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a b s t r a c t

Objective: Long-range temporal correlations (LRTC) of EEG amplitude fluctuations in adults reveal power-
law statistics and have been interpreted within the framework of self-organized criticality (SOC). In phys-
ical systems states of self-organized criticality showing power-law statistics take time to develop. In this
paper we have sought evidence for the idea that brain development tends towards SOC through examin-
ing the hypothesis that during normal human development a power law behaviour of EEG oscillations is
approached with increasing chronological age.
Methods: We examined EEGs from central and parietal electrodes in 36 subjects aged between 0 and
660 months during performance of a steady wrist extension task with their dominant hand and applied
spectral and detrended fluctuation analysis in 36 subjects to assess long-range temporal correlations of
oscillation amplitude in the Theta, Alpha and Beta frequency bands.
Results: Our data indicate that at all subject ages power-law statistics dominate the records at Alpha, Beta
and Theta frequencies. Small consistent effects of chronological age were detected for amplitude fluctu-
ations at Theta and Beta frequencies.
Conclusions: The data suggest that the scale-free nature of EEG LRTCs is a feature from early childhood
through to maturity but that there are changes in the magnitude of these effects with age.
Significance: This study is the first to have explored long-range temporal correlations over a wide range of
chronological age.
! 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Neural oscillations at various frequencies are a defining charac-
teristic of the EEG. Recent studies have shown that EEG oscillations
are log–log linearly correlated over a wide range of temporal scales
(Linkenkaer-Hansen et al., 2001, 2004, 2005, 2007; Nikulin and
Brismar 2004, 2005). Different frequencies of EEG and MEG (Theta,
Alpha, Beta and Gamma) have been associated with different neu-
ral functions and behaviours (Buzsáki, 2006). EEG oscillations are
typically characterized using the power spectral density function
(PSD) and the linear approach to analysis of EEG/MEG and other
signals e.g., intra-areal EEG–EEG/MEG–MEG and EEG/MEG–EMG
emphasizes spatio-temporal correlation as an organizing principle
of the nervous system (see for review Salenius and Hari, 2003). Lin-
ear interactions between different areas of the brain and between
brain and muscle may be characterized using time and frequency

domain correlational techniques especially coherence-based tech-
niques. However, the underlying generators of EEG are highly non-
linear with oscillations arising from the correlated activity of a
number of complex non-linear interactions (Friston, 2000; Lin-
kenkaer-Hansen et al., 2001).

Analysis of raw EEG data indicates that even in the resting state
the amplitude of oscillations at different frequencies undergoes
marked and seemingly random changes. Furthermore, short-range
(EEG–EEG) and long-range EEG–EMG synchrony as shown by
coherence also fluctuates in strength over time even though task
parameters are unchanged (e.g., Farmer et al., unpublished; Halli-
day et al., unpublished). Correlated amplitude fluctuations reveal
information about the temporal structure of the EEG (Linkenk-
aer-Hansen et al., 2001). Power-law statistics of EEG oscillation
amplitude fluctuations allow for ‘memory affects’ i.e. events in
the past influence the future dynamics of the oscillations and
may facilitate information transfer. Power-law statistics are one
feature of systems that display self-organized criticality (SOC)
(Bak et al., 1987, 1988). Correlation of amplitude fluctuations over
a wide range of temporal scales differentiates EEG and MEG signals
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from filtered white noise. In the pioneering studies of Linkenkaer-
Hansen et al. (2001) power law relations with estimated Hurst
exponents in the range 0.5–1.0 were detected for amplitude
fluctuations of Alpha band (8–13 Hz) and Beta band (15–25 Hz)
oscillations in MEG and EEG recorded during resting state with
eyes open and eyes closed. The magnitude of the derived EEG
exponent is affected by afferent stimulation (Linkenkaer-Hansen
et al., 2004) and provides a measure of the LRTC within the EEG
which itself may yield information about how close the EEG is to
a critical state.

The existence of LRTCs does not necessarily imply the presence
of SOC and more generally the existence of critical states in neural
activity has not been firmly established (Bédard et al., 2006). How-
ever, recent experimental results in cortex slice cultures (Shew
et al., 2009) and results from the analysis of human EEG and
MEG signals (Linkenkaer-Hansen, 2002; Thatcher et al., 2008,
2009) support the concept of the brain as a self-organizing non-lin-
ear system with emergent structures and dynamics, which reflect
its developmental history. In species with large brains, mature
brain dynamics are characterized by a high degree of integrity as
shown by power laws. It may be postulated that these emerge dur-
ing the processes of brain maturation. It has been suggested that
during maturation in order to enter a SOC state the system (brain)
must have developed for a long time relative to its size because
correlations develop slowly and the system is only truly critical
when fully correlated according to statistical power law (Linkenk-
aer-Hansen, 2002). In the present study we have tested this
hypothesis directly through cross-sectional analysis of human
EEG recordings over a large age range (range 0–660 months). We
hypothesized that if self-organized criticality (SOC) develops as a
feature of brain maturation then age related effects will be de-
tected in EEG data analyzed using the methodology of Linkenk-
aer-Hansen et al. (2001), indicating convergence to a critical
state with increasing age. The methodology we have used is based
on spectral and DFA (Peng et al., 1995), analysis of human EEG data
recorded from central and parietal electrodes. We have focused on
long-range temporal correlations of oscillation amplitude in the Al-
pha, Beta and Theta frequency ranges.

2. Methods

2.1. Subjects

Recordings were obtained, with local ethical approval (St Mary’s
Hospital, London) adhering to standards set out in the Declaration
of Helsinki, from 50 subjects (24 males and 26 females) aged from
0 to 55 years. Handedness was tested above the age of 2 years and
all subjects were right-handed. Verbal and written consent was ob-
tained from the subjects and in the case of children their parents.
The subjects were recruited from the patient population and from
a pool of volunteer subjects. The subjects taken from the patient
population had been referred for clinical neurophysiological evalu-
ation and their EEGs and EMGs were recorded simultaneously. The
patient subjects whose data comprise this study were being inves-
tigated for brief episodes of loss of, or altered, awareness. The ulti-
mate diagnosis was either syncope or unexplained. None of the
subjects whose data are included in the present study were known
to be suffering from neurological or neuro-developmental prob-
lems. Their EEG data had been passed as normal by a consultant
clinical neurophysiologist.

2.2. EEG recordings

EEG was acquired (sampling rate 512 Hz) and stored digitally
using a PC-based system built by Viasys Healthcare Oxford Instru-

ments, Medical systems divisions, Old Woking, Surrey, UK. We re-
corded EEG using band pass filtering between 4–256 Hz. The
recorded EEG was then re-referenced to the common average.
The head was measured and distances in millimetres between
scalp electrodes were recorded in order to determine accurately
the electrodes’ position relative to anatomical landmarks and to
each other. EEG was obtained from 22–24 Ag/AgCl electrodes (Via-
sys healthcare Oxford Medical Instruments) positioned on the
scalp in accordance with the modified Maudsley system of elec-
trode placement (Pampiglione, 1956; Margerison et al., 1970, see
Fig. 1). These data have been previously analyzed in an experiment
looking at the effects of age on !20 Hz EEG–EMG coherence.
Therefore during the EEG recordings subjects had eyes open and
were activating their dominant wrist extensor muscles. For co-
operative subjects, this was at 10–20% MVC (maximal voluntary
contraction) maintained through visual feedback (see James
et al., 2008, for description).

2.3. Data analysis

In order to be able to compute age statistics regarding the pres-
ence of long-range temporal correlations across age/subjects, it
was necessary to obtain data from records of similar lengths across
all ages/subjects. Experimental difficulties linked to the age of the
subjects meant that artifact-free data records lengths varied from
19 to 125 s. Following rigorous artifact rejection 64 records from
36 subjects were included for analysis (see below). Our basic crite-
rion was to examine contiguous records of 40 s duration. However
in 6/64 records the records length was slightly shorter (33–37 s).

Following these procedures the number of subjects included for
analysis was 36.

2.3.1. Artefact rejection
Visual inspection using the EEGLAB data scroll viewer (Delorme

and Makeig, 2004) was used to recognize EMG (e.g., jaw clenching
or yawns) and eye blink artifacts affecting the electrodes of inter-
est. The contaminated region was manually removed and only con-
tiguous segments >!40 s were kept for further processing.
Independent component analysis (ICA) was used to decompose
the data into maximally independent components. Those compo-
nents that showed the spectral and spatial characteristics of low-
frequency artefacts such as eye movements, blinks, heartbeat, or
breathing, were projected out of the data (Jung et al., 2000). Where
multiple records of 40 s could be obtained from a single subject
(either because of the above, or by chunking longer intact records,
e.g.,>100 s-long segments as in n = 5 adults), analysis was per-
formed on each chunk separately and then averaged per subject
before being submitted to statistical analysis. This was the case
for 21 subjects.

2.3.2. Data filtering
To speed up computations, the data was decimated off-line to

128 Hz by filtering the data with an 8th order Chebyshev Type 1
low pass filter with cutoff frequency !50 Hz, before resampling.
This decimation does not affect the temporal structure of the oscil-
lations in the band of interest and has also been used by other
authors (e.g., Linkenkaer-Hansen et al., 2004).

For each record, the amplitude envelope (instantaneous ampli-
tude) of the signal in the three bands of interests (Theta, Alpha,
Beta) was extracted using band-pass finite impulse response filter-
ing (FIR) and the Hilbert transform. A similar approach has been
used in a number of recent studies (e.g., Linkenkaer-Hansen
et al., 2001,2004,2005,2007; Nikulin and Brismar, 2004, 2005). Def-
inition of the frequency bands Theta, Alpha and Beta followed Gas-
ser et al. (1988). The order of the FIR filters was chosen so that it
included three cycles of the low-frequency component of the band
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considered: 96 for Theta (4–6 Hz), 48 for Alpha (8–13 Hz) and 32
for Beta (16–24 Hz).

2.3.3. Temporal correlations
Long-range temporal correlations (LRTC), which are an impor-

tant subclass of 1/fa noise (Gao et al., 2006), are typically character-
ized using a key scaling parameter, the Hurst parameter H. When
H = ½, the process is said to be memoryless or with short-range
correlation. For ½ < H < 1, the process is said to have persistent cor-
relations. There are three methods commonly used to estimate the
Hurst parameter (spectral methods, rescaled range analysis and
DFA). Keeping in mind that these methods only provide an esti-
mate of the parameter, it is recommended practice (Gao et al.,
2006) to check consistency of the results based on at least two dif-
ferent methods. In this study we calculated the DFA and cross-
checked our results using the spectral method. Use of this
methodology allowed us to compare our results to those of earlier
published studies of EEG and MEG LRTC. Using DFA (a exponent)
and spectral method (b exponent) the estimated exponents relate
according to: b = 2a " 1 in ideally long-range correlated signals
(Rangarajan and Ding, 2000; Poupard et al., 2001). This theoretical
equivalence allows for an assessment of the reliability of the mea-
sured exponents (Rangarajan and Ding, 2000; Gao et al., 2006). DFA
was applied using 50 window sizes equidistantly placed on a log-
arithmic scale in the range 1–10 s. The largest size of window was

set to 10s as a compromise between having a sufficiently high
number of segments in each record (Hu et al., 2001) and maximiz-
ing the temporal range of correlations (here, 1–10 s). Using the
spectral method we were able to compute both over 0.1–1 Hz
(i.e., correlations in the range [1–10 s]), and the maximal frequency
range allowed by the length of the data !0.025–1 Hz (i.e., correla-
tions in the range [1–40 s]). In addition to providing a measure of
the reliability of the DFA-measured scaling exponent (over the 1–
10 s time range), the regression of the spectral scaling exponents
obtained from each range enabled us to examine to what extent
the DFA and spectral scaling parameters that were obtained over
the shorter time range 1–10 s could predict the scaling parameter
over the longer time range of 1–40 s. The lowest window size of 1 s
was also chosen to maximise the temporal range of correlations. In
Nikulin and Brismar, 2004, the authors limit measurements to 5 s
after suggesting that the exponents are being affected by temporal
correlations produced by the extraction of the instantaneous
amplitude of the oscillations at shorter time windows.

To provide a confidence value for the measured exponents, for
each subject, 5000 new sequences preserving the amplitude distri-
bution of the original data were generated by randomly shuffling
the record. It should be noted that these realizations do not pre-
serve the frequency spectrum of the original record. Shuffling by
block would partially address the problem, however, the short
length of the data makes it difficult to obtain an appropriate com-

Fig. 1. Pooled power spectra (in range 4–40 Hz) for each electrode (C3,C4,Cz,Pz) for each age group: 0–2 years (A); 4–11 years (B); 12–17 years (C); 22–55 years (D). The
insert (A) shows the position of the electrodes in the Maudsley system. The colored electrodes correspond to the spectra from C3, C4, Cz and Pz. The spectra reveal a slight
developmental shift in the peak Alpha frequency, from 7.5 Hz in G1 (0–2 years) to 10 Hz in G4 (22–55 years). However, this shift is compatible with the choice of 8–13 Hz for
extracting the Alpha component of the signal. There are no significant differences in power between age groups. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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promise between number of blocks and frequency range. Each se-
quence was filtered and Hilbert transformed as for the original EEG
data, and its exponent was extracted. The resulting distribution of
exponents was estimated by maximum-likelihood fitting of a nor-
mal distribution. Normality of the distribution was assessed by
applying the Anderson–Darling test for the composite hypothesis
of normality. This test makes use of the empirical distribution
function in calculating critical values and provides a more sensitive
test through giving more weight to the tails than does the Kol-
mogorov–Smirnov (K–S) test (Stephens, 1986). Using the esti-
mated distribution parameters, one-sample tests were applied to
provide statistical significance on a per-subject basis.

The estimated exponent derived from DFA was plotted against
subject age both as continuous and categorical variable. In the con-
tinuous case, linear regression analysis was used to assess the pres-
ence of an effect of age. In the categorical case, subjects were
grouped together according to age (James et al., 2008) into 4 age
groups: 0–2 years (n = 6 subjects), 4–11 years (n = 10 subjects),
12–17 years (n = 8 subjects), 22–55 years (n = 12 subjects). Effect
of age was assessed using a non-parametric form of ANOVA, and
post hoc pair-wise comparisons were performed to identify signif-
icant differences between age groups.

3. Results

3.1. Power spectra

Power spectra were computed for all 4 electrodes in all subjects.
The pooled power spectra for the 4 electrodes and the 4 age ranges
are shown in Fig. 1A–D. A diagram showing the EEG recording set-
up used for all subjects is inserted into Fig. 1A. The power spectra
show a prominent Alpha frequency peak at 8–12 Hz. The spectral
data show small peaks at Beta frequencies especially for the elec-
trodes located over the sensori-motor cortex (C3 and C4). As dis-
cussed by Linkenkaer-Hansen et al. (2001) the presence of
discrete spectral peaks at!10 Hz (Alpha) frequencies indicates that
the power spectra of the EEG data is not scale free but dominated by
a particular (100 ms) time scale. This consideration applies to other
EEG spectral components with additional segmentation at time
scales relating to 1/frequency of discrete EEG oscillations.

3.2. Determination of the scaling exponents

Fig. 2 shows raw EEG data from a child aged 7 years and an
adult aged 25 years. The processing steps used to derive scaling
exponents for this data are shown. Fig. 2A shows a sample of
raw EEG. Fig. 2B shows the sample data subjected to finite impulse
response filtering between 8–13 Hz. The red line in the amplitude
envelope for this data is computed from the modulus of the Hilbert
transform (see Linkenkaer-Hansen et al., 2004). Fig. 2C shows the
power spectra of the entire raw data record. Fig. 2D shows for
the entire data record the power spectrum of the Hilbert transform
for frequencies <1 Hz. Fig. 2E shows the results of detrended fluc-
tuation analysis (DFA) on the entire data. Fig. 2F–I show the iden-
tical data analysis approach for the adult’s EEG data. The spectral
analysis of the amplitude fluctuations for the child’s data revealed
a b of 0.63, the analysis of the adult data showed a b of 0.43. The
results of detrended fluctuation analysis for the child and adult
were exponents a of 0.87 and 0.70, respectively (shuffling of these
data – solid dots in Fig. 2E and J – produced exponents a of !0.5).
Note that the relationship b = 2a " 1 valid in ideally long-range
temporal correlations was approximately true in both cases.

The steps illustrated in Fig. 2 were repeated for Theta and Beta
frequency ranges (4–6 Hz and 16–24 Hz), and for each of the 4
electrode sites (C3, C4, Cz and Pz).

3.3. Spectral exponent vs. DFA exponent

Fig. 3 A–C shows plots of the two exponents b (derived from
spectral analysis) x-axis and a (derived from DFA) y-axis for Theta,
Alpha and Beta frequencies. It can be seen that the two measures
are correlated (R2: 0.48–0.68). The slope coefficient in all three
cases is lower than the theoretically expected value of 0.5. This
could be explained by the finding that DFA can overestimate the
Hurst exponent (see Gao et al., 2006 for example), however, expo-
nent estimation from DFA is much more reliable than that from the
PSD of the EEG amplitude envelope. The goodness of fit for DFA
was 0.970 on average, in excess of values accepted in other studies.
As discussed by Gao et al., (2006) the spectral method provides a
useful confirmation of the DFA estimate and this is borne out by
our analysis. Consequently, the remainder of the data analysis con-
tains the results of DFA of EEG.

However, it is important to note that the method of extracting
the spectral exponent does not have the same requirement in
terms of computing it on a number of disjoint segments of data.
Therefore we have compared the spectral exponents obtained
when only focusing on the range 1–10 s to those of the entire
length of the record 1–40 s. Fig. 3 D–F shows that the spectral
exponent evaluated for the frequency range 1–10 s is a reasonable
predictor of the spectral exponent for the longer time range 1–40 s,
(R2 = 0.42–55). This encourages us to believe that our necessarily
short sections of data used for DFA provide an accurate reflection
of LRTC at longer time scales.

3.4. Statistical significance of the exponents

Analysis of the shuffled data for each data set, i.e., for the 3 fre-
quency ranges and 4 electrodes, revealed normal distributions of
exponents centred at 0.485 ± 0.001 (NB: in finite length data, the
theoretical value of the Hurst exponent, H = 0.5 is obtained asymp-
totically only) with standard deviation 0.061 ± 0.004 indicating
that in contrast to the measured EEG, the shuffled EEG data show
the temporal correlation signature of white noise. A significance
value for each subject was obtained analytically using a 1-sample
t-test with the empirical distribution resulting from the shuffled
data. Table 1 shows for each frequency and age group the propor-
tion of data records with DFA exponents significantly different
from those expected from the shuffled distribution (P < 0.05). The
table shows that for Beta frequencies subject groups 1–3 (i.e. not
adults) had a higher proportion of records that did not differ from
the shuffled distribution at the (P < 0.05) level. This method of
computing significance suffers from the drawback that we may
be rejecting exponents that express genuine LRTC in the data. In
addition, as the shuffled data do not preserve the frequency spec-
trum of the original record, there is also an increased risk of false-
positives (type-1 errors). As noted by Nikulin and Brismar (2004,
2005), even if exponents do not exceed the significance threshold,
they can be still used as estimators of the dynamics of neuronal
oscillations at a group level. Therefore, we have plotted across
age summary statistics with all the data, irrespective of signifi-
cance. Taken together, however, the tests revealed that in the Theta
and Alpha ranges, DFA exponents are significantly greater than the
exponent expected from the shuffled data. This gives statistical
support to the idea that the DFA exponents at all age ranges are
showing long-range temporal correlations. In the Beta range, it
was found that the DFA exponents tend with age to become signif-
icantly greater than the exponent expected from the shuffled data.

3.5. Effect of frequency band on scaling exponents

Only 2 out of 36 subjects (1 in the youngest age group – elec-
trode C3, 1 in the oldest age group – electrodes C3, C4 and Pz)
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showed a DFA exponent for the Beta range in excess of Theta and
Alpha. Therefore in !95% subjects the highest DFA exponents were
either at Alpha or Theta frequencies. Alpha and Theta were approx-
imately equally well represented as the highest exponent value
when viewed from the perspective of an individual subject.

3.6. Effect of age on scaling exponents

The DFA scaling exponent from each individual subject was
plotted against age for each of the 4 electrodes for the 3 frequency
ranges. Linear regressions were calculated to assess the presence of
an age effect for EEG electrodes C3, C4, Cz and Pz for Theta, Alpha
and Beta frequencies. As shown by Table 2, there were no age ef-
fects in any band for electrodes C3, C4 and Cz. However, there were
significant slopes between DFA scaling exponent of Pz and subject
age in both Theta band (a decrease over age) and the Beta band (an
increase over age). Fig. 4A–C shows the DFA scaling exponents for

each subject’s EEG plotted against the subject’s age for Theta, Alpha
and Beta frequencies (all electrodes included). The open circles
represent data that were not significant with respect to the shuf-
fled data. Fig. 4D shows that for electrode Pz, the ratio between
the DFA scaling exponents in the Beta and Theta ranges showed
a statistically significant slope, i.e., the DFA scaling exponent in
Beta increasingly dominating relative to theta with increasing
age. No age effects were detected for the Beta and Theta ranges
for the C3, C4 and Cz electrodes (see Table 2).

The subjects were grouped according to the age ranges used for
the paper of James et al., (2008). Fig. 5 summarises the DFA scaling
exponent data for the Theta, Alpha and Beta frequencies from C3,
C4, Cz and Pz electrodes. Mean ± SD exponents are plotted for
the 4 age ranges of interest (G1: 0–2 years, G2: 4–11 years, G3:
12–17 years and G4: 22–55 years).

Because the assumptions of normality required for application
of an ANOVA were not satisfied, the Kruskal–Wallis rank sum test,

Fig. 2. Extraction of the spectral and DFA scaling exponents for a young child (left, 7-year old) and an adult (right, 25-year old). (A,F) 5s segment of raw EEG signal from the C3
electrode. (B,G) The signal shown in (A,F) has been band pass filtered (8–13 Hz) by FIR (black line) and its amplitude envelope (red line) computed using the Hilbert transform.
(C,H) Power spectra of the entire records, samples of which are shown in (A,G). The spectra show a strong alpha component at !10 Hz, especially in the young infant. The
adult spectrum shows some Beta power in the range 17–23 Hz. (D,I) Power spectrum of the amplitude envelope of the oscillations at 10 Hz shown in the range <1 Hz (circles).
The power law exponent b is the slope of the line fitted to the data points. (E,J) Average of the root-mean-square fluctuation of the entire integrated and detrended original
signal (circles) and shuffled signal (solid dots) in the interval 1–10 s. The power law exponent a is the slope of the line fitted to the data points. In both E and J, the scaling
exponent is !0.5 for the shuffled data, showing a memoryless process. The scaling exponents are 0.87 in the young child and 0.70 in the adult. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

L. Berthouze et al. / Clinical Neurophysiology 121 (2010) 1187–1197 1191
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a non-parametric analogue, was used instead (Hollander and
Wolfe, 1973). Table 3 reports the H statistics, along with the asso-
ciated P value. DFA exponents for the Alpha and Theta frequency
bands did not show a group age effect. A significant effect was
found for electrode Pz in the Beta frequency range only. Pair-wise

tests were performed to identify which between-group differences
accounted for this effect. Significant differences (P < 0.01) were ob-
served for G1–G4, G2–G4 and G3–G4. No differences were found
for G1–G2 (P = 0.329) and G2–G3 (P = 0.699).

4. Discussion

In this paper we have investigated the dynamics of EEG oscilla-
tion behaviour in the awake, behaving human brain across a wide
range of chronological age. We have interpreted these results as set
out in the papers of Linkenkaer-Hansen and colleagues (2001,
2004, 2005, 2007) as indicative of the scale-free nature of sponta-
neous EEG fluctuations. In the introduction we proposed that dur-

Fig. 3. Estimation of the reliability of exponent estimation between spectral and DFA methods (A–C), and between spectral methods in the [1–10 s] time scale vs. [1–40 s]
time scale (D–F). In each band, scaling exponents obtained over all electrodes and all subjects from each method were plotted against one another and a linear regression was
computed. Goodness of fit was assessed by R2.

Table 1
Ratio of significant DFA scaling exponents with age (per subject), with significance at
group level.

G1 (n = 6) G2 (n = 10) G3 (n = 8) G4 (n = 12)

h C3 6*** 10*** 7*** 12***

C4 6*** 9*** 8*** 11***

Cz 6*** 10*** 8*** 12***

Pz 6*** 10*** 8*** 11***

a C3 3 9*** 7*** 12***

C4 4* 9*** 6*** 10***

Cz 4** 5** 4 11***

Pz 1 9** 5* 10***

b C3 3* 3* 5* 8*

C4 2* 4* 1 10*

Cz 1 4* 1 7**

Pz 1 4 2 10**

* P < 0.05.
** P < 0.01.
*** P < 0.001.

Table 2
Slopes (#1e-5) of linear regressions of scaling DFA exponents over age.

C3 C4 Cz Pz

h 1.6 "8.8 "1.0 "22.6*

a 11.2 "4.0 6.0 16.7
b 9.0 1.8 9.0 20.1***

* P < 0.05.
*** P < 0.001.
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ing human development changes in brain age and dynamical com-
plexity would be revealed as an increasing tendency to LRTC and
therefore cross-sectional EEGs would show systematic differences
in the scaling exponent indicating that LRTC and thus the potential
for SOC is approached with increasing brain age. Our data, which
show EEG oscillation amplitude long-range temporal correlations
(LRTC) at different central and parietal electrode positions in Theta,
Alpha and Beta frequency bands regardless of electrode position,
EEG frequency and subject age, do not support this hypothesis
but indicate that EEG amplitude scaling behaviour is present to a
similar degree over a wide subject age range. Thus, these findings
extend to a larger age distribution and support the findings of Nik-
ulin and Brismar (2005) in which no consistent trends in Alpha
rhythm LRTC between ages 20 and 65 years were detected. How-
ever, for EEG recorded from the Pz electrode we detected a consis-
tent effect of subject age of the exponent value that defines EEG

LRTC at Theta and Beta frequencies. The DFA exponent for the The-
ta range decreased with age (as continuous variable). The DFA
exponent for the Beta range increased with age (both as continu-
ous and categorical variable). The results extend our knowledge
of EEG LRTC but raise important methodological and theoretical
questions.

The exponent values obtained in the present study are within
the range quoted by other researchers. Linkenkaer-Hansen et al.
(2001) detected during resting eyes closed and eyes open para-
digms MEG and EEG Alpha and Beta frequency DFA exponent val-
ues of !0.7. During an eyes closed EEG paradigm Alpha rhythm
DFA exponent values for C3 and C4 electrodes were 0.7 ± 0.08, in
the same study Beta rhythm recorded from C3 and C4 the DFA
exponent was 0.66 ± 0.09 (Linkenkaer-Hansen et al., 2007). Nikulin
and Brismar, (2004) found DFA exponents for Alpha rhythm with
eyes open of 0.65–0.675. For Beta rhythms with eyes open DFA

Fig. 4. Scatter plots of the DFA exponents from all subjects against age over all electrodes in the Theta (A), Alpha (B) and Beta (C) bands. Exponents that were statistically
(P < 0.05) different from those expected from the shuffled data (i.e., data in which long-range temporal correlations were disrupted; see Methods) are shown in solid dots.
Circles show exponents that are non-significant with respect to exponents derived from the same data when shuffled. There is no general effect of age as assessed by linear
regressions. The plot of the ratio between scaling exponents obtained in the Beta and Theta range for electrode Pz (D) shows a significant (P = 0.01) positive slope. This slope is
the result of a significant decrease with chronological age of the scaling exponent in the Theta band with a concomitant increase of the scaling exponent in the Beta band.
Only Pz showed such a trend.
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values were slightly lower at !0.65. In the same study with eyes
closed both Alpha and Beta frequency DFA exponent values were
!0.7. In a second study using an eye closed paradigm median
exponent values of 0.75 and 0.68 were detected in the Alpha band
for men and women, respectively. For the Beta band median expo-
nent values for males and females were 0.7 and 0.65 (Nikulin and
Brismar, 2005). In our study the exponent values were in this
range. Across all age ranges the Beta band exponents we measured

were almost always lower than the other frequency ranges (95% of
the subjects). As discussed below an important difference between
our experimental paradigm and those of other researches is that
our subjects were performing a wrist extension activating forearm
extensor muscles with the eyes open (see below).

4.1. Methodological considerations

4.1.1. Validation of DFA results and data duration
We calculated the exponent values using spectral and DFA

methodology. The results were broadly similar. We utilized the
spectral approach to validate the DFA data (see Gao et al., 2006).
The correlation between DFA and spectral methods was reasonable
(R2: 0.42–0.68). Following other researchers we have used DFA
methodology as the prime measure of EEG LRTC. One drawback
of data in the present study is the short data lengths we were
forced to use because of some of the subjects’ young age and level
of co-operation and the fact that lower frequency theta oscillations
may have been affected by high-pass filtering the EEG at 4 Hz.
Linkenkaer-Hansen et al., (2004) used data of duration 1200 s.

Fig. 5. Summary statistics of the DFA scaling exponents in the Theta (A), Alpha (B) and Beta (C) bands when pooling subjects into four age groups: 0–2 years (G1); 4–11 years
(G2); 12–17 years (G3); 22–55 years (G4). Each histogram shows the average and standard deviation of the scaling exponents for each electrode (C3, C4, Cz, and PZ, from left
to right). In line with the findings of Fig. 4, there is no effect general effect of age on the exponents, but in the Beta band for electrode Pz. Significant (P < 0.05) pair-wise
differences are found between G4 and G1, G2 and G3.

Table 3
H statistics for non-parametric analysis of variance of DFA scaling exponents with age
groups (df = 3; G1, 0–2 years; G2, 4–11 years; G3, 12–17 years; G4, 22–55 years) and
post hoc pair-wise comparisons.

C3 C4 Cz Pz

h 3.93 3.46 1.76 2.90
a 7.79 3.07 5.15 6.57
b 2.12 2.53 6.86 14.55**

** P < 0.01; significant (P < 0.05) post hoc pair-wise comparisons for b in Pz: G1–G4,
G2–G4, G3–G4.
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Because of the difficulties of obtaining continuous artifact-free
data in young children our data was necessarily shorter (35–120
s, leading to DFA scaling exponents characterising shorter-range
temporal correlations). Linkenkaer-Hansen et al., (2007), however,
obtained similar exponent values with short data sections (240 s
sections of EEG data) giving LTCs over !20 s. Kantelhardt et al.
(2001) showed improved performance with short records when
using their modified DFA method. In this paper, we used the spec-
tral method to test the degree to which the scaling exponents from
shorter data sections (10 s) were representative of longer records
(40 s). The correlation between shorter data segments giving spec-
tral range of 0.01–1 Hz and longer segments giving a spectral range
of 0.025–1 Hz gave R2 values of 0.42–0.55. When comparing DFA to
the spectral method and when looking at the widest spectral range
possible in our data the strongest correlation (0.68 and 0.55,
respectively) was for Alpha frequencies. The weaker correlations
for Theta and Beta ranges might reflect stronger task and age ef-
fects in the Theta and Beta ranges (see below). Finally, it is impor-
tant to note that within a subject there is variability of exponent
values with a test–retest correlation of exponent R = !0.8 (Nikulin
and Brismar, 2004). For our data, the average standard deviation in
exponent between multiple records of a single subject was !0.05.

4.1.2. Motor task
The most important difference when comparing this data to

that of other studies is the fact that the subjects were asked to per-
form a steady motor task (contraction of the right forearm extensor
muscle) during a wrist extension. Beta frequencies of EEG and local
field potentials are strongly associated with voluntary muscle acti-
vation (Murthy and Fetz, 1992; Pfurtscheller and Lopes da Silva,
1999; Conway et al., 1995). The DFA scaling exponents for Beta fre-
quencies were lower than those for Alpha and Theta frequencies.
However, the DFA exponent values of >0.5 indicate that Beta fre-
quencies remain scale free and this was observed for all subject
ages. This result may be explained by the fact that muscle contrac-
tion lowers the DFA exponent yet because in our experiments the
contraction was continuous (steady state) the Beta frequency LRTC
remains, albeit at a reduced level. Sensory perturbation lowers EEG
LRTC and the DFA and spectral exponents measured show disrup-
tion but not destruction of long duration amplitude correlations
(Linkenkaer-Hansen et al., 2004). Our previous study (James
et al., 2008) showed that from age 24 months and above the motor
task was performed in a similar way. Children below the age of
24 months have greater difficulty in maintaining steady muscle
contraction whilst neonates and babies activate forearm muscles
using the grasp reflex. This is shown as an increase in low fre-
quency power in the EMG spectra (James et al., 2008). The reduced
persistence of the muscle contraction in the youngest children
could act as a perturbation that would have the affect of reducing
exponent values in the younger children. This would lead to the
prediction that exponent differences especially at Beta frequencies
would differ between the youngest subjects and the older subjects
and that these differences would be most marked for the C3 elec-
trode situated over primary sensori-motor cortex contralateral to
the activated muscle. Interestingly, DFA exponent values in the
Beta frequency band did show detectable increases with age and
the ratio of DFA exponents for Beta over Theta increased with
age. However, these were only significant for the Pz electrode i.e.,
the electrode most distant from sensori-motor cortex. The DFA
exponent values from the electrode contralateral to the activated
muscle (C3 electrode) did not show systematic age related
changes. Furthermore, there were no differences in exponent value
between the C3 electrode contralateral to the contracted forearm
extensor muscle and the C4 electrode situated over the sensori-
motor cortex ipsilateral to the activated forearm muscles (the ratio
of exponent values for C3/C4 was !1). Whilst we cannot exclude

more global effects of muscle activity variability, scalp topology ar-
gues against muscle activation variability as the primary cause of
exponent change with age. In contrast to the EEG data, the EMG
data from young children in the present study did not contain suf-
ficiently long segments of continuous !10–20% MVC EMG to allow
calculation of the DFA exponent for EMG. It is important to note
that even when motor task is not an experimental requirement,
studies in awake young children especially babies will involve fre-
quent motor activation. Sleep studies in which there is minimal
motor activation would be possible but at the expense of losing
interesting data from the alert waking EEG. A systematic study of
the effects on LRTC of motor activation would be of interest and fu-
ture studies may address LRTC of EMG with change in age using
DFA methodology. Furthermore, the relation of EMG amplitude
fluctuation to EEG LRTC and EEG–EMG coherence LRTC would be
of great interest.

In studies of adult EEG–EMG correlation the electrode situated
over the contralateral sensori-motor cortex shows maximal Beta
range EEG–EMG coherence which reflect EEG–EMG synchroniza-
tion mediated via fast-conducting corticospinal tract pathways
(Halliday et al., 1998; Mima and Hallett, 1999; Farmer et al.,
2004). Spontaneous fluctuations in the magnitude of the correla-
tion have not been systematically investigated. Future studies will
examine if the fluctuation of correlations (coherence and phase)
between EEG and EMG and EMG and EMG show LRTC and evidence
of scaling behaviour.

4.1.3. EEG spectral components
The generators and functional significance of Alpha (8–13 Hz),

Beta (16–25 Hz) and Theta (4–6 Hz) EEG oscillations have been
extensively studied in humans and animal (see Buzsáki, 2006). Pre-
vious studies of EEG development have focused on these frequency
ranges and have described PSD amplitude changes with age (Gas-
ser et al. 1988; Clarke et al., 2001). The pooled EEG spectra in the
present study revealed subtle changes in PSD peak frequency with
the lowest peak for Alpha frequency being in the 0–2 years age
group. In our data the Alpha peaks, though at lower frequency in
the younger subjects, were still maximal within 8–13 Hz range of
analysis (see Fig. 1). In Theta and Beta ranges discrete peaks were
less apparent in the PSD functions. The PSD amplitude of Alpha and
Beta frequencies show age related increases relative to PSD ampli-
tude of Theta frequencies (Clarke et al., 2001). We did not examine
relative power amplitude systematically with age but our pooled
data did not show consistent changes in amplitude and frequency
of Theta and Beta rhythms. The spectral peaks within the PSD are a
poor guide to the associated DFA exponent value for that range of
frequencies for as shown by Linkenkaer-Hansen et al. (2007) there
is no correlation between the power spectra amplitude and the
DFA exponent value. Using frequency ranges derived from the lit-
erature (see Gasser et al., 1988), for the spectral and DFA analysis
opens up the criticism that we are making assumptions about
the similarity of the underlying generators over chronological
age. For example, is the generator of the Alpha rhythm in a child
the same as that of an adult and do subtle differences in frequency
and power indicate fundamental differences in underlying dynam-
ics? Spectral and DFA analysis when uniformly applied across the
age ranges allowed us to make the general statement that notwith-
standing subtle EEG frequency and amplitude changes with age,
scaling behaviour is present in EEG from age 0 months to age
660 months. Inevitably cross-sectional data has limitations and
our data may have missed subtle developmental trends in EEG
spectral peak amplitude and frequency and DFA exponent values
that would be detectable in a longitudinal analysis (see for exam-
ple, Campbell and Feinberg (2009)’s longitudinal study of Delta and
Theta EEG activity during sleep).
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4.2. General considerations

To the best of our knowledge this study is the first to have ap-
plied spectral and DFA analyses to human EEG time series across a
wide range of subjects encompassing neonates, infants, children,
adolescents, young and middle-aged adults. The data provide sup-
port for the concept that the scale-free nature of EEG LRTC reflects
a form of dynamical organization that is present from early child-
hood. We have demonstrated that at all ages the EEG at Alpha, Beta
and Theta frequencies shows significant scaling behaviour and we
have differentiated this from uncorrelated white noise obtained
from shuffled EEG data in each subject. There is much interest in
Theta, Beta and Gamma oscillation emergence in early mammalian
development (Lahtinen et al., 2002; Gireesh and Plenz, 2008; Yang
et al., 2009) and its role in organizing emerging neural circuitry.
Although our primary result is that LRTC is detectable across a
wide age range, the findings provide an early indication that over
a wide range of chronological age there may be subtle effects on
the magnitude of DFA exponents in that for the Pz electrode they
decrease with age at Theta frequencies and increase with age for
Beta frequencies. These age effects are as yet unexplained. We
speculate that they may represent a shift in the functional signifi-
cance of oscillation frequency with adults being more reliant on
longer range temporal correlations within faster rhythms. Future
studies will be needed to explore the extremes of age, especially
neonates and premature but healthy babies in order to see if there
is an age at which EEG LRTC becomes manifest. Longitudinal data
studies will be particularly important and given that from our data
the emergence of EEG LRTC must occur rapidly and very early in
life such longitudinal studies would be feasible. Data from altricial
species show that the immature cerebral cortex self-organizes into
local neuronal clusters before it is activated by patterned sensory
inputs (Katz and Crowley, 2002) and that within 1 week of birth
the cortical network switches from a gap-junction driven syncy-
tium to a synaptic network able to generate synchronous oscilla-
tory activity and this activity may act as a template for the
formation of cortical columnar architecture (Dupont et al., 2006).
DFA exponents >0.5 are a signature of a system that is poised be-
tween a random and a completely synchronized state and are evi-
dence that human EEG dynamics have self-organizing properties.
Synchronous EEG oscillations with LRTC we suggest are an early
feature of normal human development and potentially have an
important role in guiding the development and organization of cor-
tical circuitry in motor, sensory and cognitive systems. The emer-
gence of LRTC may be very early in human life and the transition
point (if there is one) when EEG oscillations develop LRTC and thus
one important signature of SOC, might only be found in the EEGs of
premature babies or neonates.

Recent work by Stewart and Plenz (2008) has revealed that cor-
tical slice neuro-physiological data from newborn rats show criti-
cal state dynamics; our data provide the first evidence in humans
for the early emergence of such dynamics in the human brain.

There is a growing body of evidence that disorders such as
depression, Alzheimer disease, schizophrenia, and epilepsy are
associated with changes in long-range temporal correlations as
shown by DFA (Linkenkaer-Hansen et al., 2005; Montez et al.,
2009; Parish et al., 2004). Schizophrenia and epilepsy often mani-
fest during times of significant brain structure development char-
acterized by synaptic and neuronal pruning and increased
myelination. A systematic longitudinal study of healthy subjects
would be needed to establish age, developmental status, IQ, sex
and handedness matched ranges of DFA exponent values. The
precise details of the ‘normality’ of such data would require further
detailed and extensive analysis in a greater number of subjects as
such details could not be extracted from our data set. We believe
that such studies would be highly worthwhile and these may ulti-

mately pave the way to simple non-invasive EEG-based measures
of patients at risk of neurological and psychiatric illness facilitating
the early detection of deviations from a normal developmental
course that may allow for early therapeutic intervention.
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