). All plots are for a network of size
N = 800 operating at criticality

5 Other Markers of Criticality

Since the distribution of avalanche sizes in the finite-size critical system does not
necessarily follow a true power law, the application of robust statistical testing in
experimental conditions could well lead to rejecting the hypothesis that the data may
come from a system operating in the critical regime. Therefore, in this section, we
consider two experimentally testable markers of criticality: critical slowing down and
divergence of susceptibility. We will define those concepts below but first we briefly
summarise Van Kampen’s system size expansion [40], which we use to illustrate
those markers on our system.
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5.1 System Size Expansion

For generality, we now assume that each neurone receives a constant external input
and that the activation function can take forms other than the simple identity function.
We define the probability that the number of neurones active at time t is n as Pn(t).
Then the master equation can be given as

dPn(t)

dt
= α(n + 1)Pn+1(t)

− αnPn(t)

+ f

(
w(n − 1)

N
+ h

)(
N − (n − 1)

)
Pn−1(t)

− f

(
wn

N
+ h

)
(N − n)Pn(t).

The idea of the system size expansion is to now model the number of active neurones
as the sum of a deterministic component scaled by N and a stochastic perturbation
scaled by

√
N , i.e.,

n(t) = Nμ(t) + N1/2ξ(t).

A more detailed explanation of this can be found in [12] and [40], but importantly
what is obtained is the following set of equations for μ (which is the solution to the
mean field equation of the proportion of active neurones), 〈ξ 〉 (the expected value of
the fluctuations) and σ 2 = 〈ξ2〉 − 〈ξ 〉2 (the variance of the fluctuations)

∂μ

∂t
= −αμ + (1 − μ)f̂ , (10)

∂〈ξ 〉
∂t

= −(
α + f̂ − wf̂ ′(1 − μ)

)〈ξ 〉, (11)

∂〈σ 2〉
∂t

= −2
(
α + f̂ − wf̂ ′(1 − μ)

)〈
σ 2〉 + (

αμ + (1 − μ)f̂
)
. (12)

Here, f̂ = f (wμ + h) and f̂ ′ = f ′(wμ + h). These equations, in turn, give the fol-
lowing equations for the mean, A, and variance, Aσ , of the number of active neu-
rones:

A = Nμ + N−1/2〈ξ 〉
= Nμ (assuming we know the initial number of active neurones), (13)

Aσ = N
〈
σ 2〉. (14)

We make use of these equations in the following two sections.
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5.1.1 Critical Slowing Down

In dynamical systems theory, a number of bifurcations, including the transcritical
bifurcation in our system, involve the dominant eigenvalue characterising the rates of
changes around the equilibrium crossing zero. As a consequence, the characteristic
return time to the equilibrium following a perturbation increases when the threshold
is approached [41]. This increases has led to the notion of critical slowing down as
a marker of critical transitions [42]. Here, we illustrate the critical slowing down of
our model with the analytic derivation of the rate of convergence to the steady state
(this derivation has been previously shown by [43]). We first begin by calculating the
analytic solution to Eq. (10) for the percentage of active neurones. We again consider
the case where f is the identity function and can thus write

∂μ

∂t
= −αμ + (1 − μ)f (wμ + h) = −αμ + (1 − μ)(wμ + h). (15)

Assuming zero external input (h = 0), we have

∂μ

∂t
= −αμ + (1 − μ)(wμ + h) = −αμ + (1 − μ)wμ. (16)

We are interested in the solution of this equation and consider the result for different
values of α. Firstly, we consider α �= w. In this case, we have

∂μ

∂t
= −αμ + (1 − μ)wμ = μ(w − wμ − α). (17)

Integrating this using separation of variables and the initial condition μ(0) = μ0, we
find

μ(t) = w − α

Ae(α−w)t + w
where A = μ0

w − wμ0 − α
. (18)

The solution to this depends on whether α < w or α > w (R0 > 1 and R0 < 1, re-
spectively). If α < w, then as t → ∞, μ → w−α

w
. If α > w then as t → ∞, μ → 0.

Note that in both cases, convergence of the number of active neurones to the steady
state solution is exponential.

Now we consider the solution when α = w, i.e., the critical regime

∂μ

∂t
= −αμ + (1 − μ)αμ = −αμ2 ⇒ μ(t) = 1

αt + μ−1
0

.

Thus, as t → ∞ we find μ(t) → 0. However, unlike for R0 �= 1, convergence to the
steady state exhibits a power law dependence on time [43].

5.1.2 Divergence of Susceptibility

A correlate of the phenomenon of critical slowing down is that of the divergence
of susceptibility of the system as the system approaches the bifurcation [42]. In this
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section, we investigate the behaviour of the equation for the variance. For simplicity,
we consider again the case of the identity activation function and a non-driven system
h = 0. First, we use Eq. (12) to calculate the variance in the percentage of active
neurones:

∂σ 2

∂t
= −2

(
α + f̂ − wf̂ ′(1 − μ)

)
σ 2 + (

αμ + (1 − μ)f̂
)

= −2
(
α + wμ + h − w2(1 − μ)

)
σ 2 + (

αμ + (1 − μ)(wμ + h)
)

= −2
(
α + wμ − w2(1 − μ)

)
σ 2 + (

αμ + (1 − μ)wμ
)
.

Setting this equal to zero and rearranging, we obtain

σ 2 = (αμ + (1 − μ)wμ)

2(α + wμ − w2(1 − μ))
= (μ + (1 − μ)R0μ)

2(1 + R0μ − R0w(1 − μ))
.

Here, we note that unlike the equation for μ where there was only the single bi-
furcation parameter R0, we now have the additional dependence on w. To maintain
consistency with earlier results, we now set w = 1 to obtain

lim
t→∞σ 2(t) =

⎧⎪⎨
⎪⎩

α if α < 1 (R0 > 1),
1
2 if α = 1 (R0 = 1),

0 otherwise (R0 < 1).

Using Eq. (14), we obtain

lim
t→∞〈A〉σ = lim

t→∞N
〈
σ 2〉 =

⎧⎪⎨
⎪⎩

N
R0

if R0 > 1,
N
2 if R0 = 1,

0 otherwise (R0 < 1).

Figure 10 illustrates the jump to a non-zero steady state when the critical value R0 = 1
is approached from below, and the divergence in variance when it is approached from
above.

Here, it should be noted that any finite-size network has a zero absorbing state so
that eventually all activity will die out irrespective of the value of R0. However, it
has been shown that the ODE limit is a valid approximation to the solution of the
master equation for reasonably sized systems with values of R0 greater than 1 and
only over a finite time horizon (see [44] for further discussion). Defining the true
(i.e., calculated directly from the master equation for P(n)) expected value of active
neurones at time t as Ã(t), the convergence of the ODE approximation for A(t) given
by Eq. (13) is such that for any t ≥ 0 limN→∞ |A(t) − Ã(t)| = 0 [45].

6 Discussion

Over the last decade or so, the search for evidence that the brain may be a critical sys-
tem has been the focus of much research. This is because it is thought that a critical
brain would benefit from maximised dynamic range of processing, fidelity of infor-
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Fig. 10 Divergence of susceptibility. Analytic result for the steady state of the variance as R0 approaches
1 in a network of size N = 800. Results only provided down to α = 2/3 for clarity

mation transmission and information capacity [46]. Whilst support for the critical
brain hypothesis has emerged from comparing brain dynamics at various scales with
the dynamics of physical systems at criticality (e.g., [31, 34, 47–50]), in this paper,
we focus on the important body of work that has relied on characterising power laws
in the distributions of size of neuronal avalanches [8, 30]. Our focus on this scale is
motivated by empirical considerations regarding how one can go about demonstrating
the above functional properties. Shew and Plenz [46] remark that any research strat-
egy to test whether these properties are optimal near criticality will have to achieve
two criteria: a means of altering the overall balance of interactions between neurones
and a means of assessing how close to criticality the cortex is operating. As argued
by these authors, the study of neuronal avalanches offers the greatest likelihood of
achieving those two criteria.

The importance of a robust assessment of the statistical properties of the avalanche
size is therefore two-fold: on the one hand, it is about ascertaining the extent to which
the system being studied has the statistical properties expected of a system operating
at, or near, criticality; on the other hand, it is about being able to confirm that a manip-
ulation/perturbation of the system aimed to push the system away from this critical
regime has been effective. This consideration therefore puts a lot of importance on
the description of the statistics one should expect in such a system. In the current
literature, the assumption of the distribution of avalanche sizes taking a power law
functional form relies on an analogy between the propagation of spikes in a neuronal
network and models of percolation dynamics or branching processes for which ex-
act power laws have been demonstrated in the limit of system size. As a result of the
importance of having a robust assessment of the expected presence of a power law,
greater emphasis has recently been put on using a sound statistical testing framework,
e.g., [24]. Whilst we are unaware of any study in which the criticality hypothesis was
rejected due to failure of rigorous statistical testing (which we suspect is due to the
necessarily small number of observations, as we will argue below), there is clear evi-
dence that many authors are now using the methods of Clauset et al. [24] to confirm
the criticality of their experimental findings, e.g., [12, 23, 29]. As a result, we feel that
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it is all the more important to confirm that the assumed power law functional form
is indeed a sensible representation of what one should expect in in vivo and in vitro
recordings, which, unlike the physical systems considered when deriving the power
law statistics, are finite-size systems. The aim of the paper was therefore to consider
a model of neuronal dynamics that would be simple enough to allow the derivation
of analytical or semi-analytical results whilst (i) giving us a handle on the parame-
ter controlling the fundamental principle thought to underlie criticality in the brain,
namely, the balancing between processes that enhance and suppress activity (note
that we are intentionally not referring to excitation and/or inhibition—we will return
to this below) and (ii) allowing us to determine its distribution of avalanche sizes
when operating in the critical regime. Note that because we are using a finite-size
system, we are appealing to a normal form of standard bifurcation, here, a transcrit-
ical bifurcation, because it embodies all that needs to be known about the ‘critical’
transition (Sornette, private communication).

Our semi-analytic derivation of the true distribution of avalanche sizes in a finite-
size system suggests that, even though it is approximately scale free over a limited
range, the distribution is not a true power law. First, this has important implications
for the interpretation of results from a robust statistical assessment of the distribu-
tion. Indeed, as has been discussed by Klaus and Plenz [23], with a large number of
samples, any distribution that deviates from the expected distribution by more than
noise due to sampling, will eventually yield a p-value such that the power law hy-
pothesis will be rejected, thus leading to the potentially incorrect conclusion that the
system is not critical. This is the case in our scenario where using 106 avalanches
lead to a rejection of the criticality hypothesis even though the system is tuned to the
critical regime. In contrast, with 105 avalanches (which is consistent with empirical
observations), a p-value above threshold leads to not rejecting the hypothesis that the
distribution is a power law even though we established it is not one.1 This finding
therefore provides an important counterpart to the analytical results of Touboul and
colleagues [29] who showed that thresholded stochastic processes could generically
yield apparent power laws that only stringent statistical testing will reject. Whilst the
stringent testing will reject the hypothesis of criticality for a system that is not nec-
essarily critical, it may also reject the hypothesis of criticality for a system that is
critical only because the actual distribution is not actually a power law. This ambigu-
ity of the avalanche distribution in the finite-size system therefore requires that one
should carefully consider to what fundamental property the idea of a critical brain
actually appeals to. We suggest that the key appeal is that the brain can exhibit long-
range correlations between neurones without it ever experiencing an over saturation
of activity or long periods of inactivity. It then follows that the importance is not in
the exact distribution obtained but in the approximately scale-free behaviour it ex-
hibits. In turn, this highlights the importance of looking at other markers of criticality
(which we will discuss below).

Another important result of this work is to provide the beginning of a mechanis-
tic explanation for an often alluded to (e.g., [51]) but never properly treated (as far

1As the power law is not a sufficient condition of criticality, one should not infer from this that the system
is indeed critical, however, this step is commonly taken in published reports and that is worth mentioning
here.
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as we are aware) observation that whereas avalanches in a critical system with re-
entrant connections could in principle be arbitrarily long, and certainly, exceeding
the number of recording sites, neuronal avalanches in in vitro or in vivo systems (and
many computational models of self-organised criticality) often show a cut-off at the
number of sites. Our work suggests that the lead eigenvalue of the transition matrix
between states fully determine the location of this cut-off, which turns out indeed to
be at about the system size, even if avalanches of up to 20 times the system size can
be observed. This finding therefore provides some justification for setting, or accept-
ing, a bound within which to apply a Clauset-type methodology (we note that various
reports use different ranges, e.g., 80 % of system size in [17], roughly system size in
[51]). It is worth remembering that the number of recording sites can have profound
implications on the nature of the distribution observed [21].

In addition to providing results on the distribution of avalanche sizes, we also
sought to explore other potential markers of criticality. We provided results on two
other markers of criticality—critical slowing down and divergence of susceptibility—
both of which again follow from a dynamical systems appreciation of a critical bifur-
cation, i.e., the behaviour of a system whose lead eigenvalue crosses zero. The appeal
of those markers, which have been documented in many other natural processes, e.g.,
[42, 52], but seldom at the mesoscopic brain level2 (see [53] for a rare example) is
that (a) they strengthen the assessment of the system being critical and (b) may con-
tribute to achieving the second criterion of Shew and Plenz [46]. Although the authors
are not in a position to provide explicit recommendations for an experimental design,
we believe that these markers are amenable to robust experimentation, e.g., through
pharmacological manipulation.

Whilst we hope we have convinced the reader of the potential importance of these
findings, we also need to recognise that the very simplicity that makes analytical
work possible does also raise questions regarding how physiologically plausible such
a model is and, therefore, whether its conclusions should be expected to hold. Below,
we address a few of the points worthy of further consideration.

6.1 Validity of Inferring Criticality in a Finite Network

In using the meanfield equations, it is important to understand how well they capture
the behaviour and bifurcation structure of the stochastic process they are approxi-
mating. Whilst it is known that on the complete graph (see [54] for instance) and in
the limit N → ∞ the steady state solution of the ODE will converge to the expected
value of the comparable stochastic process, it is unclear whether the critical point
of the infinite system corresponds to that in the finite system. Furthermore, it is un-
clear whether a finite system can truly have a critical point and we must be cautious
in claiming one exists. Importantly, however, it has been shown in [55] that for a
complete graph, R0 ≈ 1 (the paper proves the result for α fixed as 1 but the result is
generalisable for any α) is the threshold below which the disease will die out quickly
(expected time to extinction O(log(n))), and above which it dies out slowly (expected

2Strictly speaking the notion of critical slowing in neurones firing near firing threshold appeals to the same
notion.
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Fig. 11 Steady state versus R0 . Plot of the steady state (averaged over 500 simulations at time t = 150)
obtained at R0 values around the putative critical value of 1

time to extinction O(na) for some a). Simulating the steady state of the network for
increasing R0 also shows (see Fig. 11) the characteristic feature of a second-order
phase transition found at a critical point. For these reasons, whilst acknowledging the
problem of inferring criticality in a finite regime, we feel justified in claiming R0 = 1
as the critical point for the process unfolding on our finite network.

6.2 Validity of a Purely Excitatory Network

In this paper, we have used a purely excitatory neuronal model. This not only sim-
plifies the system but is also an important characteristic of the brain during early
development. Experimental results have shown that during early development, be-
fore birth, GABAergic neurones (i.e., neurones which will later be inhibitory) have a
depolarising effect on their post-synaptic neighbours [56–58]. Thus, our model might
be considered as representative of early development. Power law statistics have been
observed in early development at a time when networks are thought to be purely ex-
citatory [32, 59]. It should be noted that this approach has the benefit of casting a new
light on the question of what is the minimum requirement for a neuronal system to
show criticality. To a large extent, the current literature has been focused on a form
of homeostasis resulting from either a fine balance between excitation and inhibi-
tion, e.g., [12, 13] or some relatively complex dynamical processes at synaptic level,
e.g., [17]. Our results show that a purely excitatory system can show the exact same
behaviour such that on average each active neurone only activates one postsynaptic
neurone. Here, this balanced state is achieved through a trade-off between the rates at
which neurones become active and quiescent. It should be noted that this formulation
of the problem leads to interesting parallels with classical models of mathematical
epidemiology, which the authors intend to continue exploring.

6.3 Spatial Structure

To make use of the analytic tractability of the mean field equation it was necessary to
consider a fully connected network. While this is not true of the whole brain, it may
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be closer to the reality of the kind of in vitro systems typically considered in studies
of neuronal avalanches. For example, Hellwig et al. [60] report up to 80 % connec-
tion probability in local connectivity between pyramidal neurones in layers 2/3 of the
rat visual cortex. Extending the work presented here to consider the effect of network
topology on the system’s dynamics and the resulting distribution of event sizes would
be of particular interest from a developmental viewpoint (see, for instance, Larremore
et al. [61], who have considered the avalanche distribution of general tree-like net-
works with discrete dynamics). As networks mature, there is not only a switch to
inhibition by a proportion of the neurones (the so-called GABA switch), but also a
subsequent pruning of synaptic connections [62]. The level of pruning is high, with a
40 % reduction in the number of synaptic connections between early childhood and
adulthood [62]. Thus, a developing network may be more readily approximated by a
fully connected network than an adult neural network would be.

The lack of a spatial embedding of our model is in contrast with many classical
models of criticality, and also with physiological systems. Accordingly, our model
cannot display another important marker of criticality, namely, the divergence of cor-
relation lengths in space. A spatial embedding is not needed for our system to be
critical and to exhibit a distribution of avalanche size similar to that observed in phys-
iological neuronal avalanches. It therefore begs the question of the exact role of spa-
tial embedding in the dynamics of neuronal avalanches. It may well be that, just like
balanced activity in our model comes about from a trade-off between excitation and
refractoriness rather than between excitation and inhibition, specific spatial embed-
dings may enable balanced activity without the need for plastic mechanisms. Kaiser
and Hilgetag [63] showed that hierarchical modular networks can lead to limited
sustained activity whereby the activity of neural populations in the network persists
between the extremes of either quickly dying out or activating the whole network.
Roxin and colleagues [64] observed self-sustained activity in excitable integrate-and-
fire neurones in a small-world network, whose dynamics depends sensitively on the
propagation velocity of the excitation.

6.4 Non-driven Case

Finally, in this paper, we have focused on the non-driven case h = 0. Whilst this
constraint allowed the derivation of analytical results, it obviously contrasts with the
reality of a physiological system unless one considers that any ‘external’ input oper-
ates at such a slower timescale that one could assume separation of time scales (an
important assumption in the self-organised criticality framework). However, the fact
that binning is required for identifying avalanches in physiological recordings sug-
gests that this separation of time scales is unlikely. Whilst the introduction of a non-
zero h in our model does not affect the results obtained using finite size expansion, it
does effectively make it impossible for the system to operate at R0 = 1. A thorough
investigation of the driven case (h > 0) will be the subject of the companion paper.
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