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Abstract Clustering is the propensity of nodes that share a common neighbour to be
connected. It is ubiquitous in many networks but poses many modelling challenges.
Clustering typically manifests itself by a higher than expected frequency of triangles,
and this has led to the principle of constructing networks from such building blocks.
This approach has been generalised to networks being constructed from a set of more
exotic subgraphs. As long as these are fully connected, it is then possible to derive
mean-field models that approximate epidemic dynamics well. However, there are
virtually no results for non-fully connected subgraphs. In this paper, we provide a
general and automated approach to deriving a set of ordinary differential equations,
or mean-field model, that describes, to a high degree of accuracy, the expected values
of system-level quantities, such as the prevalence of infection. Our approach offers
a previously unattainable degree of control over the arrangement of subgraphs and
network characteristics such as classical node degree, variance and clustering. The
combination of these features makes it possible to generate families of networks with
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different subgraph compositions while keeping classical network metrics constant.
Using our approach, we show that higher-order structure realised either through the
introduction of loops of different sizes or by generating networks based on different
subgraphs but with identical degree distribution and clustering, leads to non-negligible
differences in epidemic dynamics.

Keywords Network · Subgraph ·Motif · High-order structure · Epidemic

Mathematics Subject Classification 05C82 · 37N25 · 60J28

1 Introduction

Network models have revolutionised our way of thinking about complex phenomena
such as the spreading of disease, information transmission and processing in the brain,
and the formation and interaction of social groups. Mathematical epidemiology, in
particular, has embraced and benefited greatly from the use of networks as a modelling
paradigm, with examples ranging from data-driven models (Tildesley et al. 2010;
Barabási and Albert 1999; Kiss et al. 2006) to theoretical models (Newman 2002;
Pastor-Satorras and Vespignani 2001; Keeling 1999a; Kiss et al. 2013; Miller et al.
2011). These have been used to study the impact of different network properties
on how diseases break out and spread. Network models have led to greater clarity
in understanding and quantifying the impact of contact heterogeneity, preferential
mixing and community structure, including households (Ball and Lyne 2001; Ball
et al. 2010). Although clustering of contacts or transitivity, i.e., the propensity of
nodes with a common neighbour to be connected, is pervasive in many real-world
networks, it continues to pose many significant challenges to the community, both
from the viewpoint of network generation and, even more so, from that of deriving
well-performing approximate models.

To investigate the impact of network properties, one can either use empirical net-
works or synthetic ones that have been generated from theoretical network models
with tunable properties (Newman 2002; Karrer and Newman 2010; Molloy and Reed
1995).Many algorithms exist for clustering, but it is generally the case that focusing on
achieving a particular clustering leads to changes above and beyond those controlled
by the algorithm. This can preclude correct analysis of the impact of clustering (Karrer
and Newman 2010; Ritchie et al. 2014; House et al. 2009; House and Keeling 2010;
Keeling 1999a; Green and Kiss 2010; Milo et al. 2002; Colomer-de Simón et al. 2013;
Miller 2009; Gleeson et al. 2010; Kiss and Green 2008). When looking at the impact
of higher-order structure, for example, it is important that the degree distribution and,
if possible, the degree correlations remain the same between networks with different
clustering. Some algorithms in this direction have been proposed (Karrer andNewman
2010; Volz et al. 2011;Miller 2009; Newman 2009) and are based on the notion of sub-
graphs, where clustering is achieved by mixing fully-connected subgraph types, such
as fully-connected triples or quadruples, and non-fully connected subgraphs, such as
overlapping triangles. Using such networks, Volz et al. (2011) have developed a low-
dimensional ODE model that approximates well the expected value of a number of
system-level quantities, and Karrer and Newman (2010) have provided final epidemic
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size results for networks built by using different mixtures of subgraphs. Furthermore,
House and colleagues (2009, 2010) generalised the pairwise approach to closure at the
level of all possible subgraphs involving four nodes. However, a number of outstand-
ing issues remain. The Volz et al. model, which provides time evolution, can handle
well only fully-connected subgraphs. Karrer and Newman’s approach, which com-
bines a wider variety of subgraphs, can only characterise large-time limits. Finally, to
our knowledge, House et al.’s (2009) approach has not been compared to stochastic
simulations and it will perform poorly for heterogeneous networks.

In this paper, we provide a general and automated approach to deriving a set of
ODEs that describe, to a high degree of accuracy, the expected values of prevalence or
number of recovered individuals for networks that are generated based on an arbitrary
set of subgraphs. This is achieved by a rigorous separation of the role of nodes within
the subgraphs and by using the probability generating function (PGF) formalism to
correctly track: (a) the distribution of subgraphs to which nodes belong and (b) the
excess degree that is generalised from the classical notion of a stub of a single edge to
different corner types given by subgraphs. This is a significant step forward as it allows
us to: (a) accurately model and analyse dynamical processes on networks with higher-
order structure, thus increasing model realism, (b) map out the impact of clustering in
the classic sense, and more importantly, its impact at a higher level involving four or
more nodes (Ritchie et al. 2014), and (c) provide much needed insights into the role
of small subgraphs or network motifs/units in epidemiology and systems biology.

The paper is organised as follows. We first review how the probability generating
function (PGFs) can be used to derive ODEs that capture epidemic dynamics on
configuration model (CM) networks. Such PGF-based models operate by using the
versatile properties of the PGF whereby it allows us to keep track of the fraction of
susceptible individuals, their degree and excess degree. Next, we generalise the CM
to the hyperstub configuration model (HCM). The HCM is a network construction
algorithm that selects and connects hyperstubs as prescribed by the building blocks or
subgraphs of the network, rather than at random. With a basic understanding of both
the network and epidemic models, we then generalise the PGF formalism to HCM
networks. This section includes a step-by-step explanation of themodel derivationwith
examples for a particular network and a detailed presentation of the code-generating
algorithm. A key component of the generalised model is to label and track the position
of each and every node in all subgraphs in order to avoid any ambiguity as to the role of
nodes in non-fully-connected subgraphs. We then compare our approach to state-of-
the-art models that can, in principle, capture the system’s expected behaviour. Where
fair comparisons are possible we show that our model displays excellent agreement
with existing models, otherwise we show our model to either outperform existing
models or to produce accurate results where other models fail. Finally, we use the
generalised model to investigate the effect of loops/cycles as well as the impact of
higher-order stucture, where global clustering is kept constant, on epidemic dynamics.

2 Materials and methods

In this section we consolidate and generalise existing work centred around deriving
low dimensional, deterministic and approximate ODEs that capture the time evolu-
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tion of epidemic dynamics on configuration model networks. First, we re-introduce
the basic susceptible-infected-recovered (SIR) epidemic model on random graphs fol-
lowing Volz’s original PGF-based derivation (Volz 2008; Miller et al. 2011). This is
followed by a rigorous formalisation of the hyperstub configuration model that was
first presented by Karrer and Newman (2010). We then demonstrate how this model
may be used to generate networks of differing subgraph compositions whilst keeping
traditional networkmetrics such as first and secondmoments of the degree distribution,
clustering and where possible the entire degree distribution, equal. Section 2.3 pro-
vides a derivation of the PGF-based approximate ODEmodel that accurately captures
SIR dynamics on hyperstub configuration networks. This derivation is similar to Volz
et al.’s (2011) PGF-based extension from configuration and unclustered to clustered
networks, but generalised to incorporate arbitrary subgraphs. Finally, Sect. 3 provides
an algorithm that automatically generates and solves ODEs presented in Sect. 2.3 for
SIR epidemics on networks constructed using a user-specified set of subgraphs.

2.1 SIR epidemics on random graphs

The SIR compartmental model involves a population with three types of individuals—
susceptible, infected or recovered—whose interactions are modelled by a network.
Infection travels across edges at a per-edge rate of τ and individuals recover, inde-
pendently, at rate γ . To account for the heterogeneous contact patterns, the model is
centred around the PGF induced by the network’s degree distribution,

ψ(x) =
∞∑

k=0

p(k)xk,

where p(k) is the probability that a randomly chosen node has k links. Before we can
demonstrate the usefulness of storing the network in this compact way, we need to
define the survivor function, θ(t). First, we define infectious contact to be the event
whereby an infected node v transmits to its neighbour u, regardless of its state, i.e.,
irrespective of whether or not it is susceptible (Miller 2011). Next, we select an edge
uniformly at random, with nodes u and v at its ends, and define a direction from node v
to node u. Let θ(t) be the probability that there has never been infectious contact from
node v to node u by time t . Since an infectious contact does not depend on the state of
the receiving node, we used the same simplifying assumption as proposed in (Miller
2011), namely, “we disallow infectious contact from node u to node v”. Otherwise,
u may be infected by some other source, and in turn, infect v, thus increasing the
probability of infectious contact from v to u. This definition effectively implies that
θ(t) is independent across all edges. For example the probability that a degree two
node is susceptible at time t is given by θ(t)2, or more generally

ψ(θ(t)) =
∞∑

k=0

p(k)θ(t)k =: S(t),
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where S(t) is the fraction of susceptibles at time t . To analytically describe θ(t), we
need to consider the rate at which a node with degree one becomes infected. This
yields

d
dt

(
1 − θ(t)

)
= τθ(t)

MSI (t)
MS(t)

⇒ dθ(t)
dt

= −τθ(t)
MSI (t)
MS(t)

,

where MS(t) and MSI (t) denote the expected degree of a susceptible node and the
expected number of SI edges per node at time t . Hence, MSI (t)/MS(t) denotes the
probability that a susceptible and infected node are connected at time t . In other
words, a node which up to time t is susceptible will, on average, become infected at
rate τMSI (t)/MS(t). It turns out that MS(t) can be computed using the PGF and is
given by

θ(t)
dψ(x)
dx

∣∣∣∣
θ(t)

=
∞∑

k=0

kp(k)θ(t)k,

which canbe interpreted as the expected degree conditional on nodes being susceptible.
To compute MSI (t) additional information from the PGF must be extracted, namely
the excess degree. This involves selecting an edge at random and following it to its
originating node. The observed degree of this node, excluding the edge by which it
was selected, is known as the excess degree and has a distribution that is generated by

g(z) = ψ ′(z)
⟨k⟩ .

As before it is possible to condition this on susceptible nodes and thus to compute the
expected excess degree of susceptible nodes

θ(t)
dg(z)
dz

∣∣∣∣
θ(t)

= θ(t)
ψ ′′(z)
⟨k⟩

∣∣∣∣
θ(t)

=: δS(t).

By assuming that the expected degree of a newly infected node is equal to the expected
degree of a susceptible node, Volz uses the above, multiplied by τ , to model the
expected number of edges the disease can spread across upon infection of a susceptible
node. This can be used to derive the equations that describe the flux between edges in
different states. Namely, these are given by

dMSS(t)
dt

= −2δSMSS(t),

dMSI (t)
dt

= −MSI (t)(τ + γ )+ 2δS(t)MSS(t) − δS(t)MSI (t),

where MSI (t)(τ + γ ), 2δS(t)MSS(t) and δS(t)MSI (t) denote the I infecting the S
or the I recovering, MSI being created by a node in a SS edge being infected by
an external source to that SS edge and, finally, the susceptible in a SI edge being
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infected by an external source, respectively. Summarising all the above yields the
complete system of equations,

dS(t)
dt

= dθ(t)
dt

ψ(θ(t)),

d I (t)
dt

= −dθ(t)
dt

ψ(θ(t)) − γ I (t),

dMSS(t)
dt

= −2δS(t)MSS(t),

dMSI (t)
dt

= −MSI (t)(τ + γ )+ 2δSMSS(t) − δS(t)MSI (t),

dθ(t)
dt

= −τθ(t)
MSI (t)
MS(t)

,

R(t) = 1 − S(t) − I (t).

This concludes the derivation for PGF-based epidemic dynamics on random networks.
Volz et al. (2011) extended this methodology to clustered networks by defining a joint
probability distribution which describes the typical number of lines and triangles allo-
cated to nodes. This particular derivation has been omitted from this paper. However,
in the following section, we will outline a further generalisation of this whereby the
joint probability specifies the distribution of subgraphs of various types around nodes.
This then leads to more complex PGFs. In Appendix 6.3, we show how the PGF used
in the main result of this paper can be made equivalent to the PGF resulting from Volz
et al.’s original edge-triangle model.

2.2 Hyperstub configuration model

In this paper we generalise the configuration model (Bollobás 1980) to the hyperstub
configuration model. Before we specify the model we need to establish how to classify
hyperstubs, the set of stubs that connect a node to a subgraph, depending on their parent
subgraph and their role within that subgraph.

To generate a hyperstub configuration network model one needs to first decide on
a set of subgraphs or building blocks that will form the network. This is then followed
by the identification of the number of different hyperstubs induced by the subgraphs:
hyperstubs must be uniquely associated with both their parent subgraph and the orbit
of their incident nodes (Karrer and Newman 2010) where the orbit of a node is the set
nodes with which it may be permuted such that no edges are created or destroyed. For
example, in Fig. 1, subgraph G! contains two distinct orbits {x14, x17} and {x15, x16}.

Once all hyperstubs have been identified it is possible to define a joint probability
distribution that specifies the probability of a node having a certain combination of
these. For example f (x, y) = px,y may denote the probability of a node having
x × G0 and y × G△. Using this distribution it is possible to generate hyperstub
degree sequences. For networkgeneration these sequenceswill be subject to cardinality
constraints. For example, the sum of the degree sequence of G△ must be divisible by
three. Otherwise, the sequence needs to be re-generated. For asymmetric subgraphs,
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Fig. 1 Subgraph notation and position labelling. Subgraphs are labelled by G followed by a symbolic
subscript for ease of reference

e.g., G!, the sum of the degree sequences of both types of hyperedge must also be
equal. In practice, this can be achieved by generating a suitable degree sequence for
one type of hyperedge and then randomly permute it to obtain a second sequence for
the second hyperstub. G! has two degree sequences, one for each hyperstub, and both
must be even since we select pairs of nodes from each to form the subgraph.

The network generating algorithmwill then form a dynamic list for each hyperstub,
where a node with hyperstub degree ki appears ki times. This is followed by selecting
nodes from the lists, at random and without replacement, and by following the sub-
graphs’ hyperstub composition in order to construct subgraphs and the network. It is
possible that self or multi-edges form in which case the selection is discarded and new
samples chosen until a valid selection is obtained. This is repeated until all lists are
empty.

In this paper we wish to both computationally generate networks and theoretically
describe dynamics on such networks. The PGF of the hyperstub degree distribution
provides the link between theory and simulation. The construction of the PGF induced
by the hyperstub distribution can be achieved by encoding different levels of detail.
At the simplest level nodes may belong to a number of subgraphs without further
specifying their orbit or position within the subgraph (Volz et al. 2011). The PGF
could be constructed at the level of hyperstubs but would not differentiate between
topologically equivalent positions in the subgraph, and this is what we use in our
network generating algorithm (nodes may now be allocated asymmetric subgraphs)
(Karrer and Newman 2010). Finally, the PGF can be specified by accounting for all
details described above with the addition of the precise position of nodes within the
subgraph (used in the ODE derivation, Sect. 2.3). For network generation the PGF
takes the general form,

ψ(ẑ) =
∞∑

ĥ=0

pĥ

m∏

i=1

zhii ,

where ẑ = (z1, z2, . . . , zm) is a placeholder and ĥ = (h1, h2, . . . , hm) denotes the
number of hi hyperstubs assigned to a node. The symbolic form of the PGF provides
more flexibility for computation. Let us consider independently-distributed subgraphs
as follows: G0 ∼ Pois(λ1), G△ ∼ Pois(λ2) and G! ∼ Pois(λ3) (both hyperstubs
of G! are Poisson distributed with parameter λ3). The PGF of such a network is

ψ(z1, z2, z3) = exp (λ1(z1 − 1)+ λ2(z2 − 1)+ λ3(z3 − 1)).
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From this PGF, the average number of subgraphs a node belongs to may be computed

∂ψ(ẑ)
∂z1

∣∣∣∣
ẑ=1

= λ1 =: ⟨G0⟩.

By replacing zi with za , where a is the number of stubs contained within the hyperstub
hi , the PGF of the classical degree distribution can be recovered

ψ(z) := exp
(
(λ1(z − 1)+ λ2(z2 − 1)+ λ3(z5/2 − 1)

)
.

The z5/2 term accounts for the fact that G! is counted twice, once for each of its
hyperstubs. The first and second moments of the degree distribution are directly com-
puted using the linearity of expectation and the fact that Var(aX) = a2X . As well as
recovering the degree distribution, it is possible to determine the expected number of
triangles per node: ⟨△⟩ = λ2 + 3/2λ3, since on average each node in G! is incident
to 3/2 triangles. To summarise, we have

⟨k⟩ = λ1 + 2λ2 +
5
2
λ3,

Var(k) = λ1 + 4λ2 + 25/4λ3, (1)

⟨△⟩ = λ2 + 3/2λ3.

By including a fourth subgraph in the above example, the equivalent of system Eq. (1)
will be underdetermined with 3 equations and 4 unknowns. This allows the first and
second moments and the expected number of triangles (and therefore clustering) to be
fixedwhilst varying the subgraph composition. For example, fixing ⟨k⟩ = 4,Var(k) =
8 and ⟨△⟩ = 2, we can form the underdetermined system,

⎛

⎝
1 2 2 5
1 4 4 25
0 1 0 10

⎞

⎠

⎛

⎜⎜⎝

G0
G△
G"
G6c

⎞

⎟⎟⎠ =

⎛

⎝
4
8
2

⎞

⎠ ,

where the columns of the LHS matrix correspond to contributions to ⟨k⟩, Var(k) and
⟨△⟩ respectively and Gic denotes a complete subgraph of i nodes. From this system it
is possible to obtain two valid solutions: (1) G△ ∼ Pois(2) and (2) G0 ∼ Pois(9/2),
G6c ∼ Pois(3/10). Moreover, by replacing G6c with other types of subgraph and
updating the L.H.S matrix, several differing network models with the same first and
second moments and clustering may be obtained. A selection of such networks used
in the results section is listed below:

Model 1 : G△ ∼ Pois(2),

Model 2 : G0 ∼ Pois(2), G! ∼ Pois(2/3),

Model 3 : G0 ∼ Pois(8/3), G5c ∼ Pois(1/3),
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Model 4 : G0 ∼ Pois(3), G6c ∼ Pois(1/5).

While the three most basic network metrics for the networks above are identical,
their degree distributions are not. However, it is also possible to generate classes of
networks where the degree distribution is equal between networks but the subgraph
composition is not. Let us consider networks constructed purely out of cycles, where,
regardless of the length of the cycle, cycle hyperstubs are composed of only pairs of
stubs. It is then possible to increase the size of cycles whilst maintaining identical
classical degree distributions between different networks. This is implemented in the
following way: first, allocate to each node, on average, a pair of cycle hyperstubs, then
for each type of network allow the hyperstubs to form increasingly large cycles, starting
with G△ then G" and so on. If the hyperstubs are distributed such that hi ∼ Pois(2)
then the classical degree distribution for each network will be such that only even
degrees are possible, i.e., P(degree = 2k) = P(degree = k|Pois(2)) denoted
G0 ∼ 2Pois(2) for convenience. It is also possible to include a null, random, model
for comparison, i.e., a network with degree distribution given by G0 ∼ 2Pois(2) but
connected at random. In our investigation we shall be using the following cycle-based
networks:

Null Model : G0 ∼ 2Pois(2),

Model C1 : G△ ∼ Pois(2),

Model C2 : G" ∼ Pois(2),

Model C3 : G! ∼ Pois(2),

Model C4 : G" ∼ Pois(2),

where G! and G" denote cycles of 5 and 6 nodes (pentagons and hexagons), respec-
tively. Having thus created two classes of networks, the former will be used to show
how conventional network metrics may not entirely capture the structure of the net-
work as far as dynamics are concerned; the latter to investigate the effect of cycles of
increasing length on dynamics.

2.3 SIR epidemics on hyperstub configuration model networks

This section presents the derivation of a general SI R epidemic model for a network
built from an arbitrary number of subgraph types. Conceptually, this model uses the
node labelling approach of Karrer and Newman (2010) and generalises the PGF-type
framework of Volz et al. (2011), Volz (2008). By taking this approach it is possible to
derive ODEs that accurately predict the epidemic prevalence on networks that exhibit
a variety of exotic subgraphs, both fully- and non-fully connected.

The first step is to choose the set of subgraphs to be included in the network. Let
an arbitrary set of subgraphs be labelled by {G1,G2, . . . ,GM }. For example, Fig. 1
shows M = 5 different subgraphs, which result in m = 17 distinct node positions,
wherem stands for the total number of nodes over all subgraphs. For clarity, we recall
that a hyperstub is the set of half-links connecting a node to a subgraph. This example
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highlights the key component of the model, namely to distinguish between all nodes
of a subgraph even those that are topologically equivalent. This distinction makes it
possible to deal with the added complexity of having to account for labelled subgraphs.
Each node/position of a subgraph is labelled. This is reflected in a PGF that accounts
for each and every node in each and every subgraph. This gives rise to a PGF of the
following form:

ψ(α̂) =
∞∑

ŷ=0

pŷ

m∏

i=1

α
yi
i ,

where α̂ = (α1,α2, . . . ,αm) is a placeholder and ŷ = (y1, y2, . . . , ym) is such that yi
is the number of times a node appears in position xi , i = 1, . . . ,m.

For each subgraph its state at time t is denoted by Gx (S, I, . . . , R). This not only
describes a subgraph and its state but also the expected number of the given subgraph
in the given state at time t , i.e., when appended with a state this notation has numerical
meaning. SinceGx (S, I, . . . , R) accounts for the state of node, it will always explicitly
depends on t . To describe the flux between different subgraph states, infectious events
within and between subgraphs need to be considered. This requires a generalisation
of θ(t) which was first given in Sect. 2.1. Accordingly, we now first select a hyper-
stub at random and then define a direction, from its parent subgraph to its incident
node. An infectious contact is now the event that u, regardless of its state, becomes
infected by one of its adjacent nodes within that subgraph. θ(t) now needs to reflect
a node’s position in the subgraph. Hence, we define θi (t) to be the probability that
the group of edges connecting a node u in position xi to the parent subgraph have not
allowed for infectious contact from any infectious node in the subgraph to u by time t .
Again, we impose that u cannot transmit infection to the subgraph in question. Under
these assumptions, the infectious contact through hyperstubs to position xi is now
independent. A node that appears only k times in position xi remains susceptible with
probability θki (t). By geometrically compounding all θi (t) into a PGF, it is possible
compute the fraction of the susceptible population. This is given by

S(t) = ψ(θ̂(t)) =
∞∑

ŷ=0

pŷ

m∏

i=1

θi (t)yi . (2)

This probability is equal to the fraction of susceptible nodes in the population at time t
(Volz 2008). θ(t) is referred to as a survivor function. It is dependant on time and may
by computed fromfirst principles using the definition of the Poisson process. However,
in our formulation, it is computed from variables that denote the expected rate, Ti ,
at which infection is transmitted to a node in position xi through the corresponding
subgraph.We note that while T is commonly used to denote the cumulative probability
that infection may occur, we keep it as defined above to be consistent with the current
literature on such models (Volz et al. 2011). Each position label xi has a Ti variable
associated with it. The following examples show these rates for positions x1, x2 and
x3, see Fig. 1:
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T1 = τ [G0(SI )], (3)

T2 = τ [G0(I S)], (4)

T3 = τ [G△(SSI )+ G△(SI S)+ 2G△(SI I )
+G△(SRI )+ G△(SI R)]. (5)

To generate the above identities, we consider a susceptible node in position xi and
list all possible corresponding subgraph states that allow this node to be exposed to
infection. T = (T1, T2, . . . , Tm) can now be used to determine the probability that a
susceptible node has an infectious neighbour within a certain subgraph type. This is
done by dividing Tiτ−1 by the number of states that involve a susceptible at position
xi :

Ti
τ

∑
A,B,C,D

G(·)(xi = S, . . . , A, B,C, D)
.

The expected degree of a susceptible node at position xi is given by

⟨ki ⟩ =
∞∑

ŷ=0

yi pŷ

m∏

i=1

θ
yi
i = θi

∂ψ

∂αi

∣∣∣∣
α=θ̂

,

where θ̂ = (θ1, θ2, . . . , θm). To compute the expected degree for every position of
every subgraph, one can take the Jacobian of ψ evaluated at x = θ̂ ,

J (ψ)|α=θ̂ .

The i th entry of this vector evaluated at α = θ̂ shall be denoted Ji . A susceptible node
in position xi will have remained susceptible up to time t , with probability θi after
which infection may be transmitted at rate Ti/Ji . This information may be used to
form the following equation:

d
dt

(
1 − θi (t)

)
= θi (t)

Ti
Ji

⇒ dθi (t)
dt

= −θi (t)
Ti
Ji
. (6)

θi (t) decays at the rate at which a subgraph transmits infection to its node in position
xi , conditional on that node being susceptible.

Once a node is newly infected it is important to determine what, if any, subgraph
states are created or destroyed. To do this, we use the susceptible nodes’ excess degree
prior to the infection. For the full derivation of susceptibles’ excess degree refer to
Appendix 6.1. In this derivation, the excess degree must be generalised to account for
the degree of the different positions a node may be in, i.e., ⟨ki ⟩, i = 1, 2, . . . ,m. The
expected excess degree for susceptible nodes is given by

∆i, j = θ j
Hi, j (ψ)

Ji (ψ)

∣∣∣∣
α=θ̂

,
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Fig. 2 Graphical representation of (T∆)i . ∆ and T denote the excess degree of a susceptible node and
rate of infection, respectively. We note that newly infected nodes are modelled as previously susceptible
nodes so the product (T∆)i is being used to model the expected number of xi edges infection will be able
to spread along upon infecting a susceptible node. This product implicitly considers all possible routes of
infection into the node. The left hand side of the figure shows example subgraphs that are the source of
infection for the central node. The right hand side of the figure graphically represents the expected excess
degree of G△ subgraphs for the central node

where H(ψ) is the Hessian of the PGF. ∆i, j denotes the expected number of x j
positions associated with a node that has been selected at random, but proportionally
to the number of xi positions associated with that node. It is now possible to formulate
ODEs describing the evolution subgraph states. We denote the time derivative of
a subgraph’s state by Ġ(·). This quantity is dimensionless but not normalised. For
example, the number of unique (SI ) links in a network of size N is given by [SI ] =
NG0(SI ). To form the ODE for the subgraph state G0(SI ), we consider all possible
ways in which this state may be created or destroyed, namely

Ġ0(SI ) = −(τ + γ )G0(SI )

−(T∆)1G0(SI )+ (T∆)2G0(SS), (7)

where (T∆)1 denotes the first entry of the vector that is the product of the matrix ∆

multiplied from the left by vector T . Conceptually (T∆)i denotes the expected number
of nodes in position xi an infection will encounter upon infecting a susceptible node
through any possible route, see Fig. 2. The first term on the RHS of Eq. (7) describes
this state being destroyed by the I infecting the S or the I recovering. The second
term stands for this state being destroyed by the S being infected by an outside source.
Finally, the last term corresponds to this state being created by the second node of
G0(SS) being infected by a source external to the subgraph. To further illustrate this,
the equations for G0(SS) and G0(I S) are given,

Ġ0(SS) = −[(T∆)2 + (T∆)1]G0(SS),

Ġ0(I S) = −(τ + γ )G0(I I )

−(T∆)2G0(I S)+ (T∆)1G0(SS).

Equations for every state of every subgraph must be derived. In general, we first
describe any infection and recovery events of nodes within a subgraph. Next we list
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all possibilities for susceptible nodes to be infected from sources external to that
subgraph using the appropriate (T∆) terms.

To compute network-level prevalences, we recall that S(t) can be computed at
any time by Eq. (2). İ (t) is computed directly by differentiating S(t). Namely, since
susceptibles become infected and infected nodes recover at rate γ , we have

İ (t) =
m∑

i=1

θ̇i (t)
∂ψ(t)
∂θi

− γ I (t), (8)

Ṙ(t) = γ I (t). (9)

The total number of equations is given by 2+m +∑M
i=1 3

|Gi |, where | · | denotes the
number of nodes in a subgraph. In Appendix 6.2 we give more example ODEs and in
Appendix 6.3 we show how our model is equivalent to previous systems developed
for complete subgraphs (Volz et al. 2011).

2.4 Initial conditions

Let ϵ be the fraction of initially infected nodes. Hence, ϵ = I0/N , where I0 is the
number of initially infected nodes and N is the network size. Initial conditions for the
I and R populations are given by

I (0) = ϵ, R(0) = 0.

At time t = 0 no hyperstub has transmitted infection, therefore, θi (t = 0) = 1. For
a subgraph that contains a single infected node, G(t = 0) = ϵ⟨k⟩i where ⟨k⟩i is
the expected hyperstub degree. For the subgraph with every node susceptible we set
G(t = 0) = (1 − ϵ)⟨k⟩i . By assuming that only a small fraction of the population,
i.e., a single node, is initially infected, we do not allow non-zero initial conditions for
subgraphs with more than one infectious node.

3 Automated code-generation of the mean-field model

Wenowpresent ourmethodology for computationally generating a complete systemof
equations for a network constructed from subgraphs following a configuration model.
This procedure requires the PGF of a hyperstub degree distribution (HDD), the adja-
cencymatrices of corresponding subgraphs, and epidemiological parameters as inputs.
The algorithmwill output the systemofODEs thatwill predict the network-level preva-
lence. Table 1 gives a brief summary of the variables that need to be generated, listed
in the order they are generated in this section.

LetG denote the vector of states of a subgraph G withGi denoting a specific state
of G. For the SI R model, G has 3|G| elements. To generate Ti from G, the following
steps are needed: (1) cycle through G, (2) for each infectious contact to node i in
state G j , update Ti to Ti = Ti +G. Using T the survivor functions can be computed,
see Eq. (6), which are then used to compute the fraction of the population which is
susceptible, infected or recovered, see Eq. (8).
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Table 1 Summary of the key system variables and their generation

Variable Description Generation

ψ PGF of the HDD given as a
function, not as a series

A symbolic software package can be
used to compute the Jacobian and
Hessian

θi (t) Survivor functions with their
evolution equations given
by ODEs

These ODEs can be defined within a
single for loop, see Eq. (6)

(S, I, R) The prevalences of S, I and R, with
the latter two given by numerical
solutions of ODEs

From Eq. (8), it follows that
S = ψ(θ)

Ti Total rate of infection experienced by
an S in position xi

For a subgraph with m nodes, Ti may
be generated by m nested for
loops cycling through the possible
states that a subgraph can be in, see
Eq. (3)

Gx (S, I, . . . , R) Expected prevalence of a
subgraph in a given state

The equation for this is computed
based on the rate matrix, Z, see
Eq. (10)

The ODEs corresponding to subgraphs need to be represented with a rate matrix,Z.
This matrix encodes all information relating to the given subgraph, namely the excess
degrees, rates of infection over subgraphs T , epidemiological parameters τ and γ , and
implicitly encodes the subgraph’s adjacency matrix g. To compute ∆, we use Eq. (2)
and a symbolic software package to calculate the Jacobian and Hessian of the PGF.

For each subgraph, we initialise the matrix Z as a square matrix with all entries
set to zero. The i th column and row of Z correspond to state Gi . Once populated, the
entry Zi, j contains the rate at which state i transitions to state j .

To illustrate how to generateZ, we consider theG0 subgraph, see Fig. 1, with states
G = (SS, SI, SR, I S, I I, I R, RS, RI, RR). We associate the state G0(SS) with
the first row and column of Z. Moving along the top row, when a column index is
reached that corresponds to a state that G0(SS)may transition to, we update the entry
with the appropriate rate. The first row of Z is all zero except for Z1,2 = (T∆)2 and
Z1,4 = (T∆)1. The second row, corresponding to state G0(SI ), has entries Z2,3 = γ

and Z2,5 = τ + (T∆)1, see Eq. (7). Fill every row of the matrix Z in this way, refer to
Appendix 6.4 the full matrix corresponding to G0. The algorithm for this process is
given for an arbitrary subgraph in Appendix 6.6, and the corresponding Matlab code
is provided as supplemental material but is also available on GitHub at https://github.
com/martinritchie/PGF-ODEs

Using the rate matrix, the ODE for the subgraph state Gi yields

dGi

dt
= −

⎛

⎝
3|G|∑

j=1

Zi,j

⎞

⎠Gi +

⎛

⎝
3|G|∑

k=1

Zk,i

⎞

⎠Gk . (10)
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The final step to generating the full system is to set the initial conditions. Only
the initial conditions for subgraph states need computing as I (0), R(0) and θi (0) are
fixed as per the previous section. This can be done by cycling through each element
of G. If (a) Gi is a purely susceptible state then we set Gi0 = Ji (1− ϵ), and if (b) Gi
contains a single infectious individual and is otherwise susceptible, we setGi0 = Jiϵ.
All other states are set to zero, as we assume that with a sufficiently small infectious
seed, the probability of having two infectious individuals in a subgraph is zero.

4 Results

To validate the proposed mean-field model and to assess the goodness of the approx-
imation, we compare results from the ODEs to output from stochastic simulations.
Networkswere generated following the configuration algorithm, please refer toAppen-
dix 6.5. Typically we generated 500 networks of size N = 15,000 and computed a
single realisation of the epidemic, according to the Gillespie algorithm with the per
link rate of infection τ = 1 and a recovery rate of γ = 1. Simulations which died out
before an outbreak occurred were removed. The simulations were seeded with a single
infectious individual and an outbreak was said to occur if 5 % infectious prevalence
was achieved. In all plots simulation results and the solution of ODEs are plotted in
solid lines and discrete points, respectively.

To start, we test the performance of our model against existing or state of the art
models. To do this, in Fig. 3, we show results for two degree distributions that are
homogeneous in the classical sense. Their PGFs are given by

ψ1(α̂) =
1
2

(
α14 + α17

)1
2

(
α15 + α16

)
,

ψ2(α̂) =
1
2

(
α1 + α2

) 1
42

(
α10 + α11 + α12 + α13

)2
,

where the variables αi correspond to subgraphs given in Fig. 1. Figure 3 shows
results from a pairwise model with closures at the level of quadruples (House et al.
2009; House 2010). While the classical clustering is easy to compute, the order-four
clustering/transitivity ratios were measured following a recently developed subgraph
counting algorithm (Ritchie et al. 2014). These are defined as the ratio of a given
subgraph count to all open and closed paths of length four, both counted uniquely.
Currently, this model operates using an average or homogenous degree and stores no
information about the degree distribution, but does assume random mixing of sub-
graphs.

Allmodels performwell in capturing the epidemic dynamics on networks generated
using the PGF given by ψ1, see Fig. 3 with higher epidemic peak. However, when
networks are created using the PGF given byψ2, see lower peak in Fig. 3, the pairwise
model struggles to accurately capture the dynamics, both anticipating and compressing
the epidemic’s time scale or duration and underestimating the final size (data not
shown). The pairwise model does not encode any information relating to degree or
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Fig. 3 Performance of other
models. Lines, circles and
squares correspond to simulation
average, ODE solution and
pairwise ODE solution,
respectively. All networks are
homogeneous with k = 5. The
lower peaks correspond to
networks generated with each
node allocated one of each
corner type of a G! with
clustering φ = 0.3. Data with
higher peak correspond to
networks generated with a single
G0 and two G" subgraphs
yielding φ ≈ 0
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Fig. 4 Clustering and cycles. Solid lines andmarkers correspond to simulation average and ODE solution,
respectively. From darkest to lightest, the solid lines correspond to: k ∼ 2Pois(2), G! ∼ Pois(2),
G" ∼ Pois(2) and G△ ∼ Pois(2), i.e., each network used has an identical degree distribution given by
P(degree = 2k) = P(degree = k|Pois(2)). Clustering is φ = 0.2 and φ ≈ 0 for the G△ and other
networks, respectively. For clarity, ODE solutions for only the two extreme cases, the null and triangle
network, have been included. Note that the output from the network composed of G! is close to that of
the null case. Epidemics corresponding to cycles of length six have been computed but omitted due to their
similarity to the null case. Only two ODE solutions have been included for upper and lower cases

subgraph distribution and hence a homogeneous random set-up, as used here, would
be an appropriate choice.

The key advantage of our algorithm over existing ones is that it can handle non-
fully connected subgraphs. To test this, in Fig. 4, we utilise networks models C1–C4
as specified in Sect. 2.2. Figure 4 shows plots of simulation average compared to the
ODE’s solution for the four network types. We observe that the epidemic behaviour
of networks composed of increasingly large cycles quickly converge to that of the
random null case. It has previously been observed that for networks with the same
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degree distribution, an increasing level of clustering slows the epidemic transmission
and requires a higher transmission rate in order to observe a successfully spreading
epidemic (Keeling 1999b; Green and Kiss 2010). This occurs for two reasons: (1)
subgraphs that are densely connected share fewer connections to the rest of the network
so an initial seed will be restricted to one part of the network and (2) this same
effect leads to infectious nodes competing for susceptible nodes. While this may make
transmission more efficient locally, it does limit further seeding in fully susceptible
parts of the network. Figure 4 shows that the effect of G" is similar to that of the
clustered network, but less pronounced; both the time and size of peak infectious
prevalence is delayed and reduced when compared to the null case. For cycles larger
than four nodes this behaviour is less pronounced and the epidemics for larger cycles
converge to the null case, as observed with G!.

To highlight the flexibility of our model and its wide-ranging applicability to sys-
tematically investigating the impact of higher-order network structure, in Fig. 5, we
consider four networks with the same first and second moments, and the same clas-
sical clustering but generated using different families of subgraphs, see models 1–4
Sect. 2.2. Figure 5 shows simulation average for all four networks and the solution of
ODEs for the upper and lower cases, models 1 and 4 respectively.

Figure 5 shows a clear trend whereby larger subgraphs lead to epidemics with
smaller peak prevalence. A second more subtle trend shows a delay in time until peak
prevalence. Subgraphs of larger size lead to a significant difference in the behaviour of
epidemics and echo what was observed for increasing levels in clustering. This could
be explained by considering a subgraph with average degree ⟨ks⟩. When ⟨k⟩ < ⟨ks⟩
the network will exhibit extreme clustering, where isolated structures are increasingly
densely connected at the cost of becoming isolated. This effect is more subtle than
clustering but it can be significant. This suggests that the accuracy of future models
would improve if they can correctly account for networks’ subgraph composition,
particularly subgraphs beyond that of triangles.

Finally, the data in Fig. 5 has been produced using networks that do not have the
same degree distribution but do have equal first and second moments, and cluster-
ing. To better understand how the non-equal higher moments may have affected the
results, we have simulated epidemics on the corresponding random networks, Model
1′ : G0 ∼ 2Pois(2) and Model 4′ : G0 ∼ Pois(3) + 5Pois(1/5), see Appen-
dix 6.7. This plot shows that the differences observed in Fig. 5 cannot be explained
by the difference in the degree distribution alone. Thus, generating identical cluster-
ing but using different subgraphs can lead to non-negligible differences in epidemic
dynamics. This behaviour has been previously observed, see (Green and Kiss 2010;
Ritchie et al. 2014), and warrants a more detailed investigation that will be the subject
of a follow-up publication.

5 Discussion

Higher-order structures, captured for example as different subgraph compositions and
arrangements in a network, have been identified as features of real networks. Examples
include households, social interactions and biological networks. These building blocks
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Fig. 5 Clustering via differing subgraphs. Solid lines and markers correspond to simulation average and
ODE solution, respectively. From darkest to lightest the solid lines correspond to: G△ ∼ Pois(2); G0 ∼
Pois(2), G! ∼ Pois(2/3); G0 ∼ Pois(8/3), Gcp ∼ Pois(1/3) and G0 ∼ Pois(3), Gch ∼ Pois(1/5),
where cp and ch denote complete pentagon and hexagon subgraphs, respectively. The networks were
generated so that ⟨k⟩ = 4, var(k) = 8 and φ = 0.2. The downward trend of peak prevalence corresponds to
networks composed of complete subgraphs of increasing size. The larger subgraphs lead tomore connections
within the group rather than to the rest of the network

of networks have been shown to play a key role in defining a network’s topology
and can have significant impact on the functions of the network or on the dynamical
processes unfolding on the network.Despite this, themodelling toolset in this direction
is underdeveloped. Here, we provided an approach that considerably extends the scope
of the current modelling framework by enabling us to consider arbitrary sets of exotic
subgraphs as building blocks for the network. Our approach also offers control over
the arrangements of subgraphs and, more importantly and uniquely, an automated way
of generating a system of ODEs that accurately capture the prevalence profile for a
wide range of subgraph sets, as shown in the results section.

The previous section has shown how higher-order structures may be investigated
using this model. Moreover, we provided the first example of generating classes of
networks constructed using different subgraph sets while keeping degree, variance
and clustering constant. For example, we showed that epidemics on networks with
no clustering, but exhibiting open loops, display features which are significantly dif-
ferent to those observed in classical random networks with effectively no clustering.
Equally, we have shown that different subgraph combinations or arrangements can
create higher-order structure that may significantly affect the epidemic dynamics. Our
work opens the possibility to carry out a wide-ranging and systematic investigation of
the impact of subgraphs and higher-order structure on dynamics on networks. When
presented with real world network data whose structure can be explained by a set
of subgraphs, all that will be needed in order to apply our framework is to extract
the subgraphs and their distribution around nodes. A possible limitation to the widest
applicability is the number of nodes in the largest subgraph. However, as shown by our
results when going from squares to pentagons, it is likely that the effect of higher-order
structures will decay, or be less marked, as their size increases.
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There are two key ways in which this work may be extended: (a) generalisation to
SI S dynamics. Due to the definition of θ(t) it is currently not possible to apply this
model to SI S dynamics. However, all the framework relating to network structure is
independent from this variable andmay therefore still be appropriate. (b) The subgraph
approach is highly suitable for adaptation to household models. Household models
typically specify a distribution of household sizes overlaid on a contact network to
produce a well-connected network (House and Keeling 2009; Ball and Sirl 2012).
A successful incorporation of such network in our framework could lead to a highly
relevant set of household models.
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6 Appendix

In this Appendix we (a) give a more detailed explanation of the excess degree, (b)
provide ODEs for an example network, (c) show how our generalised model reduces
to a previous model under certain conditions, (d) provide an example state transition
matrix, (e) give pseudocode for both the subgraph-based configuration model and the
algorithm used to generate the state transitionmatrix and, finally, (f) compare epidemic
dynamics on two configuration model networks with their degree distributions being
different but with the same mean and variance.

6.1 Excess degree

Recall the probability generating function (PGF) of a network’s hyperstub degree
distribution with m nodal positions:

ψ(α̂) =
∞∑

ŷ=0

pŷ

m∏

i=1

α
yi
i , (11)

where α̂ = (α1,α2, . . . ,αm) is a placeholder, and ŷ = (y1, y2, . . . , ym) is such that
yi denotes the number of times a node appears in position xi , i = 1, 2, . . . ,m. The
PGF of the excess degree distribution is a critical component in our derivation and it is
illustrative to see how it is computed. To see this, we first compute the expected excess
degree, select a node at random but proportional to its number of xi hyperstubs, yi pŷ .
Next, to obtain the expected xi degree, sum this product over all nodes

⟨xi ⟩ =
∞∑

ŷ=0

yi pŷ =: ∂ψ(α̂)

∂αi

∣∣∣∣
α̂=1

. (12)
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The above sum considers each and every node from which an xi hyperstub originates.
However, in hyperstub configuration model networks there is usually more than one
type of hyperstub and this adds an additional level of detail to the excess degree. The
excess degree now may incorporate two different hyperstubs into its calculations. It is
now possible to describe a nodes xi degree but conditional on it being selected through
ones of its x j hyperstubs. More formally we can compute the expected excess degree
using conditional expectation, E(x j |xi = yi ), which yields

δx j ,xi =
∑∞

ŷ=0 y j yi pŷ∑∞
ŷ=0 yi pŷ

,

(13)

where δx j ,xi denotes the expected xi hyperstub degree observed from a node selected
proportionally to its x j hyperstub degree. The denominator is given by Eq. (11), and
the numerator is specified by

∞∑

ŷ∗=0

yi y j pŷ∗ = ∂2ψ

∂αiα j

∣∣∣∣
α=1

.

6.2 ODEs for an example network

The following provides ODEs for a simple example network composed of only G0
and G△.

When deriving ODEs by hand listing out equations for Ti is a good starting point
as they include many of the subgraph states, i.e., G0(SI ), and can be used as the start
of a check list when listing state equations

T1 = τ [G0(SI )],
T2 = τ [G0(I S)],
T3 = τ [G△(SSI )+ G△(SI S)+ 2G△(SI I )

+G△(SRI )+ G△(SI R)],
T4 = τ [G△(SSI )+ G△(I SS)+ 2G△(I S I )

+G△(RSI )+ G△(I SR)],
T5 = τ [G△(I SS)+ G△(SI S)+ 2G△(I I S)

+G△(I RS)+ G△(RI S)].

It is important to node the above equations will not list every subgraph state and that
for a subgraph composed of n will have 3n state equations. For example, the first few
state equation for G0 are given by

Ġ0(SS) = −[(T∆)2 + (T∆)1]G0(SS),

Ġ0(SI ) = −(τ + γ )G0(SI ) − (T∆)1G0(SI )+ (T∆)2G0(SS),
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Ġ0(I S) = −(τ + γ )G0(I S) − (T∆)2G0(I S)+ (T∆)1G0(SS),

with equations for the following being omitted

{Ġ0(SR), Ġ0(I I ), Ġ0(I R), Ġ0(RS), Ġ0(RI ), Ġ0(RR)},

Similarly, sample ODEs for the G△ subgraph, taken from a system of 27 ODEs, are:

Ġ△(SSS) = −[(T∆)5 + (T∆)4 + (T∆)3]G△(SSS),
Ġ△(SSI ) = −[2τ + γ + (T∆)4 + (T∆)3]G△(SSI )

+(T∆)5G△(SSS),
Ġ△(SI S) = −[2τ + γ + (T∆)5 + (T∆)3]G△(SI S)

+(T∆)4G△(SSS),
Ġ△(I SS) = −[2τ + γ + (T∆)5 + (T∆)4]G△(I SS)

+(T∆)3G△(SSS),

with equations for the following being omitted

{
Ġ0(SSR), Ġ0(SI I ), Ġ0(SI R), Ġ0(SRS), Ġ0(SRI ), Ġ0(SRR),

Ġ0(I S I ), Ġ0(I SR), Ġ0(I I S), Ġ0(I I I ), Ġ0(I I R), Ġ0(I RS),

Ġ0(I RI ), Ġ0(I RR), Ġ0(RSS), Ġ0(RSI ), Ġ0(RSR), Ġ0(RI S),

Ġ0(RI I ), Ġ0(RI R), Ġ0(RRS), Ġ0(RRI ), Ġ0(RRR)
}
,

Each hyperstub will have a survivor function and a corresponding ODE describing
its evolution, as follows:

θ̇1 = −θ1
T1
M1

,

θ̇2 = −θ2
T2
M2

,

θ̇3 = −θ3
T3
M3

,

θ̇4 = −θ4
T4
M4

,

θ̇5 = −θ5
T5
M5

.

The fraction of the population that is susceptible or infected is computed by com-
pounding θi into the PGF. Symbolically, this is computed by the following

Ṡ = d
dt

ψ(θ̂),

İ = − d
dt

ψ(θ̂) − γ I,
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R = γ I,

where ψ is the probability generating function that generates the hyperstub degree
distribution and θ̂ = (θ1, θ2, θ3, θ4, θ5) is the probability that infection via subgraphs
of types one to five has not been transmitted. The total system size for this example
network is given by

32 + 33 + 5+ 2 = 43,

with each term in the above corresponding toG0,G△, survivor functions and epidemic
prevalence, respectively. In general, the total number of equations is given by:

M∑

i=1

3|Gi | + |Gi | + 2,

where Gi denotes a subgraph, |Gi | is the number of nodes in a subgraph, and m is the
total number of subgraphs.

6.3 Equivalence to previous model for complete subgraphs

The PGF formulation originally proposed by Volz et al. (2011) is equivalent to our
proposed model in the case of complete subgraphs. Consider an arbitrary complete
subgraph composed of l nodes and a network that is composed only of this subgraph. If
positions within the subgraph are labelled distinctly, {x1, x2, . . . xl}, as we have done
in our approach, then the PGF of such a network is given by

ψp(α̂) =
∞∑

ŷ=0

pŷ

l∏

i=1

α
yi
i , (14)

where ŷ = (y1, y2, . . . , yl). Volz et al.’s framework treats all topologically equivalent
positions as one single position. Thus, in this case, the subgraph has a single label, x ,
that corresponds to a single count, y, and the PGF takes the following form

ψv(α̂) =
∞∑

y=0

pyαy . (15)

We now show how one may obtain Eq. (15) from Eq. (14). Since both PGFs describe
the same network, the rate at which our formulation allocates position xi must be 1/ l
the rate at which Volz et al.’s formulation allocates x . If we replace the unique position
labels of Eq. (14) with a single position marker (such as in Volz et al.’s model), the
following expression is obtained
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ψp(α̂) =
∞∑

ŷ=0

pŷ

l∏

i=1

αy/ l , (16)

where the following substitutions, yi = y/ l and αi = α, were made so that αy is
the result of the above product. Now, every time an xi is allocated, we allocate an x
instead. Finally, since pŷ is a joint distribution of l identically distributed independent
random variables, i.e., ŷ = (y/ l, y/ l, . . . , y/ l), we get:

ψp(α̂ = α) =
∞∑

y=0

pyαy .

It is also possible to translate between the two models elsewhere in the derivation. As
an example, in our approach, infection over lines is given by T1 and T2, as per Eq. (3).
By summing these values, the equivalent values used in Volz et al.’s formulation may
be recovered. Following our derivation, first let G0(SI ) ≡ G0(I S) and:

T1 + T2 = τG0(SI )+ τG0(I S) = 2τG0(SI ).

Since each G0 is generated from a PGF that allocates positions at rate 1/2 that of Volz
et al.’s PGF, the 2 will cancel yielding τG0(SI ). However, it is only necessary to show
equivalence between the two PGFs since all other variables follow from this.

6.4 State transition matrix

The state transition matrix for G0 (lines) is given by:

Z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(SS) (SI ) (SR) (I S) (I I ) (I R) (RS) (RI ) (RR)

(SS) 0 (T∆)2 0 (T∆)1 0 0 0 0 0

(SI ) 0 0 γ 0 τ + (T∆)1 0 0 0 0

(SR) 0 0 0 0 0 (T∆)1 0 0 0

(I S) 0 0 0 0 τ + (T∆)2 0 γ 0 0

(I I ) 0 0 0 0 0 γ 0 γ 0

(I R) 0 0 0 0 0 0 0 0 γ

(RS) 0 0 0 0 0 0 0 (T∆)2 0

(RI ) 0 0 0 0 0 0 0 0 γ

(RR) 0 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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6.5 Algorithm 1: Hyperstub CM algorithm

Algorithm 1: The hyperstub configuration model. In this implementation,
multiple-edges are over written (line 35) but self-edges are permitted. To pre-
vent this, if nodes already share an edge or a node has been selected twice
(self-edge) lines 25-28 are repeated until a valid selection is made. This rese-
lection step has been omitted below for readability.

1 input : N , K ,
2 output: A.

3 Variables / initialisation
4 N : the number of nodes,
5 % Each row of K corresponds to single node’s hyperstub

sequence.
6 K : the hyperstub degree sequence, a non-square matrix K ∈ NN×H

0 ,
7 H : the number of hyperstub types,
8 A: the adjacency matrix of the network, A ∈ {0, 1}N×N ,
9 M : the number of subgraphs,

10 Hi : the degree of a specific hyperstub,
11 hi : a dynamic list of nodes that are incident to Hi hyperstubs,
12 gi : the adjacency matrix of a subgraph, g ∈ {0, 1}ni×ni ,
13 ni : the number of nodes in gi .

14 Procedure
15 % The following creates dynamic lists the, ‘hyperstub bins’.
16 for every node i do
17 for each Hj do
18 append Ki, j multiples of node(i) to the hyperstub bin(h j )
19 end
20 end
21 for For each subgraph gi do
22 for For each hyperstub of gi do
23 % Select unfiformly at random and without

24 % replacement a node incident to each desired hyperstub.
25 n1 = rand-sample(hi1 )
26 n2 = rand-sample(hi2 )

27
.
.
.

28 ngi = rand-sample(hi2 )
29 end
30 % The following compares pairs of the selected nodes

31 % to determine their connectivity in A.
32 for k = (1, 2, . . . , ni ) do
33 for l = (1, 2, . . . , ni ) do
34 if g(nk , nl ) == 1 then
35 A(nk , nl ) = 1
36 end
37 end
38 end
39 end
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6.6 Algorithm 2 : Transition matrix algorithm

Algorithm 2: Generating the state transition matrix. The comparison in
line 17 needs to check: (1) that only a single node has changed state and (2)
only state changes S → I and I → R are valid.

1 input : g,
2 output: Z.

3 Variables / initialisation
4 g: the adjacency matrix of a subgraph G,

5 % Z ∈ R3n×3n .
6 Z: matrix corresponding rate of transition between states of G,
7 n: node count of G,
8 % G⃗ contains 3n elements.
9 G⃗: the vector of states of G,

10 τ : per link infection rate,
11 γ : recovery rate,
12 T∆: the expected force of infection a node within G experiences from outside G.

13 Procedure
14 for every state G⃗i do
15 for every state G⃗ j do
16 % Compare each and every possible state transition of G:
17 switch G⃗i → G⃗ j do
18 case A single infection occurs
19 if the new I is connected to another I within G then
20 % Check the connectivity of the new I using g.
21 Zi, j = τ + T∆

22 else
23 % the infection was from only an external source.
24 Zi, j = T∆

25 end
26 end
27 case A single recovery occurs
28 Zi, j = γ

29 end
30 case otherwise
31 Zi, j = 0
32 end
33 endsw
34 end
35 end
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6.7 Null case for Fig. 5

See Fig. 6.

Fig. 6 The effect of higher
moments. The solid and discrete
plots correspond to the null
networks G0 ∼ 2Pois(2) and
G0 ∼ Pois(3)+ 5Pois(1/5)
respectively, i.e., the null cases
for the triangle and hexagon
networks. Both plots have equal
first and second moments and
clustering equal to that of a
random network. The difference
observed is a result of non-equal
higher moments and is not
enough to explain the difference
observed in Fig. 5 0.00
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